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Cutaneous squamous cell carcinoma (cuSCC) comprises 15–20% of all skin cancers,

accounting for over 700,000 cases in USA annually. Most cuSCC arise in association with a

distinct precancerous lesion, the actinic keratosis (AK). To identify potential targets for

molecularly targeted chemoprevention, here we perform integrated cross-species genomic

analysis of cuSCC development through the preneoplastic AK stage using matched human

samples and a solar ultraviolet radiation-driven Hairless mouse model. We identify the major

transcriptional drivers of this progression sequence, showing that the key genomic changes in

cuSCC development occur in the normal skin to AK transition. Our data validate the use of

this ultraviolet radiation-driven mouse cuSCC model for cross-species analysis and demon-

strate that cuSCC bears deep molecular similarities to multiple carcinogen-driven SCCs from

diverse sites, suggesting that cuSCC may serve as an effective, accessible model for multiple

SCC types and that common treatment and prevention strategies may be feasible.
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A
ctinic keratoses (AK) are likely the most common
precancerous lesion in humans, affecting up to 5.5% of
women and 13.9% of men in USA, accounting for 5.2

million outpatient visits per year at an estimated annual cost of
over $1 billion1,2. AKs are scaly lesions, often readily appreciated
on sun-exposed skin. Histologically, they are characterized by
epidermal dysmaturation and partial thickness basal and spinous
layer atypia. In time, this atypia may extend to the full thickness
of the epidermis (AK3/squamous cell carcinoma in-situ) or
beyond, culminating in invasive cutaneous squamous cell
carcinoma (cuSCC). Ultraviolet radiation (UVR) is the main
aetiological factor implicated in AK and cuSCC pathogenesis.

Approximately 0.6% of clinically diagnosed AKs are estimated
to progress to cuSCC within 1 year and 2.6% are estimated to
progress within 4 years3. Thus, the standard practice of
destroying these lesions is well founded, but there is still no
rationally designed way of preventing their progression, and there
are still up to 700,000 cases of cuSCC in USA every year4.
Destructive therapies are effective but management of high-risk
populations such as organ transplant recipients is challenging and
systemic compounds such as retinoids have substantial adverse
reactions2,5. AKs are almost always treated, usually quickly
and easily on an outpatient basis; however, the morbidity
and economic burden of multiple treatments is high2,5.
Understanding the genetic alterations that dictate AK formation
and progression to cuSCC forms the molecular basis for rationally
designed targeted cancer chemoprevention for an extremely
common skin cancer.

To date, molecular genetic studies of AK have largely centred
on known tumour suppressor genes. TP53, RAS, CDKN2A
mutations and loss of CDKN2A and p53 expression have been
identified in AK6–8, as well as extensive loss-of-heterozygosity
and chromosomal aberrations9. What dictates whether or not
AKs progress to cSCC is inadequately understood as these genetic
lesions are also commonly found in cuSCC. Amplifications of
epidermal growth factor receptor (EGFR) and c-MYC have been
identified in AK and cuSCC10,11. Loss of INPP5A and CKS1B
amplification have been demonstrated in human cuSCC and
smaller proportions of AKs12,13. Gene signatures that distinguish
SCC from AK or irradiated skin have been identified, but they
have not been refined to identify a mechanistic basis for
progression14–16. Few of the multiple attempts at genome-wide
analysis of AK and cuSCC15,17–21 have used matched
histologically validated lesions from individual patients16 and
all have employed several platforms known to have potentially
high annotation error rates22. Given these challenges, it is not
surprising that it has been difficult to identify drivers of
progression when comparing tumour tissue to their normal
counterparts, or when comparing unmatched samples.

In this study, we sought to identify important genetic events
that drive squamous cell carcinoma (SCC) development through
combined analysis of next-generation sequencing of matched
patient samples with a UVR-driven mouse model to identify key
pathways. Our approach minimizes the impact of inter-individual
variability and annotation errors, while enabling identification of
the most biologically significant pathways through cross-species
analysis. We compared non-lesional, chronically UVR-exposed
skin (normal skin, ‘NS’ in human, ‘CHR’ in mouse) to
preneoplastic AK (human)/papilloma (mouse) and subsequently
to cuSCC using successive pairwise comparisons as well as
progression models to highlight potential targets for cancer
prevention.

Results
Patient samples and mouse model. A total of 27 tissue samples
were isolated from nine patients who were treated for invasive

cuSCC with Mohs surgery (Table 1). cuSCC tumour cores
were extracted before Mohs surgery with matched samples of
peri-tumoural clinically normal skin within 1 cm of the tumour
removed in the course of reconstruction. For most patients, a
distinct AK was also isolated, often from the same general field
(Fig. 1a–c,g,h).

In parallel, we established chronically UVR-irradiated SKH-1E
Hairless mice using solar simulators (Oriel) as a highly relevant
model for UVR-induced human cuSCC23,24 (Fig. 1d–f,i).
SKH-1E hairless mice are highly susceptible to UVR-induced
skin tumours, UVR-induced immunosuppression and DNA
damage23. Solar simulators more accurately simulate terrestrial
UVR exposure than do fluorescent ultraviolet bulbs24. Thus our
model ensures a useful platform in which we can test
chemoprevention approaches. Tumours in these mice develop
p53 (ref. 25), RAS (ref. 26) and CDKN2A (ref. 27) mutations in
similar proportions to those in human cuSCC, along with copy
number variations that map to ones reported in human cuSCC
(chromosomes 3p, 11p and 9q) (refs 28–30) Serial Analysis of
Gene Expression (SAGE) mRNA gene expression data from this
model, comparing UVR-induced cuSCC to NS epidermis, shows
substantially similar patterns of changes to our human data
including overexpression of matrix metalloproteinases and
hyperproliferative keratins31. Importantly, these mice develop
precancerous papillomas (PAP) and cuSCC following chronic
low-dose UVR exposure23.

Six littermate female Hairless mice were chronically irradiated
with 12.5 kJ m� 2 of ultraviolet B (UVB) weekly for 100 days, and
14 days following cessation of irradiation, killed at which time,
chronically irradiated skin (CHR), PAP, and cuSCC were isolated.
All papillomas were grade 1 or grade 2 (not grade 3) and all
cuSCC were grade 1 or grade 2 (ref. 23). All human and mouse
samples were histologically validated with estimated 80%
tumour cellularity for AK/PAPs and cuSCCs. The chronically
UVR-exposed samples from both patients (NS) and mice (CHR)
exhibited clear histologic evidence of solar damage including
elastosis, fibrosis and chronic inflammation (Fig. 1).

Mutational analysis. Exome sequencing (Illumina Hi-Seq) was
performed on a subset (Table 1) of collected samples with an
average coverage of 135�±22 (mean±s.d.). The mutational
load varied widely across our cohort of well-differentiated pri-
mary cuSCC, averaging 2,927 somatic variants (range 385–9,156)
or 45.7 variants per Mb (Fig. 2a), which is congruent with
previously reported results of about 50 mutations per Mb for
cuSCC32–35, keeping in mind that some AKs and cuSCCs were
referenced to UVR-exposed peri-tumoural NS and not germline
(Table 1). AKs had substantially fewer variants, with an average of
1,186 variants (range 290–1,873) or 18.5 per Mb.

