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Abstract
Mesophotic hard corals (MHC) are increasingly threatened by a growing number of anthro-

pogenic stressors, including impacts from fishing, land-based sources of pollution, and

ocean acidification. However, little is known about their geographic distributions (particularly

around the Pacific islands) because it is logistically challenging and expensive to gather

data in the 30 to 150 meter depth range where these organisms typically live. The goal of

this study was to begin to fill this knowledge gap by modelling and predicting the spatial dis-

tribution of three genera of mesophotic hard corals offshore of Maui in the Main Hawaiian

Islands. Maximum Entropy modeling software was used to create separate maps of pre-

dicted probability of occurrence and uncertainty for: (1) Leptoseris, (2)Montipora, and (3)

Porites. Genera prevalence was derived from the in situ presence/absence data, and used

to convert relative habitat suitability to probability of occurrence values. Approximately

1,300 georeferenced records of the occurrence of MHC, and 34 environmental predictors

were used to train the model ensembles. Receiver Operating Characteristic (ROC) Area

Under the Curve (AUC) values were between 0.89 and 0.97, indicating excellent overall

model performance. Mean uncertainty and mean absolute error for the spatial predictions

ranged from 0.006% to 0.05% and 3.73% to 17.6%, respectively. Depth, distance from

shore, euphotic depth (mean and standard deviation) and sea surface temperature (mean

and standard deviation) were identified as the six most influential predictor variables for par-

titioning habitats among the three genera. MHC were concentrated between Hanaka‘ō‘ō and

Papawai Points offshore of western Maui most likely because this area hosts warmer,

clearer and calmer water conditions almost year round. While these predictions helped to fill

some knowledge gaps offshore of Maui, many information gaps remain in the Hawaiian

Archipelago and Pacific Islands. This approach may be used to identify other potentially
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suitable areas for MHCs, helping scientists and resource managers prioritize sites, and

focus their limited resources on areas that may be of higher scientific or conservation value.

Introduction
Predictive modelling plays an important role in the study of organisms that are logistically dif-
ficult to sample broadly. Such models help researchers and managers explore questions related
to spatial ecology and place-based conservation in the absence of timely, in situ information
about these organisms. They can also help raise new questions about an organism’s ecology by
identifying complex relationships in their environment [1]. While predictive models cannot
replace the collection of in situ information, they can help scientists target data collection
efforts to answer specific biological or ecological questions, and help them identify new loca-
tions for future scientific research and exploration.

Mesophotic coral ecosystems (MCEs) and mesophotic hard corals (MHCs) are examples of
such ecosystems and organisms that are hard for human divers to access because they live in
depths (ca. 30 to 150 m) largely beyond recreational SCUBA limits (ca. 40 m) [2]. Conse-
quently, the vast majority of coral reef studies have been conducted on shallow reef systems
including those in the Main Hawaiian Islands (MHI) [3]. The limited studies on MCEs have
revealed some biological and ecological connections to shallow reefs [3, 4, 5, 6, 7], but much is
still unknown about the overall degree of connectivity [6]. This critical information gap must
be filled to help managers better understand the role of MCEs in coral reef resilience and in
comprehensive conservation strategies to promote healthy and resilient coastal ecosystems and
communities.

Although upper MCEs (�60 m) typically include hard coral species generally found in shal-
low-water reefs [6], lower MCEs (>60 m) are often biologically distinct from their shallow-
water counterparts because they host species of hard corals that are not found in shallower
waters [4, 6, 8, 9]. These different hard coral species show a range of adaptations which allow
them to live in low light environments, including flattened morphologies, pigment specializa-
tion, increased heterotrophy, and lower metabolic demands [8]. In the Hawaiian archipelago,
Kahng and Kelley (2007 [9] and Rooney et al. (2010) [10] found that different species and gen-
era of MHCs dominated different depth ranges. Notably, in 50 to 75 m depths, MCEs were
dominated by dense stands of Montipora with low-relief branching and plate-like morpholo-
gies; in 75 to 130 m depths, MCEs were dominated by Leptoseris species [7] with plate-like to
foliaceous morphologies. Several environmental factors are thought to help explain this vertical
habitat partitioning, including differences among water currents, water temperature, amount
of uncolonized hard substrate and the availability of photosynthetically active radiation (PAR)
at depth [8, 9, 11, 12, 13, 14].

