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2e biological function of human ovaries declines along with aging. To identify the underlying molecular changes during ovarian
aging, pigs were used as model animals. Genome-wide DNA methylation and transcriptome-wide RNA expression analyses were
performed via high-throughput sequencing of ovaries from young pigs (180 days, puberty stage of first ovulation) and old pigs
(eight years, reproductive exhaustion stage). 2e results identified 422 different methylation regions between old and young pigs;
furthermore, a total of 2,243 mRNAs, 95 microRNAs, 248 long noncoding RNAs (lncRNAs), and 116 circular RNAs (circRNAs)
were differentially expressed during both developmental stages. Gene ontology analysis showed that these genes related to
different methylation and expression are involved in the ovarian aging cycle. Specifically, these are involved in cell apoptosis, death
effector domain binding, embryonic development, reproduction and fertilization process, ovarian cumulus expansion, and the
ovulation cycle. Multigroup cooperative control relationships were also assessed, and competing endogenous RNA (ceRNA)
networks were constructed in the ovarian aging cycle. 2ese data will help to clarify ovary age-associated potential molecular
changes in DNA methylation and transcriptional patterns over time.

1. Introduction

2emajor challenges in women’s reproductive health are the
reduction of reproductive performance along with aging;
moreover, oocyte quantity and oocyte quality are closely
related to the reduction of follicular reserve in the ovary [1].
2e decrease of follicular reserve in the ovary is nonlinear
and accelerated with age [2–4]. 2is leads to near-complete
exhaustion by a mean age between 51 and 52 years, which is
defined as menopause [2]. Ovarian aging is affected by
numerous factors and has been particularly linked to ge-
netics [5, 6]. In conclusion, the heredity record of normal
reproduction and numerous pathologies like premature

ovarian insufficiency (POI) and polycystic ovary syndrome
(PCOS) have been emphasized [6, 7].

2e concept of epigenetics related to heritable changes
in chromatin structure and gene expression does not in-
volve changes of DNA sequence. 2e known classes of
epigenetic modification are DNA methylation, histone
modification, and the synthesis of noncoding RNA, in-
cluding that of microRNAs (miRNAs) and long noncoding
RNAs (lncRNAs) [8, 9]. Furthermore, these three epige-
netic mechanisms are in fact forming a network [9].
“Ovarian epigenetics” is a new field that has uncovered
stimulating revelations. Recent research has documented
that DNA methylation plays a key role in the regulation of
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ovarian cancer and ovarian diseases such as PCOS and POI
[10, 11]. Moreover, several noncoding RNAs such as
miRNAs and lncRNAs are crucial for the regulation of
ovarian physiology [12–16]. However, these results mainly
elucidate the epigenetic mechanism in ovarian health-as-
sociated phenotypes. For natural ovarian aging, epigenetic
mechanisms in the ovarian context have been studied far
less, due to the timing of menarche and menopause. Im-
portantly, epigenetic modifications during the natural
aging of ovaries are a perfect opportunity to understand the
health-related phenotypes of ovaries. 2e reason is that
these studies not only pointed out the mechanisms of
ovarian aging but also elucidated the complex interaction
networks of different ovarian phenotypes.

It is both difficult and unethical to investigate the
ovarian mechanisms in women. While laboratory rodents
(e.g., mice) are useful models for biomedical research, they
offer comparatively limited use for the study of ovarian
changes in mammals, due to their small body size and
extremely short ovarian cycle [17]. 2e big animal models
such as equine, bovine, and ovine have been confirmed to
be valuable and useful for investigation on the ovarian
function in women [18]. 2erefore, pigs can be a valuable
model to study human ovarian aging or disease due to its
similar cycle length, luteinizing hormone (LH) receptor
location and its function, length of ovulation, and LH surge
[19] as well as their anatomical, physiological, and bio-
chemical similarities to humans [20]. In fact, a number of
researchers have identified pig as an ideal model system to
investigate the effects of metabolic syndrome and obesity in
relation to the function and steroidogenesis of ovaries
[21, 22].

Female natural ovarian aging is defined between the two
time points (menarche and menopause) in a woman’s life
that open and close the reproductive system. 2e median
ages for menarche andmenopause are about 14 and 50 years,
respectively [3]. Both time points are central to ovarian
function, and several recent genome-wide association
studies (GWAS) explained the genetic background of traits,
both for the timing of menarche [23–25] and menopause
[26–28]. Correspondently, the puberty stage of the first
ovulation and the reproductive exhaustion stage are two key
points in the ovarian cycle. 2e median ages of the sow
puberty stage of first ovulation and reproductive exhaustion
stage are about 180 days and eight years, respectively
[29, 30].