To our surprise, the clinically normal, chronically UVR-
exposed skin of patients harboured an average of 372 somatic
variants (range 23–1,264) across the exome when referenced to
germline DNA samples obtained from saliva, corresponding to an
average of 5.8 variants per Mb (Fig. 2a). This indicates that the
skin sustains substantial mutagenic insults in the course of
chronic UVR exposure, as recently reported in UVR-exposed
eyelid skin36. TP53 mutations have been described before in
UVR-exposed skin; however it was not known if this represented
ongoing selection specifically for TP53 mutation37. Hi-depth
targeted sequencing of 74 genes has demonstrated an estimated
five mutations per Mb in chronically UVR-exposed eyelid skin,
with a strong preponderance of NOTCH1-3, TP53 and FGFR3
mutations suggesting positive selection for these mutations36.

The spectrum of mutations is very strongly dominated by
transitions between cytosine and thymine, in particular from
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cytosine to thymine (C-T) (Fig. 2b and Supplementary
Figs 1,2a,b). The proportion of dinucleotide variants that are
CC-TT is 90% for both AK and cuSCC and 84% for NS
(Supplementary Fig. 1), also highly reflective of UVB exposure.
Given the relative statistical rarity of CpG islands across the
human genome, the high proportion of C-T transitions at CpG
sites reflects the enhanced susceptibility of methylated CpG to
deamination and to photoproduct formation38.

By using non-negative matrix factorization (NMF) -based
spectral deconvolution, 21 mutation signatures were derived
from over 6,000 specimens across 32 cancer types profiled in
TCGA39. Three signatures predominated in our samples, which
were strongly enriched for C-T transitions (Fig. 2b and
Supplementary Fig. 2a,b). AK and cuSCC are clearly driven by
UVR exposure, with substantial enrichment for the classic UVB
C-T transition signature at dipyrimidines38 in a manner that
correlated with increasing mutational load (Fig. 2b). NS samples
had more evenly represented mutation signatures, including those
associated with liver toxin exposure, temozolamide (Tem)
exposure and CpG sites (Fig. 2b and Supplementary Fig. 2a,b).

To identify significantly mutated genes (SMG), we identified
those that were recurrently mutated in at least seven pairings and
that were either previously implicated in cuSCC or have COSMIC
frequencies over 400 (Fig. 2c and Supplementary Data 1). These
included genes found to be mutated in metastatic and aggressive
cuSCC (Fig. 2c)32–35, most prominently, TP53, NOTCH1-2, FAT1
and MLL2. We also identified a rare KNSTRN missense mutation

(resulting in p.P28S) in only two pairings (one cuSCC, AK),
which appears to be within the same functional domain as a
previously reported hotspot p.S25F (ref. 40). Importantly, AKs
not only have mutations in all of the known SMGs, but AKs have
the ‘greatest’ proportion of SMGs represented. This is consistent
not only with the notion that AKs have acquired the mutational
events necessary for cuSCC formation, but that AKs may harbour
multiple clones that have the capacity to ultimately give rise to
cuSCC (Fig. 3a). There is significant overlap in these variant allele
frequency profiles, as all lesion types span a continuum of
distributions with a trend of increasing mutational load reflecting
increasing monoclonality in NS and AK samples (Fig. 3a).
Of note, the NS sample (patient 1) with high variant allele
frequencies, has evidence for three TP53 mutations (Fig. 3b)
highlighting how significant mutational loads can be acquired
even in the absence of evident dysplasia. Given that mutations
exist in hundreds of clones within UVR-exposed skin36 (Fig. 2a),
our data suggest that dominant clones may be emerging in AK
and cuSCC, particularly in the latter (Fig. 3a and Supplementary
Fig. 3), although this sample size was limited.

To assess whether a pattern of mutationally driven progression
could be ascertained, we then probed whether mutations
overlapped between the three groups of samples. Globally, the
number of site-specific mutational overlaps between any two
sample classes was extremely low and not likely to be significantly
different from chance, though the AK to cuSCC comparison had
the majority, averaging 3.4 overlaps versus NS to AK (0.75) and

Table 1 | Clinico-pathological characteristics of patient cohort and sequencing performed.

Patient Sample name (NS/AK/SCC) Gender Location Age (years) Exome seq RNA seq microRNA seq

29 26 27
1 Saliva M 56 1

NS Left medial neck 1 1 1
AK Left dorsal forearm 1 1

2 NS M Left anterior shoulder 78 1 1 1
AK Left temple 1 1 1
SCC Left anterior shoulder 1 1 1

3 NS M Left infraorbital cheek 70 1 1 1
AK Right dorsal forearm 1 1 1
SCC Left infraorbital cheek 1 1 1

4 Saliva F 60 1
NS Left ulnar forearm 1 1 1
AK1 Right anterior shoulder 1 1
AK2 Left chest sternum 1 1 1
SCC1 Left ulnar forearm 1 1 1
SCC2 Left dorsal hand 1 1 1

5 Saliva M 75 1
NS Crown of scalp 1 1 1
AK Scalp 1 1 1
SCC Crown of scalp 1 1 1

6 Saliva M 82 1
NS Left sternocleidomastoid 1 1 1
AK Left zygomatic arch 1 1
SCC Left sternocleidomastoid 1 1 1

8 Saliva M 83 1
NS Right temple 1 1 1
AK Right temple 1 1
SCC Right temple 1 1 1

10 Saliva M 79 1
NS Left temporal hairline 1 1 1
AK Right scalp 1 1 1
SCC Left temporal hairline 1 1

12 Saliva F 74 1
AK Right knee 1 1 1
SCC Right pretibia 1 1

AK, actinic keratosis; NS, normal skin; SCC, squamous cell carcinoma.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12601 ARTICLE

NATURE COMMUNICATIONS | 7:12601 | DOI: 10.1038/ncomms12601 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


NS to cuSCC (1.8) (Table 2). The most significant degree of site-
specific mutational overlap occurred between two cuSCCs from
patient 4 (Table 2), which were in close physical proximity
(Fig. 1g; forearm versus hand), strongly suggesting that these
physically distinct tumours arose at least in part from a common
clone. When viewed within patients, functionally significant genes
were mutated in multiple samples, including TP53 (four patients),
FAT1 (three patients) and MLL3 (three patients) (Supplementary
Fig. 4 and Supplementary Table 1). Overlaps in AK-cuSCC were
the most common even among these genes, suggesting that they
are specifically targeted in the development of cuSCC.

