Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Creatinium hydrogen oxalate

A. Jahubar Ali, ${ }^{\text {a,c }}$ S. Athimoolam ${ }^{\text {b }}$ and S. Asath Bahadur ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, ${ }^{\text {b }}$ Department of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629004 , India, and ${ }^{\text {c }}$ Department of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India
Correspondence e-mail: athi81s@yahoo.co.in
Received 3 January 2012; accepted 9 January 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.037 ; w R$ factor $=0.102$; data-to-parameter ratio $=10.1$.

The crystal structure of the title compound, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$.$\mathrm{C}_{2} \mathrm{HO}_{4}{ }^{-}$, is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The anions are connected by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, leading to $C(5)$ chain extending along c axis. The cations are dimerized around the corners of the unit cell, leading to an $R_{2}^{2}(14)$ ring motif. This leads to a cationic molecular aggregation at $x=0$ or 1 and an anionic molecular aggregation at $x=1 / 2$.

Related literature

For related structures see: Ali et al. (2011a,b); Bahadur, Kannan et al. (2007); Bahadur, Sivapragasam et al. (2007); Bahadur, Rajalakshmi et al. (2007). For hydrogen-bonding motifs, see Bernstein et al. (1995). For the biological importance of creatine, see: Cannan \& Shore (1928); Greenhaff et al. (1993).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{2} \mathrm{HO}_{4}^{-} \\
& M_{r}=221.18 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.1545(4) \AA \\
& b=12.3681(7) \AA \\
& c=10.5151(6) \AA \\
& \beta=94.18(1)^{\circ}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
8631 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.102$
$S=1.08$
1641 reflections
162 parameters 1 restraint

1641 independent reflections 1587 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.25 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 1 N \cdots \mathrm{O}{ }^{1}{ }^{\text {i }}$	0.82 (3)	2.37 (3)	3.094 (2)	148 (2)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 11^{\text {ii }}$	0.85 (2)	2.08 (2)	2.910 (2)	168 (2)
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O} 1^{\text {iii }}$	0.85 (2)	2.18 (2)	2.985 (2)	157 (2)
N3-H4N \cdots O14	0.86 (2)	2.04 (2)	2.903 (2)	174 (2)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 12^{\text {iv }}$	0.94 (3)	1.60 (3)	2.538 (2)	173 (2)
O13-H13O $\cdots \mathrm{O}^{\text {c }}$	0.90 (3)	1.72 (3)	2.605 (1)	168 (2)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC.

AJA and SAB sincerely thank the Vice Chancellor and Management of the Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. AJA thanks the Principal and Management of the National College of Engineering for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5159).

References

Ali, A. J., Athimoolam, S. \& Bahadur, S. A. (2011a). Acta Cryst. E67, o1376.
Ali, A. J., Athimoolam, S. \& Bahadur, S. A. (2011b). Acta Cryst. E67, o2905.
Bahadur, S. A., Kannan, R. S. \& Sridhar, B. (2007). Acta Cryst. E63, o2387o2389.
Bahadur, S. A., Rajalakshmi, M., Athimoolam, S., Kannan, R. S. \& Ramakrishnan, V. (2007). Acta Cryst. E63, o4195.
Bahadur, S. A., Sivapragasam, S., Kannan, R. S. \& Sridhar, B. (2007). Acta Cryst. E63, o1714-o1716.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Cannan, R. K. \& Shore, A. (1928). Biochem. J. 22, 920-929.
Greenhaff, P. L., Casey, A., Short, A. H., Harris, R., Soderlund, K. \& Hultman, E. (1993). Clin. Sci. 84, 565-571.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Creatinium hydrogen oxalate

A. J. Ali, S. Athimoolam and S. A. Bahadur

Comment

Creatine is a nitrogenous organic acid that occurs naturally in vertebrates and helps to supply energy to all cells in the body, primarily muscle (Cannan, 1928; Greenhaff et al.,1993)). We are interested in the specificity of recognition between organic acids and cretine and creatinine molecules and have reported a number of creatinine related structures (Ali et al., 2011a, b; Bahadur, Kannan et al., 2007; Bahadur, Sivapragasam et al., 2007; Bahadur, Rajalakshmi et al., 2007).