To identify the potential molecular changes during
natural ovarian aging, the pig was used as a model animal.
Genome-wide DNA methylation and transcriptome-wide
RNA expression analyses were performed via high-
throughput sequencing of ovaries from young (180 days,
puberty stage of first ovulation) and old (eight years, re-
productive exhaustion stage) sows. 2is enabled the de-
termination of a number of differentially methylated and
expressed genes or regulatory elements and previously
unclear multigroup cooperative control networks in the
ovarian aging cycle. 2ese data will help to explain ovary
age-associated changes in DNA methylation and tran-
scriptional patterns over time.

2. Materials and Methods

2.1. Animal Material and Sample Preparation. Four healthy
female Yanan pigs were utilized in this experiment. 2e
Yanan pig is an indigenous Chinese pig breed, which
emerged in the hilly areas of western Sichuan Province in the
past. Due to the poor growth performance and carcass
composition, it is endangered by extinction. 2ese four pigs
included two eight-year-old sows at the reproductive ex-
haustion stage and two 180-day young sows at the puberty
stage of first ovulation. 2ese pigs had no direct or collateral
blood relationship during the last three generations. Piglets
were weaned at the age of 28± 1 days. An initial diet started
from the 30th to the 60th day after weaning and contained
3.40Mcal·kg− 1 of metabolizable energy with 20.0% crude
protein (11.5 g/kg lysine). From the 61st to the 120th day, pigs
were given a diet containing 14.0MJ/kg of metabolizable
energy comprising 18% of crude protein (9.0 g/kg lysine).
From the 121st day, they received a dietary metabolizable
energy and crude protein (8.0 g/kg lysine) of 13.5MJ/kg and
16%, respectively. Pigs were allowed to access water and food
ad libitum and were kept under similar conditions.2e night
before slaughtering, pigs were not allowed to feed and were
given 2 h rest after transportation, then stunned electrically
at 90V and 50Hz for 10 s, and exsanguinated to ameliorate
pain. All animal experiments and procedures were con-
ducted according to the Regulations for the Administration
of Affairs Concerning Experimental Animals (Ministry of
Science and Technology, China, revised in June 2004) and
were approved by the Institutional Animal Care and Use
Committee in College of Animal Science and Technology,
Sichuan Agricultural University, Sichuan, China, under
permit no. SKY-S20150804. All research animals were ob-
tained from Sichuan Weimu Modern Agricultural Science
and Technology Co., Ltd., Chengdu, Sichuan 611536, P. R.
China. Ovary tissues were rapidly collected from every
carcass and directly frozen in liquid nitrogen after separa-
tion. All collected samples were stored at − 80°C until the
extraction of DNA and total RNA.

2.2. Whole Genome Bisulfite Sequencing (WGBS) and Data
Analysis. Bisulfite treatment of 50–100 ng of purified ge-
nomic DNA was performed using the Zymo EZ DNA
Methylation Lightning Kit. 50 to 100 ng of purified genomic
DNA was treated with Zymo Lightning Conversion Reagent
for 8min at 98°C in a thermal cycler and then for 60min at
54°C. Bisulfite-treated DNA was purified via spin column
and was used to build a sequencing library with the help of
the EpiGnome™ Kit (Epicentre). In this process, bisulfite-
treated single-stranded DNA was arbitrary primed using a
polymerase with the ability to read uracil nucleotides, to
manufacture DNA with a particular sequence tag. 3′ ends of
the newlymanufactured DNA strands were tagged with a 2nd
specific sequence, resulting in ditagged DNA molecules at
both their 5′ and 3′ ends with identified sequence tags.2en,
these tags were used to add Illumina adapters P7 at the 5′ and
P5 at the 3′ end of the original DNA strand by polymerase
chain reaction (PCR). Only the complement to the original
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bisulfite-treated DNA was used as sequencing template;
therefore, the resulting read always had a similar sequence
like the original bisulfite-treated strands. 2en, bisulfite
genome DNA libraries were sequenced by the Illumina
Hiseq 4000 platform with 150PE reads.

Reads were alimented to the Suscrofa 10.2 with Bismark
tools after quality filtering [31]. Bowtie2 was called by Bismark
when mapped reads to reference. Parameters were multiseed
length of 20 bp with 0 mismatches and minimum alignment
score function L, 0, and − 0.2 [32]. For 150 bp reads, this would
mean aminimum alignment score of − 30 before an alignment
would become invalid. 2is is approximately equal to four
mismatches or ∼4 InDels of 1–4 bp in the read [31]. After
reads were alimented, SAMtools were applied to deal with the
bam file out form Bowtie2 [32]. CpG island locus information
was downloaded from the UCSC genome browser, and CpG
island methylation level of each sample was calculated with
bedtools [33]. To identify differentially methylated regions
between both stages, the R package DSS was used to call
differentially methylated loci with p.threshold <0.001 first and
then different methylation regions (DMR) with delta <0.1
with p.threshold< 0.001 [34, 35]. 2e function gene ontology
(GO) of the DMR target gene was enriched by topGO [36]. At
last, other data statistics and visualizations were conducted in
R and Python scripts.