An illustrative example is provided by TP53, in which multiple
mutations were present (Fig. 3b). When placed in the context of
overall mutational loads and site-specific overlap (Fig. 3b), it is
evident that the degree of overlap did not closely correlate with

physical proximity (Fig. 1g—patients 1, 3 and 4 with distant AK
versus NS/cuSCC and patients 5, 6, 8 and 10 with nearby AK
versus NS/cuSCC). The two cuSCCs from patient 4, which shared
the greatest overlap (195), shared a TP53W23X mutant (Fig. 3b).
Among all the human tumour samples sequenced, only amino
acid R248, which is a mutational hotspot in cuSCC41, was
multiply altered within two patients (patients 1 and 4). These
findings are consistent with the concept that mutations that
inactivate tumour suppressor genes are often distributed across
the entire coding region and that there has not been a strongly
dominant oncogenic mutation identified in cuSCC.

Transcriptomic analysis. RNA and miRNA-seq were performed
on the Illumina Hi-Seq platform to yield an average of 64 million
and 6.1 million reads, respectively. No significantly expressed
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fusion or viral transcripts were detected. A correlation matrix
using mRNAs differentially expressed in at least one pairwise
comparison demonstrated a clear distinction between NS and
cuSCC with AKs interspersed across the spectrum (Fig. 4a), a
pattern also observed in the corresponding gene-sample heatmap
and principal component analysis (PCA) plots across all genes
(Supplementary Figs. 5a,b and Supplementary Data 2).
This shows that even given uniform histological criteria, there
is a spectrum of AK that transcriptomically resembles
UVR-exposed NS versus some that resemble cuSCC. Global
unsupervised clustering of all expressed genes revealed that across

all patient samples, six out of the eight complete sets (with tissue
from all three lesion types) show that AK segregate with cuSCC
by Pearson correlation, a pattern substantiated by the corre-
sponding gene expression heatmaps (Fig. 4b). AK and cuSCC are
both significantly enriched to a similar degree over peri-tumoural
NS for a 70-gene chromosomal instability signature derived from
multiple cancers (Fig. 4c), again reinforcing the idea that AKs
have acquired key genomic features of invasive cuSCC42.

RNA-seq results performed on six sets of samples from
Hairless mice corroborated this concept even more strongly, even
though they are an outbred strain. Here, the correlation matrix of
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differentially expressed genes in at least one pairwise comparison
clearly delineates CHR away from PAP and cuSCC (Fig. 4d),
a pattern also observed in the corresponding gene-sample
heatmap and PCA plots across all genes (Supplementary
Figs. 5a,c and Supplementary Data 3).

Next we sought to identify transcription factors that could be
responsible for the gene expression changes observed in the
course of AK and cuSCC development. Using TRANSFAC-based
motif analysis, we identified significantly overrepresented motifs
and their associated transcription factors for all pairwise
comparisons in both human and mice. Although this method is
not unbiased and does not definitively identify biochemical
mechanisms of regulation, we surmised that cross-species analysis
would enable us to identify significant drivers. First, significant
candidate factors were ranked by their enrichment scores
(Supplementary Data 4) and selected only if their targets were
enriched in genes sets that changed in the same direction for both
species in any one of the adjacent pairwise comparisons: NS/CHR
to AK/PAP or AK/PAP to cuSCC. These changes also had to be
significantly enriched in the NS/CHR to cuSCC comparison. This
analysis yielded a total of 17 transcription factors, 11 of which
were significant early, and six of which were significant late
(Fig. 5a). Four factors were globally important across all pairwise
comparisons: ETS2, SP1, FREAC2 (FOXF2) and AP1. Gene
interaction networks assembled from the overlap of genes
predicted to be regulated by multiple transcription factors reveal
that these transcription factors are highly interconnected,
potentially co-regulating up to several hundred genes in concert
(Fig. 5b). Though these interactions must be functionally
validated in detail, our data suggest that a small core of
transcriptional regulators drive cuSCC development.

Importantly, some transcription factors, such as ETS2, showed
largely unidirectional target modulation, but others such as
TCF3 and LEF1 had significant target modulation in opposite
directions, reflecting transition-specific changes (Supplementary
Fig. 6a–i). Profiles of the four globally important transcription
factors showed significant upregulation of ETS2 and SP1 and
downregulation of FREAC2 (FOXF2) and AP1 targets across the
entire progression sequence (Fig. 5a and Supplementary Data 4).
ETS2 (Supplementary Fig. 6a) is pro-oncogenic in multiple other
contexts, and is downstream of the ERK MAP kinase signalling
module43, which is known to be important in sporadic and
BRAF-inhibitor-induced cuSCC development44,45. The global
upregulation of SP1 targets (Supplementary Fig. 6b) may reflect
its ability to partner with a number of transcription factors in
cancer46.

As expected, b-catenin/Wnt signalling plays an important role
in cuSCC pathogenesis and this is reflected in the importance in
this analysis of both TCF3 and LEF1 activity. TCF3 can function
as a transcriptional repressor and activator and has been
implicated in skin homoeostasis and wound healing47. Our data
suggest an important role in cuSCC development as well
(Supplementary Fig. 6c). LEF1 appears to be activated across
the spectrum of samples, with targets significantly downregulated
early and upregulated late (Supplementary Fig. 6d), and
is an established effector of b-catenin/Wnt signaling48. The
downregulation of NFAT targets early (Supplementary Fig. 6e)
may reflect an inhibition of keratinocyte differentiation programs
that may be modulated by NOTCH signalling and further
compromise TP53-dependent tumour suppression49.

Similarly, the predicted downregulation of AP1 target genes
across the continuum of cuSCC development (Supplementary
Fig. 6f) suggests a compromise of normal epidermal
differentiation50. FREAC2 (FOXF2) targets are downregulated
across the development sequence (Supplementary Fig. 6g),
and although it has not been specifically implicated in skin
cancer, downregulation of its expression promotes epithelial–
mesenchymal transition in basal breast cancer51.

Consistent with our global transcriptomic data, most of the
transcriptional drivers are predicted to act early in the NS/CHR to
AK/PAP transition, including NFY, E2F and ELK1, with some,
including MYC activation, occurring late (Fig. 5a and
Supplementary Fig. 6h,i). Both E2F and MYC have been
implicated in cuSCC development44. Although using individual
pairwise analysis suggested key transcriptional regulators, we also
used a linear mixed effects (LME) model previously employed to
identify differentially expressed genes in matched normal,
premalignant and tumour samples from patients with lung SCC
(LUSC)52. Following cross-species overlap of mouse and human
data, this model also clearly demonstrated that the majority
of changes occur in the earliest transition from NS to AK/PAP
versus the subsequent transition to cuSCC (Fig. 5c and
Supplementary Data 5).

In GATHER-based analysis of TRANSFAC motifs within
concordantly differentially expressed genes53 by this analysis, E2F
and NFY (Supplementary Fig. 6h,i and Supplementary Data 6)
were again highlighted in the early stage transition from NS to
AK/PAP in both mouse and human. ELK1, which is likewise
regulated by the ERK MAPK pathway, was also significant by
both analyses (Fig. 5a and Supplementary Data 6). No enriched
transcription factor signatures were identified for the late-stage
AK/PAP to cuSCC transition using the LME model.

Table 2 | Site-specific mutational overlap.