The asymmetric part of the title compound, (I), contains one creatinium cation and one hydrogen oxalate anion (Fig. 1). The protonation of the N site of the cation is evident from $\mathrm{C}-\mathrm{N}$ bond distances. The deprotonation on the one of the -COOH groups of the oxalic acid is confirmed from that $-\mathrm{COO}^{-}$bond geometry. The planes of -COOH and $-\mathrm{COO}^{-}$groups are twisted out from each other with an angle of $25.1(2)^{\circ}$. This twisting of planes may be caused due to the hydrogen bonding association and molecular aggregation. The crystal structure and the molecular aggregations are stabilized through intricate three dimensional hydrogen bonding network (Fig. 2; Table 1). All the N and O atoms of the cation and anion participate in the hydrogen bonding interactions.

Hydrogen oxalate anions are connected themselves through a $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond leading to a linear chain $\mathrm{C}(5)$ motif extending along c axis of the unit cell (Bernstein et al., 1995). Creatinium cations are dimerized around inversion centres of the unit cell, especially at the corners of the unit cell and making a ring $R_{2}{ }^{2}(4)$ motif through $\mathrm{N} 2 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1(2$ $-x, 2-y,-z$) hydrogen bond. Also, these cationic dimers are connected themselves through another $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond leading to a zigzag chain $\mathrm{C}(7)$ motif extending along b axis of the unit cell $[\mathrm{N} 3 — \mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O} 1(-x+2, y-1 / 2,-z+1 / 2)]$. These interconnected cationic dimers are connected with oxalate anion leading to a zigzag chain $\mathrm{C}_{2}{ }^{2}(11)$ motif extending along $a c$-plane of the unit cell through $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 11(1+x, 3 / 2-y,-1 / 2+z)$ and $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 12(x, y,-1+z)$. Another pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between cation and anion leading to a linear chain $\mathrm{C}_{2}{ }^{2}(12)$ motifs extending along c axis of the unit cell $[\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O} 14$ and $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 12(x, y,-1+z)]$. Dimerization of cations and anionic chain motifs lead to cationic molecular aggregation at $x=0$ or 1 and molecular aggregation of anions at $x=1 / 2$. These cationic and anionic aggregations are connected further through other $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds leading to a three dimensional hydrogen bonding network.

Experimental

The title compound was crystallized from an aqueous mixture containing creatine $(0.13 \mathrm{~g})$ and oxalic acid $(0.09 \mathrm{~g})$ in the stoichiometric ratio of 1:1 (20 ml of water) at room temperature by slow evaporation technique.

supplementary materials

Refinement

All the H atoms except the atoms involved in hydrogen bonds were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.96\left(-\mathrm{CH}_{3}\right)$ and $0.97 \AA\left(-\mathrm{CH}_{2}\right)$ and $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}$ (parent atom). H atoms involved in hydrogen bonds were located from differential Fourier maps and refined isotropically.

Figures

Fig. 1. The molecular structure of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids. H bonds are drawn as dashed lines.

Fig. 2. Packing diagram of the molecules viewed down the b-axis. H atoms not involved in the H-bonds (dashed lines) are omitted for clarity.

\{amino[(carboxymethyl)(methyl)amino]methylidene\}azanium hydrogen oxalate

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{2} \mathrm{HO}_{4}^{-}$
$M_{r}=221.18$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.1545$ (4) \AA
$b=12.3681$ (7) \AA
$c=10.5151(6) \AA$
$\beta=94.18(1)^{\circ}$
$V=927.98(9) \AA^{3}$
$Z=4$
$F(000)=464$
$D_{\mathrm{x}}=1.583 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3216 reflections
$\theta=2.1-24.7^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.24 \times 0.22 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
ω scans
8631 measured reflections
1641 independent reflections

1587 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-8 \rightarrow 8$
$k=-14 \rightarrow 14$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.102$
$S=1.08$
1641 reflections
162 parameters
1 restraint

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0629 P)^{2}+0.2614 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.23$ e \AA^{-3}
Extinction correction: SHELXTL/PC (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.040 (6)