2.3. RNA Sequencing and Data Analysis. A total amount of
5 μg RNA of each sample was used as input material for RNA
sample preparations. 2e rRNA-depleted RNA was used to
generate sequencing libraries by NEBNext® Ultra™ Di-
rectional RNA Library Prep Kit for Illumina® (NEB, USA)
according to the instructions of the manufacturer, and the
Agilent Bioanalyzer 2100 system was used to assess library
quality. After cluster generation, Illumina HiSeq 4000 was
used for the sequencing of libraries and paired-end reads were
generated at 150 bp. After removing the adapter, ploy-N, and
low-quality reads from raw data, clean reads were obtained.
2ese clean reads were aligned to the Ensemble (Susscrofa
10.2) using TopHat2 (v2.0.14) with default parameters [37].

StringTie software was used to assemble the mapped
reads per sample [38], which worked in at least one of both
replicates. 2e obtained transcripts were blasted (e
value� 1e − 10) to Ensemble, and mapped transcripts were
directly described as known lncRNA or mRNA. Salmon
(v0.6.0) was used to calculate transcripts per million (TPMs)
of both lncRNAs and mRNAs per sample [39]. 2en, coding
potential calculator (CPC, 0.9) and Pfam Scan v1.5 were used
to examine the transcript’s coding potential [40, 41].
Transcripts predicted with coding potential were filtered out,
and the transcripts without coding potential were regarded
as candidate set of novel lncRNAs.

2.4. Small RNA Sequencing and Data Analysis. A total
amount of 5 μg RNA of each sample was used as input
material for library preparation of small RNA. Sequencing
libraries were created using NEBNext® Multiplex Small RNA
Library Prep Set for Illumina® (NEB) according to the in-
structions of the manufacturer. In every sample index, codes

were added to attribute sequences. 2e Agilent Bioanalyzer
2100 systemwas used to analyze library quality.2e clustering
of index-coded samples was performed on a cBot Cluster
Generation system using TruSeq SR Cluster Kit v3-cBot-HS
(Illumina), following the manufacturer’s recommendations.
After the generation of clusters, the preparations for library
sequencing were conducted on an Illumina MiSeq platform
and single-end reads were generated at 50 bp.

miRBase 21 was used as reference, and the software
mirdeep2 was used to obtain the potential miRNA and to
predict novel miRNA [42]. 2e miRanda (v3.3a, default
parameters) and cutoffs (score S≥ 140 and energy E≤ − 20.0)
were used to predict the miRNA target [43]. 2en, miRNA
expression was assessed by TPMs through the following
criteria: normalization formula: normalized expres-
sion�mapped read count/total reads∗ 10,00,000.

2.5. Differential Expression Analysis and Gene Ontology En-
richment Analysis. Differentially expressed mRNAs,
lncRNAs, miRNAs, and circRNAs were found by using the
edgeR package [44]. A differential expression P value <0.05
and fold change >2 were assigned as differentially expressed
in different comparisons. GO enrichment was performed by
TopGO [36]. Other data statistics and visualizations were
performed by self-written R scripts.

2.6. Network with MicroRNA Response Element (MRE) and
Coexpression Network. 2e network of RNAs with MRE was
established by target prediction of miRNA-mRNA, miRNA-
lncRNA, and miRNA-circRNA with bioinformatics and vi-
sualized with the R package igraph.2e coexpression network
of mRNA, miRNA, lncRNA, and circRNA (circular RNAs)
was created based on Pearson’s correlation coefficient of
expression. Pearson’s correlation coefficient of 0.85 between
two RNAs was considered relevant for network construction.
A P value below 0.05 was considered statistically significant.

2.7. Bisulfite Sequencing PCR (BSP). 2e primers for BSP
were designed by primer software V5.0 (Supplementary
Table S1). 2e inspected DNA (bisulfite conversion) was
treated using the EpiTect Fast DNA Bisulfite Kit (Qiagen)
according to the manufacturer’s protocols. PCR product was
purified using the UNIQ-10 Spin Column DNA Gel Ex-
traction Kit for PAGE (Sangon) and was then cloned with
the pGM-T Fast Cloning Kit with competent cell (Tiangen).
Ten effective clones were selected per gene, and then, an ABI
3730 DNA sequencer was used for sequencing. DNAMAN
7.0 (Lynnon Biosoft, USA) was used to analyze all sequences.