PT NS
Total

AK
Total

SCC
Total

NS/AK AK/SCC NS/SCC NS/AK/
SCC

SCC1 versus
SCC2

NS/AK/
SCC1

NS/AK/
SCC2

NS/AK/SCC1/
SCC2

1 1,264 449 — 2 — — — — — — —
2 — 1,631 1,332 — 4 — — — — — —
3 — 1,555 9,156 — 6 — — — — — —
4 257 1,056 385 0 1 0 — — 1 — 1
4 (SCC2) — — 578 — 0 1 — 195 — 0 1
5 24 1,447 4,924 1 6 0 1 — — — —
6 347 — 3,614 — — 6 — — — — —
8 319 — 503 — — 2 — — — — —
10 23 1,873 — 0 — — — — — — —
12 — 290 — — — — — — — — —
Average 0.75 3.4 1.8

AK, actinic keratosis; cuSCC, cutaneous squamous cell carcinoma; NS, normal skin.
The overlap of site-specific variants in NS, AK and cuSCC shows that the greatest amount of overlap between AK and cuSCC. These average 3.4 between AK and cuSCC, 0.75 between NS and AK, and
1.8 between NS and cuSCC. The most overlap occurred between two SCCs from patient 4 (195), which were from two distinct lesions in close physical proximity, suggesting that they may have arisen at
least partially from a common clone.
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On the basis of these sets of differentially expressed genes,
Ingenuity Pathway Analysis of both human and mouse data
was performed individually (Supplementary Table 2) and
identified strongly overlapping key pathways including cell cycle
progression, mitotic roles of polo-like kinase and DNA damage
checkpoint functions, as well as upstream regulators E2F1, E2F4,

CDK4, TP53, RABL6 and ERBB2, the latter two of which may be
novel targets for intervention.

The transcriptional networks identified in both the pairwise
analyses and the progression model analysis implicate pathways
important in cuSCC development, mostly early in the NS/CHR to
AK/PAP transition, notably E2F, ELK1 and NFY. ERK signalling
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Figure 4 | mRNA profiling across AK/papilloma and cuSCC development. (a) Correlation matrix of mRNAs differentially expressed in at least one

signature in human samples shows that AKs span the spectrum of NS to cuSCC samples. (b) Unsupervised clustering of all genes across patient samples

with complete sets (all three lesion types) demonstrates that in 6/8 sets, AK more closely resemble cuSCC. The Pearson correlation matrix is shown on top

with the underlying heat map shown below. (c) A 70-gene signature of chromosomal instability derived from human cancers is highly enriched in AK and

cuSCC to a similar degree, but not NS. (d) Correlation matrix of mRNAs differentially expressed in at least one signature in mouse samples demonstrates

that PAPs much more closely resemble cuSCC than CHR.
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through ETS2, b-catenin signalling through TCF3 and LEF1, and
pathways regulated by NFAT and AP1 that likely impinge upon
keratinocyte differentiation, were implicated globally across the
entire development sequence (Fig. 5).

MicroRNA sequencing and integrated analysis. Relative to
mRNA, clustering of microRNAs differentially expressed in at
least one pairwise comparison among the matched human
samples showed a better ability to distinguish the three sample
classes (Fig. 6a). When recurrent statistically significant changes
occurring in at least two out of three pairwise comparisons are

used, it is clear that AKs now define a pattern of microRNA
expression that is intermediate between NS and cuSCC, with
improved discrimination between sample types (Fig. 6b,
Supplementary Data 7 and Supplementary Fig. 7).

Whereas unsupervised clustering of mRNA expression
in the Hairless mouse model failed to distinguish papi-
llomas from cuSCC (Fig. 4d), unsupervised clustering of
microRNA expression more clearly separates all three
sample types (Fig. 6c,d, Supplementary Data 8 and Supple-
mentary Fig. 7), suggesting that microRNAs have more
discriminatory power as compared with mRNA in segregating
the sample types.
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Figure 5 | Cross-species transcription factor motif analysis reveals major drivers of cuSCC development. (a) Global view of transcription factors with

target genes enriched across the entire NS/CHR to AK/PAP to cuSCC progression sequence. Directionality reflects the significant upregulation (above the

line) or downregulation (below the line) of predicted targets of the listed transcription factors. Some factors have targets that are enriched in opposite

directions across distinct transitions. The transcription factors highlighted in red were identified in both TRANSFAC and LME-based analyses. (b) Network

analysis demonstrates that core transcriptional drivers are highly interconnected in both human (left) and mouse (right). The bolded lines delineate

connections that are significant by Fisher exact test (Po10�4). (c) The LME model of mRNA expression changes across cuSCC development in both

species demonstrates that the vast majority of significant gene expression changes occur in the early transition from NS/CHR to AK/PAP.
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Given that microRNAs can negatively regulate their target
mRNA expression by Watson-Crick pairing over a 7–8 nucleotide
seed region, we performed functional pair analysis by identifying
miRNA–mRNA pairs predicted to be linked by a seed sequence
in the 30UTR of the mRNA and that were significantly anti-
correlated in expression changes54. Functional pairs in both

species were ranked by all possible pairwise comparisons in which
they were significantly differentially expressed (rather than by
stage), and an integrated network map was generated to identify
several key microRNAs with multiply targeted mRNAs (Fig. 7a,b).

The microRNAs significantly upregulated in this cross-species
analysis included miRs-15a/b, 17, 20a, 21, 31, 200a and 340b
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Figure 6 | microRNA profiling across AK/papilloma and cuSCC development. (a) Correlation matrix of microRNAs differentially expressed in at least one

signature in human samples shows that significantly improved discrimination between three sample types is achieved as compared with mRNA profiles.

(b) Using only microRNAs differentially expressed in at least two out of three pairwise comparisons (Po0.05), robust discrimination is achieved between

NS and cuSCC with most AKs occupying an intermediate expression pattern. (c) Hierarchical clustering of microRNAs differentially expressed in at least

one signature in mouse samples shows distinct patterns among the three sample types as compared with mRNA profiles. (d) Using only microRNAs

differentially expressed in at least two of three pairwise comparisons (Po0.05), CHR and cuSCC are very strongly segregated with an intermediate group

dominated by PAP.
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(Fig. 7a), and those significantly downregulated included let-7
family members and miRs-30a and 125b (Fig. 7b). Some of these
microRNAs are confirmed in our data to be significant in cuSCC.
miR-21 and miR-31 have been shown to be upregulated in a
number of cancers including cuSCC55–57, although the identity of
the most relevant mRNA targets is not known. In many instances,
functionally paired mRNAs were predicted to be targeted by
multiple microRNAs.