However, it remains unknown how these (and other environmental variables) interact to
constrain MCE and MHC distributions across horizontal and vertical space. To help begin to
fill this knowledge gap, we compiled data describing 34 environmental factors thought to be
important for identifying areas suitable for MCEs and MHCs. Maximum Entropy (MaxEnt)
modeling software [15] was used to identify the combination of key environmental drivers
explaining the spatial distributions of three MHC genera (i.e., Leptoseris,Montipora and Por-
ites) offshore of Maui in the MHI [16]. We chose to focus on Leptoseris,Montipora and Porites
because they are the three most common MHC genera offshore of Maui. MaxEnt was also used
develop spatial predictions of probability of occurrence for each genus (using genera
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prevalence derived from in situ presence/absence data). The models and spatial predictions
provide insight into the environmental conditions driving MHC distributions.

Methods

Study Area
The focus of this study was a 30 to 150 m deep area between the islands of Maui, Lāna‘i,
Moloka‘i, and Kaho‘olawe, including the ‘Au‘au Channel (Fig 1). Fig 2 shows an overview of
the process used to predict the locations of MHCs in this study area. This study area was cho-
sen because it lies within the boundaries of a marine protected area, which is considering
expanding its scope to include conserving and managing MCEs. It also encompassed the
majority of georeferenced information about the presence and absence of MHCs. Several phys-
ical conditions are thought to make the study area an ideal place for MHCs including having
consistently good water quality and clarity because it: (1) is flushed by tidal currents semi-diur-
nally [17]; (2) has lower amounts of rainfall and sediment run-off from the nearby land [18];
and (3) is protected from seasonally strong wind and wave energy [19]. Combined, these
weather and oceanographic conditions create patches of comparatively warm, calm, and clear
waters that remain relatively stable through time.

Mapping the Locations of Mesophotic Hard Corals
The locations of MHCs were compiled from underwater video and photos collected in the
study area during fourteen research missions from November 25, 2001 to September 26, 2011.
The field surveys were conducted in State of Hawaii waters, and no specific permissions were
required (Hawaii, Department of Land and Natural Resources HAR 13–91 and 13–95). The
surveys did not involve endangered or protected species. The bounding coordinates for the
area surveyed are: top = 21.064 N, bottom = 20.548 N, right = -156.29 W, left = -157.094 W. A

Fig 1. Study area. This map shows the study site offshore of Maui, Hawai‘i.

doi:10.1371/journal.pone.0130285.g001
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Towed Optical Assessment Device (TOAD) camera sled was deployed in 2008 to 2011 and a
RCV-150 Remotely Operated Vehicle (ROV) was deployed in 2001, 2002, 2004 and 2006 to
2011 [8, 20]. The positional uncertainty associated with the TOAD and ROV videos range
from ± 15 to 100 m. Video data from these fourteen research missions were classified every 30
seconds at 5 points spaced equidistantly in a horizontal line across the monitor screen [8, 20].
Substrate type, living biological cover (including hard coral, crustose coralline algae, macroal-
gae and soft corals) and other benthic characteristics were recorded in the classification pro-
cess. The resulting 17,282 georeferenced records were merged into a single shapefile, and
projected into a common coordinate system (i.e., NAD 83 UTM 4 N). We removed 1,516
points because they were unclassified (n = 1,443) or denoted the locations of corals other than
Montipora, Leptoseris and Porites (n = 73). These deletions left 15,766 points in total, of which
14,439 points identified locations whereMontipora, Leptoseris and Porites were absent. The
remaining 1,327 points denoting presence were used to develop genus-specific coral distribu-
tion models forMontipora, Leptoseris and Porites. These points were collected between 2004
and 2010.

Mapping the Environmental Conditions
Several physical factors are thought to influence MHC distributions, including water tempera-
ture (at depth), currents (at depth), hard substrate complexity and availability, water chemistry

Fig 2. Diagram of modeling process. Steps used to develop MaxEnt models and spatial predictions forMontipora, Leptoseris and Porites.

doi:10.1371/journal.pone.0130285.g002
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(i.e., pH, aragonite saturation, alkalinity), and the availability of PAR (at depth) due to turbidity
and cloud cover [8, 10, 20, 21, 22, 23, 24, 25]. Given their suspected importance, many of these
physical factors were included in this modeling effort as predictor variables. Table 1 describes
each of the predictor variables included in this study. Information about water chemistry,
water temperature (at depth) and variation in cloud cover were excluded because data for these

Table 1. Descriptions of environmental predictors. This table describes the environmental predictors used to develop the MaxEnt models forMontipora,
Leptoseris and Porites. These predictors were compiled from a variety of sources, including the National Oceanic and Atmospheric Administration (NOAA),
University of Hawai‘i, Bishop Museum, Hawai‘i Department of Aquatic Resources (DAR), U.S. Fish andWildlife Service (USFWS), the National Aeronautics
and Space Administration (NASA) and the U.S. Geological Survey (USGS).