2.8. Quantitative Real-Time PCR (q-PCR). Total RNAs were
extracted from ovaries using the HiPure Universal RNA
Mini Kit (Magen, China) and reversely transcribed into
cDNA using the oligo (dT) and random 6-mer primers,
provided by the PrimeScript RT Master Mix kit (TaKaRa).
2e q-PCRwas performed using a standard SYBR Premix Ex
Taq kit (Takara, Dalian, China) on a Bio-RadCFX96 Real-
Time PCR Detection system (Bio-Rad, Hercules, CA, USA)
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following the manufacturer’s directions. 2ree endogenous
control genes, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), β-actin (ACTB), and small nuclear RNA (U6
snRNA), were used in this assay. 2e 2− ΔΔCt method was
used to determine the expression levels of objective mRNAs,
miRNAs, lncRNAs, and circRNAs [45]. 2ese primers are
shown in Supplementary Table S1.

3. Results

3.1. Summary ofWhole Genome Bisulfite Sequencing (WGBS)
Data. To assess the changes inDNAepigeneticmarks by aging
that occurred during ovarian development, DNA methylation
profiles were determined using WGBS between old pig (OP)
ovarian tissues at reproductive exhaustion stage and young pig
(YP) ovarian tissues at the puberty stage of first ovulation.
Approximately 951,440,304 clean reads were obtained from the
four ovarian samples, which provided about 30x sequencing
depth. After removing unclear reads from clean reads, ap-
proximately 61–68% reads per sample were uniquely aligned to
Ensemble Susscrofa 10.2 (Supplementary Table S2). 2e global
methylation levels were 70.8% for YP and 72.9% for OP, re-
spectively. 2ere was no significant difference between the two
ovarian development stages (Figure 1(a)), although a genome-
wide loss of DNA methylation was found in response to age-
related epigenetic modification [46]. Analysis of the sequence
context of cytosines showed methylation that occurred in the
CpG and non-CpG (CHG and CHH) context in most chro-
mosomal regions in each group. Differential methylation be-
tween both ovarian developmental stages mostly occurred at
CpG context regions (Supplementary Table S3 and Supple-
mentary Figure S1).

To understand the preferential location of the CG
methylation on and surrounding the gene body region
(GBR), the metagene profiles of CG methylation were in-
vestigated in the entire pig genome of the ovarian tissue.
Both GBR and adjacent intergenic regions were heavily
methylated; however, slightly higher levels of methylation
were recorded in gene bodies than in neighboring intergenic
regions (Figure 1(b)), which have similar distribution to
those of human primordial germ and prenatal germline cells
[47, 48] as well as pig skeletal muscle cells [49].

To examine the dynamics of methylation on a global scale,
correlation analysis between genomic features and methyla-
tion levels was conducted. Negatively correlated methylation
levels were observed across chromosomes with chromosomal
length (Pearson’s r� − 0.636, P � 1.844×10− 9), and a positive
correlation was observed with the GC content (the percentage
of guanine and cytosine, r� 0.903, P< 2.2×10− 16), gene
number (being calculated for a 1Mb window in chromo-
somes, r� 0.398, P< 2.2×10− 16), CpGo/e (the ratio between
the observed and expected numbers of CpG sites, r� 0.792,
P< 2.2×10− 16), and repeat region density (being calculated
for a 1Mbwindow in chromosomes, r� 0.126,P< 2.2×10− 16)
(Supplementary Figure S2). 2ese results are similar with
previous reports [50, 51]. Among these genomic features, the
GC content and CpGo/e showed the strongest correlations
with the methylation level. 2e gene density also showed a
moderate correlation with the methylation level, which may

be due to the higher GC content examined in gene regions,
which contributed to this (Figure 1(b)), and suggests a
possible role of methylation dynamics in the gene tran-
scription regulation [52].

3.2. Differential DNA Methylation Associated with Ovarian
Aging. To further discover the differential CG methylation
across ovarian aging, different methylation regions (DMRs)
were identified between OP and YP. As a result, 422 DMRs
were identified between both developmental stages and 303
of these DMRs were upmethylated while 119 DMRs were
downmethylated in OP compared to YP (P< 0.001, Sup-
plementary Database S1). 2e dynamical DMR level at both
ovarian developmental stages suggested that DNA meth-
ylation may play a crucial role in ovarian aging. Further-
more, 146 of these 422 DMRs overlapped at gene body
regions while only 12 of these DMRs were located in the gene
promoter regions (Supplementary Database S1). 2is agreed
with the preferential location of the CG methylation on the
gene body regions (Figure 1(b)). Previous research also
reported that more DMRs are enriched in gene bodies than
in promoters of porcine skeletal muscle [51].