We validated the expression levels of miR-21 and miR-31 and
of selected predicted target genes in additional sets (n¼ 21) of
matched human samples of NS, AK, and cuSCC (Fig. 7c,d and
Supplementary Data 9). miR-21 was substantially upregulated by
8.9±3.1-fold (mean±s.e.m.; n¼ 8 sets) across the progression
sequence, with respective downregulation of the predicted targets
ARHGAP24 (2.9±0.6-fold; mean±s.e.m.; n¼ 6 sets) and TIMP3
(3.0±0.4-fold; mean±s.e.m.; n¼ 6 sets) (Fig. 7c). ARHGAP24 is
a RAC1 GAP (ref. 58), and TIMP3 suppresses metalloproteinase
function, both of which are consistent with tumour suppressive
functions. miR-31 was also upregulated (16.2±6.8-fold;
mean±s.e.m.; n¼ 7 sets) across cuSCC development and
predicted to downregulate PTPN14 (3.2±0.4-fold; mean±s.e.m.;
n¼ 5 sets), a phosphatase which downregulates YAP signalling59

(Fig. 7d). In addition, FAM134B, a putative tumour suppressor60

was identified as a potential target of miR-31 (down 4.3±1.4-fold;
mean±s.e.m.; n¼ 5 sets; Fig. 7d). The let-7 family of microRNAs

is prominently represented among downregulated microRNAs,
consistent with a tumour suppressor role, and one of the predicted
targets, HMG2A, was substantially upregulated in a validation
cohort by 45.4±14.5-fold (mean±s.e.m.; n¼ 4 sets). These
specific pairs need to be functionally validated to provide
mechanistic links, but these data show that the cross-species
functional pair analysis is robust.

Relationship of cuSCC to other SCC. Many types of SCC arising
in diverse sites, such as lung, oesophagus, bladder, cervix and
head and neck SCC (HNSCC) have now been genomically
profiled, in addition to exome sequencing of cutaneous SCC32–35.
These combined efforts have collectively identified common
pathway alterations for many SCCs. TP53 mutations occur at
over 70% frequency in all SCCs; NOTCH family genes are
mutated in over 70% of cuSCC32,33, 10–20% of HNSCC61–63,
13% of LUSC64 and 10% of oesophageal SCC (ESCA SCC)65; and
SOX2 amplification is a common lineage-specific driver of SCC66.

To test the hypothesis that mRNA expression profiles would
reveal molecular commonalities between all SCC, we profiled our
NS/cuSCC signature against cancers in the TCGA using gene set
enrichment analysis (GSEA). Furthermore, we surmised that
there would be major differences between carcinogen-driven
versus virally driven SCC, as observed in HNSCC61–63. We found
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that cuSCC is most similar to HNSCC, followed by LUSC, basal
(triple-negative) and HER2 breast cancer and ESCA SCC, but not
closely related to cervical SCC, which is overwhelmingly human
papillomavirus (HPV) -driven (Fig. 8a and Supplementary
Data 10). This establishes transcriptomic evidence that deep
molecular commonalities exist between carcinogen-driven SCCs
of multiple tissue sites, a concept supported by the mutational
data, and suggests that common molecular strategies for
prevention and treatment of multiple types of SCCs may exist.

Given that HNSCC is consistently the most closely related
tumour to cuSCC, we asked whether cuSCC-derived signatures
from our cohort of well-differentiated tumours could also be used
to predict outcomes in carcinogen-driven (non-HPV) HNSCCs,
which have TP53 mutations and high mutational loads63.
When we restricted the cuSCC signatures to early genes
identified in the LME progression model for either human or
mouse independently (Fig. 5c), both signatures were significantly
predictive of overall survival (Fig. 8b—top row). Similarly, when
we used only the cross-species intersection of these two signatures
of early genes, this was again significantly predictive of
overall survival (Fig. 8b—bottom left, Supplementary Fig. 8).
Most importantly, a 309-gene signature derived solely from the
cross-species microRNA functional pair analysis (Fig. 7a,b) had
significant predictive power for overall survival (Fig. 8b—bottom
right), showing that these microRNA target genes likely regulate
not only important processes in cuSCC development but also
drivers of disease outcome in HNSCC.

Discussion
Our analysis is the first comprehensive characterization of
genomic changes that drive the development of cuSCC through
its preneoplastic intermediate, the AK, employing the combina-
tion of matched human patient samples, next-generation
sequencing, and cross-species analysis. Despite the clear clinical
and histological distinctions between cuSCC, AK and perilesional
UVR-damaged skin, AK/PAP are most closely related to cuSCC,
by many measures including mRNA expression
(unsupervised clustering and LME model), transcription factor
motif analysis, mutational signatures and overlap, chromosomal
instability signature expression, and microRNA–mRNA
functional pair analysis (Fig. 8c).

Our data confirm the high mutational burden of these skin
cancers32–35. Importantly, high mutational loads have recently
been described in chronically UVR-exposed blepharoplasty
samples36, and, for the first time, we show the large degree of
mosaicism present across the entire exome in non-lesional UVR-
exposed peri-tumoural skin, with quantitatively similar
mutational loads (Fig. 2). The SMGs identified, including TP53,
NOTCH1-2, FAT1 and MLL2 are ones likely to be important in
cuSCC pathogenesis (Fig. 2c)32–35. Conversely, one of the most
frequently mutated genes previously identified in sun-exposed
skin, FGFR3, was not found to be mutated, suggesting that this
genetic lesion, frequently found in seborrheic keratoses, may be
specifically critical for benign keratoses and not non-melanoma
skin cancers36. Our findings are consistent with the notion that
tumour suppressor genes, which represent the largest class of
cancer genes known to be recurrently targeted in cuSCC, can
often be inactivated by mutational insults spread across their
entire coding regions.

The overwhelming preponderance of epidemiological, clinical
and biological data suggest that UVR exposure is the main driver
of sporadic cuSCC development. The subsequent expansion in
overall mutational load, which occurs in progression to AK and
cuSCC correlates with a significant enrichment for UVB-signa-
ture mutations (Fig. 2b). It is possible that this is reflective of a
progressively more clonal structure across the continuum from

NS to AK to cuSCC, although our sample size is small (Fig. 3a).
The lower relative representation of the UVB signature in the NS
samples maybe due to low sensitivity for detecting small
subclones induced by UVR exposure at a given sequencing depth
(Fig. 2b). It is possible that initiated clones persist longer than
normal keratinocytes, thereby enabling expansion or accumula-
tion of further UVB-mediated DNA damage, a notion consistent
with the early appearance of TP53 mutations (Figs 2c and 3b)36,
and dramatically illustrated in the NS sample from patient 1
(Figs 2a,b and 3b). Other contributory mechanisms could include
compromised DNA repair, compromised photoprotection by
melanocytes, or the generation of these types of mutations in the
absence of UVR exposure. Finally, the overlap in specific
mutations was low (Fig. 3b, Table 2) and while this may also
be due to the inability to detect small subclones particularly in the
NS and AK samples, all the lesions (particularly AKs) were
physically distinct. Nevertheless, the dramatic overlap in
mutations between the two separate SCCs in patient 4 strongly
suggests that clones of UVR-initiated keratinocytes can populate
large areas of epidermis (Fig. 3b and Table 2).