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.83544(18)$	$1.03293(11)$	$0.10352(12)$	$0.0299(3)$
C2	$0.92061(19)$	$1.05574(11)$	$0.23633(13)$	$0.0326(3)$
H2A	1.0542	1.0671	0.2321	0.039^{*}
H2B	0.8676	1.1225	0.2661	0.039^{*}
C3	$0.7146(2)$	$0.97346(13)$	$0.38693(16)$	$0.0440(4)$
H3A	0.6828	0.9015	0.4120	0.066^{*}
H3B	0.6190	1.0005	0.3264	0.066^{*}
H3C	0.7240	1.0195	0.4606	0.066^{*}
C4	$1.01280(19)$	$0.88981(11)$	$0.34586(12)$	$0.0316(3)$
N1	$0.89312(16)$	$0.97171(9)$	$0.32919(11)$	$0.0323(3)$
N2	$1.1567(2)$	$0.87994(13)$	$0.27569(14)$	$0.0482(4)$
N3	$0.9923(2)$	$0.81801(10)$	$0.43697(13)$	$0.0403(3)$
O1	$0.85571(15)$	$1.09547(8)$	$0.01761(9)$	$0.0385(3)$
O2	$0.74475(17)$	$0.94241(9)$	$0.09369(11)$	$0.0460(3)$
H1N	$1.163(4)$	$0.912(2)$	$0.208(3)$	$0.083(8)^{*}$

H 2 N	$1.238(3)$	$0.8321(15)$	$0.2955(19)$	$0.051(5)^{*}$
H 3 N	$1.061(3)$	$0.7617(18)$	$0.4380(19)$	$0.053(5)^{*}$
H 4 N	$0.914(2)$	$0.8210(14)$	$0.495(2)$	$0.056(6)^{*}$
H 2	$0.705(4)$	$0.9278(19)$	$0.008(3)$	$0.084(7)^{*}$
C 11	$0.56186(18)$	$0.81947(11)$	$0.82074(12)$	$0.0286(3)$
C 12	$0.58163(18)$	$0.79173(11)$	$0.67945(12)$	$0.0284(3)$
O 11	$0.45079(14)$	$0.76467(9)$	$0.87863(8)$	$0.0384(3)$
O12	$0.66030(19)$	$0.89487(11)$	$0.86180(11)$	$0.0566(4)$
O13	$0.43397(14)$	$0.74502(9)$	$0.62504(9)$	$0.0385(3)$
O14	$0.72071(16)$	$0.81332(10)$	$0.62893(10)$	$0.0490(4)$
H 13 O	$0.449(3)$	$0.7329(19)$	$0.542(2)$	$0.071(6)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0297(7)$	$0.0292(7)$	$0.0313(7)$	$0.0010(5)$	$0.0054(5)$	$0.0002(5)$
C2	$0.0375(7)$	$0.0294(7)$	$0.0306(7)$	$-0.0027(5)$	$0.0004(5)$	$0.0042(5)$
C3	$0.0418(8)$	$0.0448(9)$	$0.0472(9)$	$0.0102(7)$	$0.0160(7)$	$0.0084(7)$
C4	$0.0357(7)$	$0.0355(7)$	$0.0236(6)$	$0.0037(6)$	$0.0024(5)$	$-0.0009(5)$
N1	$0.0341(6)$	$0.0333(6)$	$0.0303(6)$	$0.0037(5)$	$0.0064(5)$	$0.0058(4)$
N2	$0.0442(8)$	$0.0637(9)$	$0.0384(8)$	$0.0205(7)$	$0.0147(6)$	$0.0151(7)$
N3	$0.0507(8)$	$0.0353(7)$	$0.0364(7)$	$0.0121(6)$	$0.0128(6)$	$0.0077(5)$
O1	$0.0498(6)$	$0.0348(5)$	$0.0308(5)$	$-0.0016(4)$	$0.0019(4)$	$0.0058(4)$
O2	$0.0615(7)$	$0.0432(6)$	$0.0335(6)$	$-0.0218(5)$	$0.0044(5)$	$-0.0033(5)$
C11	$0.0283(6)$	$0.0346(7)$	$0.0230(6)$	$0.0007(5)$	$0.0013(5)$	$-0.0007(5)$
C12	$0.0317(7)$	$0.0304(7)$	$0.0237(6)$	$0.0000(5)$	$0.0045(5)$	$0.0012(5)$
O11	$0.0429(6)$	$0.0515(6)$	$0.0215(5)$	$-0.0093(5)$	$0.0066(4)$	$-0.0017(4)$
O12	$0.0687(8)$	$0.0683(8)$	$0.0339(6)$	$-0.0311(7)$	$0.0101(5)$	$-0.0161(5)$
O13	$0.0363(6)$	$0.0575(7)$	$0.0220(5)$	$-0.0070(5)$	$0.0042(4)$	$-0.0083(4)$
O14	$0.0447(6)$	$0.0712(8)$	$0.0330(6)$	$-0.0182(5)$	$0.0148(5)$	$-0.0060(5)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 1$	$1.2060(17)$
$\mathrm{C} 1-\mathrm{O} 2$	$1.2943(17)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.5090(19)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.4493(17)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{C} 3-\mathrm{N} 1$	$1.4540(18)$
$\mathrm{C} 3-\mathrm{H} 3 A$	0.9600
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9600
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9600
$\mathrm{C} 4-\mathrm{N} 2$	$1.3152(19)$
$\mathrm{C} 4-\mathrm{N} 3$	$1.3223(19)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$125.59(13)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$120.72(12)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$113.69(11)$