To characterize the role of genes associated with these
DMRs, GO enrichment was performed. 2e results
showed that hypermethylated genes related to DMRs
were involved in numerous cellular functions like protein
binding, death effector domain binding, and cysteine-
type endopeptidase activity involved in the apoptotic
signaling pathway (Figure 1(c) and Supplementary Da-
tabase S1). Notably, hypomethylated genes that were
related to DMRs depicted significant enrichment for
different processes associated to embryonic skeletal/brain
system development, embryonic digit morphogenesis,
negative regulation of immune response, and apoptotic
signaling pathway. For instance, the CASP8- and FADD-
like apoptosis regulator gene (CFLAR) is an important
molecule of the innate immune regulation network and a
key suppressor of steatohepatitis [53] and was signifi-
cantly upmethylated in old pigs. However, the Meckel
syndrome Type 1 gene (MKS1) in Meckel–Gruber syn-
drome causes developmental malformations and cilia
defects [54] and was significantly downmethylated in old
pigs. Furthermore, the BSP results for methylation levels
of the two genes were in accordance with the WGBS data
between OP and YP (Supplementary Figure S3A).

3.3. DNA Methylation and Gene Expression in Gene Body.
2e effect of methylation on promoter regions was reported
to be an important mechanism in regulating the gene
transcription [55]. However, the precise roles of DNA
methylation in gene body are yet to be discovered. To search
how gene expression affected intergenic methylation, the
RNA sequence data were used (Supplementary Database S2)
to correlate DMR-mRNA pairs. A significant negative
correlation (r� − 0.179, P � 5.72×10− 7) was found between
changes in themethylation levels in the gene bodies and gene
expression levels. Similar to these findings, previous
methylation analysis in gene bodies described a significantly
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negative correlation with the expression levels of mRNA
[51]. However, previous scientists reported a positive cor-
relation with gene expression levels [56, 57] or no clear
relationship patterns [58].

3.4. Transcriptome Profiles of Ovarian Aging. To assess tran-
scriptional expression changes during ovarian aging, RNA
and small RNA libraries were constructed for OP and YP
samples, respectively, and transcriptome-wide profiling
(mRNA, miRNA, lncRNA, and circRNA) was determined
via high-throughput sequencing. For RNA sequencing li-
braries, an average of ∼75 million clean reads were obtained
from each of the four samples and more than 69% of these
reads could be uniquely aligned to the Ensemble Susscrofa
10.2 (Supplementary Table S2). Furthermore, for small RNA
sequencing libraries, approximately 10.89–13.50 million
clean reads were obtained from each of the four samples and

80.77–90.5% of these reads were uniquely aligned to the
Ensemble Susscrofa 10.2 (Supplementary Table S2).

In total, 20,357 mRNAs were identified in these four
samples, representing approximately 59.82% of the entire
number of transcripts in pigs (Supplementary Database S2).
Moreover, 1,196 miRNAs were identified in these four
samples, and 869 potential novel miRNAs out of these
miRNAs were detected that did not match the previously
reported sequences (Supplementary Database S2). A total of
4,879 lncRNAs and 7,600 circRNAs were also identified in
these four samples (Supplementary Database S2).

3.5. Differentially Expressed Transcriptomes Involved in
Ovarian Aging. According to the chosen screening criteria
(P≤ 0.05), 2,243 differentially expressed genes (DEGs) were
found in both stages of ovarian development, which in-
cluded 1,660 upregulated genes and 583 downregulated
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Figure 1: DNAmethylation associated with ovarian aging. (a) DNAmethylation levels between both ovarian development stages. YP-1and
YP-2 represent sample 1 and sample 2 from young sows at the puberty stage, respectively; OP-1 and OP-2 represent sample 1 and sample 2
from old sows at the reproductive exhaustion stage, respectively. (b) Distribution of CG methylation reads on and around the gene body
region. Abbreviations: TSS, transcription start site; TTS, transcription termination site. Gene ontology (GO) function enrichment of the (c)
hypermethylated genes and (d) hypomethylated genes related to the different methylation regions (DMRs).
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genes (Figure 2(a) and Supplementary Database S3). GO
analysis showed that these DEGs were mainly enriched in
the extracellular region and involved in a variety of cellular
functions including the defense response to virus, regulation
of cell death, embryonic pattern specification, and re-
production process (Figure 3(a) and Supplementary Data-
base S4). For instance, ISG15 (ISG15 ubiquitin-like
modifier) repressed interferon-α/β overamplification and
autoinflammation [59], and the higher expression level of
ISG15 in old pigs suggested that old females were more
susceptible to viral infection. Furthermore, SRY-Box 9
(SOX9) battles of sexes with Forkhead Box L2 (FOXL2),
which exert a decisive role during ovary maintenance
process and somatic sex reprogramming of adult ovaries to
tests [60]. 2e higher expression level of SOX9 in OP in-
dicated that the reproductive performance decline in old
females.