SCCs arise at interfaces with the environment, thus making
them susceptible to sustained carcinogenic insults. Our data
support the notion that cuSCC, HNSCC, LUSC and ESCA SCC
share deep molecular commonalities (Fig. 8a) at the mutational
and transcriptional levels, and include deregulation of key
pathways such as those driven by altered RB1, TP53 and TP63
function32,34,35,63–65. Therefore, for the subsets of these SCCs
driven by UVR, alcohol and tobacco exposure, common
molecular treatment and prevention strategies may potentially
be developed and modelled on cuSCCs, which are substantially
more accessible and common. The unexpected molecular
similarity of cuSCC to specific subtypes of breast cancer may
also highlight similar molecular vulnerabilities
such as ERBB2/HER2 (Fig. 8a and Supplementary Table 2).
Interestingly, there was much less similarity between cuSCC and
cervical SCC (Fig. 8a). cuSCC does not appear to require HPV
transcription for tumour maintenance, whereas cervical SCC is
overwhelmingly driven by high-risk aHPV infection67.

While AKs appear already to harbour the majority of events
that are retained in cuSCC, at least two alternative explanations
are possible: (1) consistent mutational or transcriptomic events
that separate AKs versus cuSCC could be present, and/or
(2) there are distinct molecular classes of AKs with different
risks of progression to cuSCC. Either of these explanations would
require much larger numbers of samples to demonstrate.
Nevertheless, our data show that microRNA expression
distinguishes the three sample classes and may potentially serve
as a basis for distinguishing different types of AKs (Fig. 6).
In addition, our cross-species functional pair analysis has
identified a handful of highly interconnected microRNA–
mRNA networks that drive cuSCC development through
preneoplastic AKs (Fig. 7), highlighting specific microRNA
targets for potential intervention.

Nevertheless, given the many significant similarities between
AK and cuSCC, our data suggest that non-lesional carcinogen-
exposed fields of tissue may represent the most effective point of
intervention for molecularly targeted chemoprevention. The
development of cancer through a preneoplastic intermediate has
been studied extensively in Barrett’s oesophagus and oesophageal
adenocarcinoma68,69. Barrett’s oesophagus that evolves into
adenocarcinoma can be largely indistinguishable from
carcinoma, consistent with our conclusion that for a subset of
patients, field-based treatment is most appropriate. AKs are
typically too small to allow for repeated sampling, thus removing
the possibility for longitudinal follow-up and clinical discernment
between AKs that ultimately progress and those that do not.
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Nevertheless, it is likely that AKs are polyclonal reservoirs from
which cuSCCs can arise (Fig. 3a), and it is unclear whether
catastrophic genomic instability drives this late transition.

Our data substantiate the power of cross-species analysis to
identify biologically important pathways in cuSCC development
and suggests that the solar UVR-exposed Hairless mouse model is

a useful testbed for chemopreventive and treatment modalities.
Other mouse models of cuSCC have also been extensively studied,
most prominently the DMBA/TPA model70; in this model,
tumorigenesis is overwhelmingly driven by HrasQ61 mutations
which are rarely found in UVR-driven human cuSCC and
in the UVR-driven Hairless mouse model (Supplementary
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Data 1)24,32–35. The key transcriptional drivers we identified in
both pairwise signatures and the LME model are important early
in the NS/CHR to AK/PAP transition and include E2F, ELK1 and
NFY. Globally, we identified ERK signalling through ETS2 and
ELK1, b-catenin signalling through TCF3 and LEF1, and possible
differentiation pathways regulated by NFAT and AP1 as
potentially important drivers of cuSCC development (Fig. 5).

The significant enrichment of signatures from both patient
samples and the UVR-driven Hairless model in multiple
carcinogen-driven SCCs arising in diverse sites is important in
that it establishes the concept that these SCCs are molecularly
closely related (Fig. 8a). Furthermore, early cuSCC signatures
were able to predict survival in TP53-mutant (non-HPV) HNSCC
(Fig. 8b). This suggests that a common set of biological processes
underlie the development of multiple SCC types, and that cuSCC
may serve as an accurate and extremely accessible model for
exploring pathogenesis and testing interventions.

Methods
Human tissue samples. All human tissues were studied under a MD Anderson
Cancer Center IRB-approved protocol (LAB08-0750). All human tissues were
obtained from patients who provided written informed consent and who had no
history of immunosuppression. These samples were validated by histological
analysis and processed using standard methods to yield both high-quality DNA
and RNA (RIN48.0).

Mouse model of UVR-driven cuSCC. All mouse studies were conducted
under MD Anderson Cancer Center IACUC-approved protocol (ACUF 00001396-
RN00). Mice were obtained from Charles River Laboratories. To model
UVR-driven cuSCC under controlled conditions, we exposed female SKH1-E
Hairless mice to chronic low-dose UVR (12.5 kJ m� 2 UVB total weekly divided in
three doses M, W, F) using solar simulators (Oriel) starting at 3 months of age. In
this strain, 5.0 kJ m� 2 UVB is B0.5–1 mean erythemal dose71. These mice lack
the Hairless gene, and they are highly susceptible to UVR-induced skin tumours,
UVR-induced immunosuppression and DNA damage23. In our studies, we have
used solar simulators with well-characterized spectra at 2.5–5.0 kJ m� 2 UVB 3
days a week for a total of 12.5 kJ m� 2 per week (275–325 nm) (ref. 71). These
doses were verified by broadband UVB and ultraviolet A (UVA) measurements
(ILT1700/ILT73B) in experimental conditions before this experiment. Doses of
UVB and UVA averaged 12.5 and 145 kJ m� 2 weekly, respectively. In this model of
UVR-driven cuSCC development, we irradiated the mice for 100 days. Papillomas
were typically observed within this time and were histologically well-differentiated.
A minority of these lesions to invasive well-differentiated cuSCC.

Preparation of RNA for illumina sequencing. Tissue specimens (50–200 mg)
were homogenized with an Omni rotor stator homogenizer in TRIZOL (Invitrogen
Cat # 15596018). Total RNA was extracted according to the manufacturer
instructions. RNA purification was carried with Purelink RNA kit (Invitrogen Cat
#12183018A). 4–10 mg of RNA per sample was submitted for 76 nt paired-end
sequencing by lllumina HiSeq 2000. The same samples were submitted to the
laboratory of Preethi Gunaratne, PhD (University of Houston, Biology &
Biochemistry) for small RNA sequencing.

DNA isolation and exome seq. PureLink Genomic DNA mini kits were used to
extract DNA from tissue samples (Cat # K1820-01). Briefly, tissue specimens were
minced and incubated overnight (55 �C) in PureLink genomic digestion buffer and
proteinase K. Manufacturer’s protocol was followed for purification using the spin
columns. Two microgram of DNA per sample was submitted to MD Anderson

DNA Analysis Facility for sequencing (Illumina HiSeq200, 76 nt PE). We used
DNA Genotek ORAgene saliva collection kits and followed manufactures’
collection and storage instructions (catalogue # OG-500). Genomic DNA was
isolated from saliva samples using DNA Genotek prepIT�C2D (PT-C2D)
extraction columns and manufacturers’ protocol.