$\mathrm{C} 4-\mathrm{N} 1$	$1.3296(18)$
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N}$	$0.82(3)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$0.85(2)$
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N}$	$0.85(2)$
$\mathrm{N} 3-\mathrm{H} 4 \mathrm{~N}$	$0.86(2)$
$\mathrm{O} 2-\mathrm{H} 2$	$0.94(3)$
$\mathrm{C} 11-\mathrm{O} 12$	$1.2279(17)$
$\mathrm{C} 11-\mathrm{O} 11$	$1.2377(17)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.5413(18)$
$\mathrm{C} 12-\mathrm{O} 14$	$1.1920(17)$
$\mathrm{C} 12-\mathrm{O} 13$	$1.2996(17)$
$\mathrm{O} 13-\mathrm{H} 13 \mathrm{O}$	$0.90(3)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2$	$121.16(12)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	$122.23(12)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$115.92(11)$

sup-4

supplementary materials

$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$115.09(11)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N}$	$122.7(19)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$118.7(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.5	$\mathrm{H} 1 \mathrm{~N}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$118(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.5	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N}$	$117.5(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.5	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 4 \mathrm{~N}$	$126.7(10)$
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.5	$\mathrm{H} 3 \mathrm{~N}-\mathrm{N} 3-\mathrm{H} 4 \mathrm{~N}$	$115.7(17)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	$\mathrm{C} 1-\mathrm{O} 2-\mathrm{H} 2$	$110.9(15)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5	$\mathrm{O} 12-\mathrm{C} 11-\mathrm{O} 11$	$127.98(12)$
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5	$\mathrm{O} 12-\mathrm{C} 11-\mathrm{C} 12$	$114.67(12)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	$\mathrm{O} 11-\mathrm{C} 11-\mathrm{C} 12$	$117.35(11)$
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	$\mathrm{O} 14-\mathrm{C} 12-\mathrm{O} 13$	$125.56(12)$
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	$\mathrm{O} 14-\mathrm{C} 12-\mathrm{C} 11$	$121.20(12)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 3$	$118.47(14)$	$\mathrm{O} 13-\mathrm{C} 12-\mathrm{C} 11$	$113.24(11)$
N2—C4-N1	$121.30(13)$	$\mathrm{C} 12-\mathrm{O} 13-\mathrm{H} 13 \mathrm{O}$	$110.6(15)$
N3-C4-N1	$120.19(13)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.82(3)$	$2.37(3)$	$3.094(2)$	$148(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 11^{\mathrm{ii}}$	$0.85(2)$	$2.08(2)$	$2.910(2)$	$168(2)$
$\mathrm{N} 3 — \mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{iii}}$	$0.85(2)$	$2.18(2)$	$2.985(2)$	$157(2)$
$\mathrm{N} 3 — \mathrm{H} 4 \mathrm{~N} \cdots \mathrm{O} 14$	$0.86(2)$	$2.04(2)$	$2.903(2)$	$174(2)$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 12^{\mathrm{iv}}$	$0.94(3)$	$1.60(3)$	$2.538(2)$	$173(2)$
$\mathrm{O} 13 — \mathrm{H} 13 \mathrm{O} \cdots \mathrm{O}_{1} \mathrm{~V}$	$0.90(3)$	$1.72(3)$	$2.605(1)$	$168(2)$

Symmetry codes: (i) $-x+2,-y+2,-z$; (ii) $x+1,-y+3 / 2, z-1 / 2$; (iii) $-x+2, y-1 / 2,-z+1 / 2$; (iv) $x, y, z-1$; (v) $x,-y+3 / 2, z-1 / 2$.

supplementary materials

Fig. 1

Fig. 2