Ninety-five differentially expressed miRNAs (DEMs)
were identified during both stages of ovarian development,
and 37 miRNAs of these DEMs were upregulated while 58
miRNAs were downregulated (Figure 2(b) and Supple-
mentary Database S3). GO analysis showed that the target
genes of DEMs are enriched in the G-protein coupled re-
ceptor signaling pathway, apoptotic signaling pathway, fe-
male pregnancy, fertilization process, embryonic
development, and ovulation cycle (Figure 3(b) and Sup-
plementary Database S4). For example, the upregulated
miR-9 plays a key role in the determination of the neural
fates in embryonic stem (ES) cell differentiation [61] and has
prospective importance in recurrent ovarian cancer as
biomarkers [62].

For differentially expressed lncRNAs (DELs) related to
ovarian aging, 248 DELs were identified in both ages, which
included 202 upregulated DELs and 46 downregulated DELs
(Figure 2(c) and Supplementary Database S3). GO analysis
showed that these target genes of DELs were significantly
enriched for modulation by symbiont of host I-kappaB
kinase/NF-kappaB cascade, meiotic cell cycle process in-
volved in oocyte maturation, female pregnancy, and uterus
development (Figure 3(c) and Supplementary Database S4).
Furthermore, 116 differentially expressed circRNAs (DECs)
were identified in both ages; 103 circRNAs of these DECs
were upregulated while 13 circRNAs were downregulated
(Figure 2(d) and Supplementary Database S3). 2ese DEC
source genes were enriched in transmembrane receptor
protein serine/threonine kinase activity, in utero embryonic
development, reproductive process, ovarian cumulus ex-
pansion, and ovulation cycle (Figure 3(d) and Supple-
mentary Database S4).

3.6. Multiomics Coordinated Regulation in Ovarian Aging.
To discover the coordinated regulation relationship among
DNA methylation and several RNA species during ovarian
aging, the number of genes and their percentages were first
measured in every potential combination of regulation.
Among DNA methylation, mRNA, and miRNA, 9,633 (OP)
and 8,845 (YP) genes (representing 38.2% and 34.9% of the
entire number of genes in swine genome, respectively) were

methylated or simultaneously expressed. Except for each of
these three combination groups, the number of genes that
were methylated or expressed at the same time decreased
and approximately 600 genes were not methylated or
expressed simultaneously in OP or YP (Supplementary
Table S4). Similarly, among DNAmethylation, lncRNA, and
miRNA, 1,465 (OP) and 1,354 (YP) genes (representing
18.1% and 16.7% of the entire gene number in swine ge-
nome, respectively) were methylated or simultaneously
expressed. 2e lowest number of genes (175 for OP and 232
for YP) was not methylated or expressed simultaneously
(Supplementary Table S4). 2e combination regulation re-
lationships of gene transcriptional regulation and gene
posttranscriptional regulation were also shown in each
chromosome (Supplementary Figure S4). 2e results in-
dicate that a large number of genes tended toward combi-
nation regulation between DNA methylation and
transcriptome expression. 2e utilized combination regu-
lation pattern might be more pronounced in OP. In addi-
tion, the DMRs and the differentially expressed
transcriptome were screened to identify the overlap between
DMRs and DEGs. 2e results showed that seven DEGs were
differentially methylated during ovarian aging, most of
which were found in the genebody regions, and only one
gene was methylated in the gene promoter region (Sup-
plementary Table S5). However, no consistent pattern of
change was found between methylation and expression
levels in these methylated genes in genebody regions. In-
terestingly, the gene that was methylated in the promoter
region was hypomethylated and upexpressed simultaneously
during aging in the ovary.2ese results indicate that changes
of methylation occurred in the gene promoter region rather
than the genebody region, which might be close to the
regulation of the gene expression level during aging.

To further highlight the potentially coordinated control
roles of DNAmethylation and several RNA species involved
in ovarian aging, GO terms of genes related to DMRs and
four differentially expressed RNA species were overlapped.
Among DMRs and these differentially expressed RNAs,
several intersections of molecular functions and signaling
pathways were found that are involved in the ovarian aging
cycle such as embryonic development, apoptotic process,
reproduction and fertilization, ovarian cumulus expansion,
and female pregnancy (Figure 4 and Supplementary Data-
base S4).