Exome analysis. For any given patient, if their saliva samples were available, they
were used as the paired control for the mutation detection. Otherwise, NS samples
were used as controls. Four precapture libraries were pooled together and
hybridized according to the manufacturer’s protocol NimbleGen SeqCap EZ
Exome Version 3. Exomes were sequenced on an Illumina HiSeq 2000 platform to
an average coverage of 135X. Sequencing runs generated approximately 300–400
million successful reads on each lane of a flow cell, yielding 9–12 Gb per sample.
Initial sequence analysis was performed using the HGSC Mercury analysis pipeline
(https://www.hgsc.bcm.edu/software/mercury). First, the primary analysis software
on the instrument produces.bcl files that are transferred off-instrument into the
HGSC analysis infrastructure by the HiSeq Real-time Analysis module. Next, the
vendor’s primary analysis software (CASAVA) demultiplexes pooled samples and
generates sequence reads and base-call confidence values (qualities). Reads are
mapped to the GRCh37 Human reference genome (http://www.ncbi.nlm.nih.gov/
projects/genome/assembly/grc/human/) using the Burrows-Wheeler aligner
(BWA, http://bio-bwa.sourceforge.net/) and producing a BAM file. Finally, quality
is recalibrated (GATK, http://www.broadinstitute.org/gatk/), and separate
sequence-event BAMs are merged into a single-sample-level BAM. BAM sorting,
duplicate read marking, and realignment to improve in/del discovery all occur at
this step. Mutations were identified by using the HGSC Cancer Genomics pipeline
which includes variant calling using Atlas-SNP, Atlas-INDEL, and PInDel on each
of the BAM files and then merging the variant calls and performing allele lookups.
Merged variant files were annotated using dbSNP, COSMIC and Annovar and then
split into somatic and germline calls based on variant quality and segregation.
Variant calls were then filtered using a cohort filtering approach and filtered
variants were analysed. DNPs were collapsed with their neighbours and annotated
by using Provean (provean.jcvi.org). Identification of SMGs essentially paralleled
our previously established pipeline34.

Non-negative matrix factorization-based mutation signatures. NMF-based
spectral deconvolution was used to derive signatures based upon mutations placed
in trinucleotide context. The method used is mathematically similar to one recently
applied to similar cancer data sets72, but has the advantage of removing the partial
overlap between the reported signatures that resulted in high correlations between
some of them39. Our strategy employed non-smooth NMF, a variant, which
approximates the data using the basis and coefficient matrices as above with the
addition of a third smoothing matrix which serves to absorb noise within the data,
thus driving the coefficient and basis matrices to increase sparseness. The resulting
basis matrix generated k¼ 21 signatures from a diverse set of over 6,000 cancers39,
reducing correlations between signatures originally derived by Alexandrov et al.72

thereby increasing orthogonality. This enhanced orthogonality has the potential
advantage of suggesting biological mechanisms of mutation generation with greater
specificity.

RNA-Seq analysis. RNA sequencing (Illumina Hi-Seq) yielded 30–40 million read
pairs for each sample. The mRNA-seq paired-end reads were aligned to the human
reference genome, GRCh37/hg19, using the MOSAIK alignment software73. The
mRNA-Seq mouse sample reads were aligned onto the mouse genome build UCSC
mm10 (NCBI 38). The overlaps between aligned reads and annotated genomic
features, such as genes/exons were counted using the HTSeq software platform
(http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html). The counts
were normalized using the scaling factor method. To perform further analysis, the
normalized counts were transformed by the variance-stabilizing transformation
method and were corrected for experimental batch effects. Specifically, the median
expression of each batch was scaled to the same value per gene. Hierarchical
clustering analysis, using the Pearson correlation coefficient as the distance metric,

Figure 8 | cuSCC is molecularly related to carcinogen-driven SCCs of multiple sites. (a) GSEA analysis of all significant pairwise comparisons in both

mouse (CHR versus PAP, CHR versus cuSCC) and human (NS versus AK, AK versus cuSCC, NS versus cuSCC) represented as a CIRCOS plot. For all

cancers profiled in the TCGA, normalized enrichment scores for each signature were determined and cancer types ranked by descending order (clockwise)

of the sum of squares of all the scores with a penalty. By this measure, cuSCC is most closely related to HNSC, LUSC, basal and HER2þ subtypes of breast

cancer (BRCA) and ESCA SCC. (b) Given that HNSC is most closely related to cuSCC by this measure, we show that cuSCC signatures can predict

outcome (overall survival) in HNSC with TP53 mutation, used here as a proxy for identifying tumours that do not express high-risk HPV. The cross-species

early signatures derived from the linear mixed effects model and the cross-species microRNA functional analysis all predict survival in HNSCC for the top

and bottom 25% of outcomes with statistical significance. Multiple hypothesis testing was performed and all of the plots shown are significant with the

stated P-values and false discovery rate-adjusted q-values of o0.1 (q¼0.021 human early, 0.070 mouse early, 0.049 conserved early and 0.070

conserved miRNA targets). (c) Taken together, our data show that AKs have acquired many of the properties of cuSCC as assessed by SMG, mutational

overlap, mutational signatures, chromosomal instability signature, mRNA and transcription factor profiles and functional pair analysis, although overall

mutational load and unsupervised microRNA clustering do enable separation of the three sample types.
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complete linkage, and PCA were performed using the R statistical system
(https://www.r-project.org). Genes significantly differentially expressed between
the NS/CHR, AK/PAP, and cuSCC stages were determined using the R package
DESeq2 (ref. 74). Since multiple genes were tested simultaneously, the Benjamini-
Hochberg method was used to control false discovery rate. For further integration
of mRNAs and miRNAs, and detection of enriched transcription factor targets, we
used a cutoff of Q-valueo0.25 and fold-change exceeding 1.25� .

Viral and fusion transcripts were assessed using the VirusSeq algorithm75 given
that mapping viral integration sites is computationally similar to identifying fusion
events. In brief, non-human reads were aligned to viral sequences from the
Genome Information Broker for Viruses (http://gib-v.genes.nig.ac.jp/) with overall
counts registered. Discordant paired-end reads that support a fusion event were
clustered and the candidates reported using supporting pairs (at least four) and
junction spanning reads (at least one) as the cut-offs.

TRANSFAC-based analysis (http://www.gene-regulation.com/index2.html) was
performed by first identifying significantly overrepresented motifs and their
associated transcription factors for all pairwise comparisons in both human and
mice. First, significant candidate factors were ranked by their enrichment scores
(Supplementary Data 4) and selected only if their targets were enriched in genes
sets that changed in the same direction for both species in any one of the adjacent
pairwise comparisons: NS/CHR to AK/PAP or AK/PAP to cuSCC. These changes
also had to be significantly enriched in the NS/CHR to cuSCC comparison.

To quantify chromosomal instability (CIN), CIN70 score was calculated by
summing up the normalized counts of all CIN70 genes42. To adjust the effects of
multiple samples per patient and experimental batches, CIN70 scores were first
transformed by the variance-stabilizing transformation method implemented in
DESeq2 and fit into a linear model with patients and experimental batches as
covariates. The residuals of the linear model were treated as adjusted CIN70 scores.