Variable Data Description Units Definition Spatial
Resolution

Temporal
Resolution

Data Source #
Predictors

Predictors
Used to
Develop
Models

Mesophotic
hard corals
(MHC)

1,327 presences
+ 14,439
absences = 15,766
points

N/A Presence/absence of hard
corals (by genus) between
30 and 150 m in depth. The
spatial uncertainty of the
location is ± 15 to 100 m.

Mean nearest
neighbor
distance of
points = 13 m;
Mean height
above seafloor
unknown

09/09/2004–
07/17/2010

NOAA,
University of
Hawai‘i,
Bishop
Museum,
USFWS,
State of
Hawai‘i DAR

- -

Seafloor
Complexity

Aspect* Degrees Compass direction of
maximum slope calculated
using ArcGIS's Aspect tool.

10x10, 25x25*
and 200x200* m

N/A USGS,
University of
Hawai‘i

1 x 3 = 3 (3) Aspect at
10x10, 25x25,
200x200 m

Depth* Meters Water depth of seafloor. 10x10, 25x25*
and 200x200* m

N/A USGS,
University of
Hawai‘i

1 x 3 = 3 (3) Depth at
10x10, 25x25,
200x200 m

Bathymetric Position
Index (BPI)*

Unitless— =
depressions,
0 = flat, + =
ridges

Measure of where a
reference location is
(vertically) compared to
locations surrounding it.
BPI was calculated using
the Benthic Terrain Modeler
[27].

10x10, 25x25*
and 200x200* m

N/A USGS,
University of
Hawai‘i

1 x 3 = 3 (3) BPI at
10x10, 25x25,
200x200 m

Curvature (General)* 1/100 meters
— = concave +
= convex

Measure of convexity/
concavity of the landscape
calculated using ArcGIS's
Curvature tool.

10x10, 25x25*
and 200x200* m

N/A USGS,
University of
Hawai‘i

1 x 3 = 3 (3) General
Curvature at
10x10, 25x25,
200x200 m

Curvature (Plan/
Cross-sectional)*

1/100 meters
— = concave +
= convex

Curvature of the surface
perpendicular to the
direction of maximum slope
calculated using ArcGIS's
Curvature tool.

10x10, 25x25*
and 200x200* m

N/A USGS,
University of
Hawai‘i

1 x 3 = 3 (3) Plan
Curvature at
10x10, 25x25,
200x200 m

Curvature (Profile/
Longitudinal)*

1/100 meters
— = concave +
= convex

Curvature of the surface
parallel to the direction of
maximum slope calculated
using ArcGIS's Curvature
tool.

10x10, 25x25*
and 200x200* m

N/A USGS,
University of
Hawai‘i

1 x 3 = 3 (3) Profile
Curvature at
10x10, 25x25,
200x200 m

Rugosity* Unitless Ratio of surface area to
planar area calculated
using DEM Surface Tools
[28]

10x10, 25x25*
and 200x200* m

N/A USGS,
University of
Hawai‘i

1 x 3 = 3 (3) Rugosity at
10x10, 25x25,
200x200 m

Slope* Degrees Maximum rate of slope
change calculated using
ArcGIS's Slope tool.

10x10, 25x25*
and 200x200* m

N/A USGS,
University of
Hawai‘i

1 x 3 = 3 (0) Excluded
because it
was highly
correlated with
Rugosity

Slope of Slope* Degrees of
Degrees

Maximum rate of maximum
slope change calculated
using ArcGIS's Slope tool.

10x10, 25x25*
and 200x200* m

N/A USGS,
University of
Hawai‘i

1 x 3 = 3 (3) Slope of
Slope at
10x10, 25x25,
200x200 m

(Continued)
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variables were not readily available for the study area or the time period (2004 to 2010) when
the 1,327 points used to develop MaxEnt models were collected. Measures of seafloor topo-
graphic complexity were used as a proxy for the availability of hardbottom, since a comprehen-
sive map of hard and soft seafloor sediments was also not readily available.

Using ArcGIS, each predictor was re-projected to the same coordinate system (i.e., NAD83
UTM 4 North), clipped to the same geographic extent, and saved to an ESRI ASCII (.asc) file
for use in the MaxEnt software package [15, 26]. Eight metrics describing the complexity of the
seafloor were calculated from a 10x10 m depth surface using several tools in ArcGIS [27, 28]
(Table 1). These metrics were chosen based on previous studies that suggested they were poten-
tially influential predictors of hard coral presence [29, 30, 31, 32]. The mean of these complex-
ity metrics were also computed at two additional spatial scales (i.e., inside moving circular

Table 1. (Continued)

Variable Data Description Units Definition Spatial
Resolution

Temporal
Resolution

Data
Source

# Predictors

Predictors
Used to
Develop
Models

Light
Availability

Euphotic Depth
Zone

Meters Depth of the euphotic
zone derived using the
MODIS Aqua sensor
and the Morel model.
The euphotic zone is
defined as the area
where
photosynthetically active
radiation (PAR) levels
are > 1%. PAR is the
spectral range of
sunlight (400–700 nm)
that organisms can use
during photosynthesis.