Based on the competing endogenous RNA (ceRNA)
hypothesis [63], ceRNA networks were constructed among
these differentially expressed RNAs, which shared a com-
mon binding site of the MRE (Figure 5(a) and Supple-
mentary Database S5). 2e network consists of a large
number of interrelated RNAs that include 20 miRNAs, 170
mRNAs, 27 lncRNAs, and eight circRNAs, and miRNAs
played a primary role by targeting other RNA species with
MRE in the network. At the upper part of the network, all
novel miRNAs were only targeted by circRNAs; however, at
the lower part of the network, three miRNAs (miR-9, miR-9-
1, and miR-9-2) could simultaneously target nine mRNAs
and one circRNA, respectively. In the center of the network,
several miRNAs were found including miR-125b, miR-504,
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Figure 2: Differentially expressed transcriptome between both ovarian development stages. 2e x-axis indicates log2FC, and the y-axis
indicates the− log10 P value. Criteria of |FC|< 1 and P value <0.05 were used to screen differently expressed RNAs. (a) Differentially
expressed mRNAs between both ovarian development stages. (b) Differentially expressed miRNAs between both ovarian developmental
stages. (c) Differentially expressed lncRNAs between both ovarian developmental stages. (d) Differentially expressed circRNAs between
both ovarian developmental stages.
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and miR-92b-5P, suggesting important roles during the
ovarian aging cycle. In fact, previous studies showed that
these miRNAs exert important effects on ovarian function.
For instance, miR-125b was a negative regulator for p53-
induced apoptosis [64], promoted both the proliferation and
migration of type II endometrial carcinoma cells [65], and
suppressed ovarian cancer cell proliferation [66]. MiR-504
stimulated cancer cell apoptosis and hindered cancer cell
proliferation [67, 68]. MiR-92 b promoted the growth of
non-small-cell lung cancer cells [69] and controlled the G1/S
cell cycle phase in human embryonic stem cells [70]. In
addition, miR-9 can act as a candidate tumor suppressor
gene in recurrent ovarian cancer [62] and regulate neural
development [71]. Due to the important effects of the four
miRNAs on ovarian function, their corresponding target
genes were further screened and identified. Furthermore,
previous studies showed that these target genes of the four
miRNAs, which included Fas Associated Via Death Domain

(FADD), Period Circadian Clock 2 (PER2), Cadherin EGF
LAG Seven-Pass G-Type Receptor 1 (CELSR1), and EGF-
Like Domain Multiple 7 (EGFL7) were related to re-
productive deficits [72], embryogenesis [73], and differen-
tiation of embryonic stem cells [74].

2e ceRNA network based on MRE prompted the
further analysis of the coexpression relationship among
these RNAs. 2erefore, found miRNAs (miR-125b, miR-
504, miR-92b-5P, and miR-9) were selected that are related
to ovarian function. 2eir target genes (FADD, EGFL7,
PER2, and CELSR1), target lncRNAs (MSTRG62621,
MSTRG114143, and MSTRG167556), and target circRNAs
(circ000675 and circ13607) were used to construct a
coexpression network using Pearson’s correlation coefficient
according to the differentially expressed RNA data
(Figure 5(b) and Supplementary Database S5). Compared to
the network based on MRE, the coexpression network
showed more complex relationships among these RNAs.
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Figure 3: Gene ontology (GO) function enrichment of differentially expressed RNAs between both ovarian development stages. GO
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Firstly, circ13607 was correlated to the miR-504 expression
level although they did not share the same MRE. 2e
coexpression relationship could be mediated by FADD,
MSTRG.114143, and miR-92b-5p because miR-504 and
miR-92b-5p can target MSTRG.114143 and FADD with
MRE. Secondly, miR-92b-5p correlated to FADD, PER2, and
CELSR1 expression levels; however, miR-92b-5p and PER2
did not share the sameMRE, suggesting that othermediators
might mediate the coexpression relationship between both.
2e coexpression relationship between PER2 and miR-92b-
5p were mediated in two ways: CELSR1, PER2, and
circ13607 competed with miR-125b and CELSR1 and
circ13607 competed with miR-92b-5p.

To verify the reliability of the obtained RNA-sequence
data, the expression levels of all RNAs were verified by
q-PCR and the results are shown in Figure 5(b). 2is
comparison confirmed that the q-PCR results for these
RNAs expression were in accordance with the RNA-se-
quence data (Supplementary Figure 3B–E).

4. Discussion

4.1. Dynamic Changes of DNA Epigenetic Marks in Ovarian
Aging. 2is study described a combined DNA methylation
and transcriptome analysis of OP ovaries and YP ovaries and
found progressive changes of age-differential methylation
and gene expression landscapes during ovarian aging. DNA
methylation modification is a key epigenetic mechanism
involved in the vital processes of mammalian development,
such as imprinting, transcriptional silencing, and X-chro-
mosome inactivation [47, 75], as well as in the regulation of
ovarian cancer and diseases such as PCOS and POI [10] and
oocyte aging [11]. 2is study first reports the DNA meth-
ylome profiles during natural ovarian aging and identified
several differentially methylated genes involved in embry-
onic development, death effector domain binding, and cell