Cross-species linear mixed effects model. This analysis was confined to human
samples that had complete matched sets of lesion types (21 samples from six
patients). Samples from all six mice were used. For each gene, LME models were
constructed in which normalized gene expression (as above) was modelled as a
function of sample type (fixed effect) while correcting for the patient or mouse
source (random effect). The models were created twice, using either NS/CHR or
AK/PAP as the reference group to compute coefficients, and t tests were performed
to assign significance to each gene with respect to each coefficient in each model.
From those genes for which both iterations of the model were successfully fitted to
the data (numerically stable), a set of genes with nominal Po0.05 for the cuSCC
versus NS/CHR coefficient was identified. Each of these sets was then filtered
to identify genes for which the AK/PAP versus NS/CHR or the cuSCC versus
AK/PAP coefficient also had a nominal Po0.05 and a sign matching that of the
cuSCC versus NS/CHR coefficient; these genes were designated as early and late,
respectively, or stepwise (both early and late). LME modelling and t tests were
carried out using the R package v.3.1-97 ((https://www.r-project.org).

For cross-species analysis, the NCBI HomoloGene resource (version 68)
(http://www.ncbi.nlm.nih.gov/homologene) was used to facilitate cross-species
analysis as follows. First, HUGO identifiers were converted to Entrez Gene
identifiers. Most (495%) of the identifiers could be translated in this manner
(16,155 out of 16,952 human features and 14,084 out of 14,542 mouse features);
features that did not map to an Entrez Gene ID were discarded. Next, the resulting
Entrez Gene identifiers were matched between species by common HomoloGene
identifier, and any feature from either data set that did not map to exactly one
homologue in the other data set was discarded. Finally, the LME results from the
two data sets were merged by HomoloGene identifier to allow for direct
comparison.

GATHER (Gene Annotation Tool to Help Explain Relationships)53 was used to
identify TRANSFAC identifiers that were significantly overrepresented in the early
(NS/CHR to AK/PAP), late (AK/PAP to cuSCC), and stepwise (both early and late)
gene sets, with a Bayes Factor 43 considered significant.

smallRNA-Seq analysis. This work was performed with collaboration with
laboratory of Dr Preethi Gunaratne, PhD (University of Houston, Biology &
Biochemistry). Illumina small RNA adapter sequences were trimmed from the
reads, and reads of length below 10nt or ending in homopolymers of length 9 nt or
above were discarded. Total usable number of reads for each sample was calculated.
The reads were mapped to the miRBase76 reference (http://www.mirbase.org/)
using BLAST; the abundance of each expressed microRNA was quantified as a
fraction of the usable reads, and expressed as parts per million To reduce potential
batch effects due to sample collection and preparation at different times, the
ComBat normalization algorithm77 (http://www.bu.edu/jlab/wp-assets/ComBat/
Abstract.html) was applied for the human data. We determined differentially
expressed microRNAs imposing a fold-change of 1.5� and t-test comparison
(Po0.05) using the R statistical system. We employed PCA to examine sample
structure; further visualization of microRNA significant in one or multiple
comparisons was carried out using the R statistical system.

Integrative mRNA-miRNA functional pair analysis. We determined enriched
miRNA–mRNA pairs using the SigTerms methodology. Essentially, by applying a

one-sided Fisher exact test and using TargetScan78 (http://www.targetscan.org/
vert_71/) predicted microRNA targets, we determined the miRNAs for which the
gene targets are significantly enriched (false discovery rate-adjusted qo0.25;
fold-change41.25� ) in the gene signature, separately for the human specimens
and the mouse samples. Finally, we determined the conserved enriched miRNAs
alongside the SCC progression model, and the conserved miRNA–mRNA
pairs conserved alongside the SCC progression model. Conserved enriched
microRNA–mRNA pairs were visualized using the Cytoscape software
(http://www.cytoscape.org/).

Quantitative real-time PCR validation analysis. Separate cohorts of matched
samples from patients consisting of NS, AK and cuSCC were processed as above.
Commercially available Taqman (Life Technologies) probes were acquired for
human miR-21 (000397), miR-31 (002279), PTPN14 (Hs00193643_m1),
FAM134B (Hs00375273_m1), HMG2A (Hs00171569_m1), TIMP3
(Hs00165949_m1) and ARHGAP24 (Hs01097580_m1) and used in qRT-PCR
based quantitation of expression in these tissues, as benchmarked to RNU6B
(001093, microRNA) and 18S rRNA (Hs99999901, mRNA).

Gene set enrichment analysis for TCGA tumour signatures. GSEA was carried
out using the GSEA software package79 (http://software.broadinstitute.org/gsea/
index.jsp) to assess the degree of similarity among the studied gene signatures. For
each of the human or the mouse SCC progression transcriptome response, all genes
were ranked by the fold change alongside the SCC progression model. To assess the
relative association with multiple tumour progression signatures, we downloaded
from the Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov/tcga/) gene
expression data for 19 cancer cohorts, performed quantile normalization using the
R statistical analysis system, and then inferred tumour progression transcriptome
signature by imposing a fold change exceeding 2 (Po0.05). We utilized separately
the downregulated genes and the upregulated genes. Normalized Enrichment Score
(NES) and adjusted q-values (qo0.25) were computed utilizing the GSEA method,
based on 1,000 random permutations of the ranked genes. We visualized combined
NES scores for all the TCGA tumour development gene signatures and for
our human and mouse SCC progression signatures using the Circos software80

(http://circos.ca/).

Survival analysis for TCGA HNSCC with TP53 mutations. We evaluated
the survival prognostic power of cuSCC progression-associated gene signature
using human specimen cohorts from the Cancer Genome Atlas (TCGA)
(https://tcga-data.nci.nih.gov/tcga/), specifically HNSCC which are TP53-mutant.
We first replaced the gene expression of each gene with the z-score within the
cohort, then we computed the sum of z-scores for each sample by adding the
z-score for upregulated genes and subtracting the z-score from downregulated
genes. Specimens were sorted according to the sum z-score of the respective SCC
progression gene signature; association with survival (Po0.05, log-rank test)
was evaluated by using the package Survival in the R statistical system
(https://cran.r-project.org/web/packages/survival/index.html).

Data availability. Raw RNA and small RNA sequencing data from all human and
mouse samples that were used to support the findings of this study have been
deposited in NCBI/GEO with SuperSeries accession code GSE84194. The exome
sequencing data that support the findings of this paper may be made available upon
request from the corresponding author (K.Y.T.). These exome data are not publicly
available due to them containing information that could compromise research
participant privacy/consent. The data used to support the pan-cancer GSEA
tumour signature analysis used publicly available Cancer Genome Atlas
(TCGA) gene expression data, which can be accessed through the websites:
(https://tcga-data.nci.nih.gov/tcga/) (https://gdc-portal.nci.nih.gov/).
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