apoptotic signaling pathways, which indicated that DNA
methylation played a vital role during ovarian aging. Sim-
ilarly, DNAmethylation among other tissues was also found
to be responsible for tissue aging. For example, in human
aging brain tissue, DMR genes were linked to neuro-
development-related terms, comprising the regulation of
neurogenesis and cell projection organization [76]; however,
DNA methylation in porcine aging skeletal muscle was
reported to be involved in the protein degradation process
and also responsible for muscular atrophy [51]. Several cell
death pathway genes such as cysteinyl aspartate proteases 10
(CASP10) and CFLAR, which played important roles in
apoptosis [77], were found in the current DMRs data. 2is
further indicated that oocyte apoptosis led to the depletion
of ovarian reserves during ovarian aging [78].

4.2. Differentially Expressed Transcriptome Related to the
Ovarian Aging Cycle. In other genetic systems, it has been
reported that several RNA species play critical roles in the
regulation of ovarian physiology, and these RNA species are
involved in protein-coding RNAs [79–81] and noncoding
RNAs such as miRNAs [12–14] and lncRNAs [15, 16]. 2e
current study presents the global transcriptome expression
profile of ovarian aging and identified a large number of
differentially expressed RNAs. Genes associated with these
differentially expressed RNAs were mainly involved in the
ovarian aging cycle such as cell apoptosis, reproduction and
fertilization process, embryonic development, ovarian cu-
mulus expansion, and ovulation cycle.

Furthermore, several species of RNA could operate as
ceRNA, which communicated with and regulated each other
by using MREs as language and competed for binding to
common miRNAs, which affected the stability of target
genes or the translational activity [63]. In this experiment,
ceRNA networks were developed based on MRE and
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coexpression levels and the ceRNA networks were mainly
involved in essential ovary developmental biological pro-
cesses. For example, as a ceRNA, FADD and PER2 competed
for binding to miR-92b-5p, thus affecting the expression
level of target genes. MiR-92b-5p might promote lung
cancer and non-small-cell lung cancer cell growth [69] and
controlled the G1/S cell cycle phase in human ES cells [70];
furthermore, FADD and PER2 genes were reported to be
related to reproductive deficits [72] and embryogenesis [73].
Understanding the crosstalk between these novel RNAs will
provide insights into the regulatory networks of genes with
implications in ovarian aging.

4.3. Model Organism for Human Ovarian Aging or Disease
Research. 2ese conclusions promote the further research
on pigs as model animal for ovarian aging or research of
human diseases. Previous research identified genes that were
differentially expressed in an age-dependent manner using
microarray analysis of mouse oocytes, ovary, and ovarian
surface epithelial cells as well as human oocytes [79, 82–86].

Although microarray analysis has been performed in por-
cine to identify the mechanisms involved in the muscle and
brain aging [51, 87], the aging process of ovaries has not been
specifically investigated. Here, YP (180 days old) and OP (8
years old) were studied to search the DNA methylation and
transcriptional expression changes in ovaries during the
aging process. Although this study has its limitations, since
whole ovaries were sampled, which contain multiple cell
types [86, 88], hundreds of differentially methylated and
expressed genes were identified to be related to ovarian
aging, and these global DNAmethylation and transcriptome
expression profiles of pig ovaries of different ages constitute
a useful resource.

In future, investigations of age-related differential DNA
methylation and gene expression in individual cell types are
required. Furthermore, this study only selected two age
groups and limited samples. Studying pigs of additional
successive ages and incorporating more samples are com-
pulsory to further understand the differences in epigenetic
modifications related to age, in addition to complicated
mechanisms underlying the aging process. Moreover, in
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Figure 5: Competing endogenous RNA (ceRNA) network of ovarian aging. (a) 2e ceRNA network was based on miRNA-mRNA,
miRNA-lncRNA, and miRNA-circRNA interactions with microRNA response elements (MREs). (b) Coexpression network between
four RNAs classes. Coexpressed RNAs pairs were identified using strict screening criteria (Pearson’s correlation coefficients >0.85 or
<− 0.85, P< 0.01).
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addition to providing novel evidence for biomedical studies,
genomic/epigenomic searches on pigs can be helpful to
discover the underlying molecular basis of the economic
traits of pigs. Such knowledge can be used to progress the
efficiency of artificial selection to produce more piglets.

5. Conclusions

Microarray analyses were performed to identify the differ-
entially methylated and expressed genes in ovary tissues of
OP and YP. 2rough GO enrichment analyses and the
construction of ceRNA networks, the functions of differ-
entially methylated and expressed genes, correlated path-
ways, and mutual regulatory relationships were analyzed
between coding and noncoding genes. 2e obtained results
contribute to the understanding of the aging process in
ovaries and provide a basis for the future search for the
molecular mechanisms of ovarian aging.
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