4x4 km
(Krigged
10x10 m)

2004–2010
(Grand
mean,
minimum,
maximum,
standard
deviation)

NASA 4 (2) Grand
mean &
standard
deviation

Water Temperature Sea Surface
Temperature
(SST)

Degrees Celsius Temperature
of the sea
surface during
the daytime as
measured by
MODIS Aqua
sensor.

4x4 km
(Krigged to
10x10 m)

2004–2010
(Grand
mean,
minimum,
standard
deviation)

NASA 3

(2) Grand
mean &
standard
deviation

Currents Modeled tidal
current velocity at
depth

Centimeters/
Second

Tidal current velocities
(based on seasonal
mean water
stratification) modeled
hourly and averaged
over one year.

1x1 km at 35 &
85 m depths
(Resampled
to10x10 m)

Annual
mean,
maximum,
variation in
speed

University of
Hawai‘i
[24,25]

3 x 2 = 6 (3) Mean (35
& 85 m),
variation (35
m)

Geographic Distance to
Shoreline*

Meters Distance to the
shoreline calculated
using ArcGIS Euclidean
Distance tool.

10x10, 25x25*
and 200x200*
m

N/A GIS Derived 1 x 3 = 3 (3) 10x10,
25x25,
200x200 m

Total #
Predictors

43 34

doi:10.1371/journal.pone.0130285.t001
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windows with radii of 25 and 200 m) in ArcGIS. Broad scale BPI (Bathymetric Position Index)
was calculated with the inner radius of 10 m and outer radii of 25 m and 200 m [25]. Predictors
at these different scales were included to explore the influence of spatial scale on MHC distri-
butions, since organisms typically respond to their environment at multiple spatial scales [33,
34, 35].

Since the spatial resolution of the oceanographic variables (i.e., light availability, sea surface
temperature, and tidal currents) did not match those of the complexity and geographic metrics,
additional steps were required before they could be included in the modelling process. The
tidal current surfaces were resampled from 1x1 km to 10x10 m using cubic convolution. Grand
mean, minimum, maximum and standard deviation were calculated from 2004 to 2010 for the
annual mean euphotic depth surfaces (i.e., PAR availability) and sea surface temperature (SST)
surfaces. These 4x4 km grid surfaces were converted to points, and ordinary kriging was used
to develop geostatistical predictions at 10x10 m. Table 2 describes the theoretical variograms
used to develop these geostatistical surfaces. These parameters minimized the root mean square
error of the final surfaces. Kriging was used (instead of resampling) to change the spatial reso-
lutions of the SST and light availability predictors because several nearshore data gaps existed
and needed to be filled around the islands of Maui, Lāna‘i, Moloka‘i, and Kaho‘olawe.

A total of 43 predictors were considered for inclusion in the MaxEnt modeling process. The
correlation of these 43 predictors was explored at 30 spatially independent locations using
Spearman’s Rank tests. Even though MaxEnt is fairly robust in dealing with correlated predic-
tors, nine predictors were removed from further analysis that were significantly (p�0.05) and
highly correlated (r2>0.85) with other predictors to reduce the amount of computational time
needed to create spatial predictions. Predictors calculated at coarser spatial scales (i.e., 25 x 25
and 200 x 200 m) were an exception to this rule, and were left in the analysis to explore the
influence of spatial scale on MHC distributions. The remaining 34 predictors were included in
the modeling process (Fig 3).

Predicting Mesophotic Hard Coral Distributions
MaxEnt. Maximum Entropy modeling software (MaxEnt 3.3.3e) was used to create spa-

tially explicit predictions forMontipora, Leptoseris and Porites occurrence. MaxEnt [15, 24] is a
modeling technique that predicts the distribution of organisms using presence-only data. It
makes these predictions by analyzing the distribution of environmental variables associated
with the organisms’ presence to find other areas that meet all of these environmental con-
straints (without making any assumptions about what is not known).

Even though absence data was available for this study area, MaxEnt was chosen over other
modeling approaches that use both presence and absence data for two main reasons. First, this
project and modeling approach was designed to be expanded to areas around the entire MHI.
This future expansion will require mesophotic coral data to be compiled from various plat-
forms of opportunity. It is likely that the majority of this opportunistic data will be presence-

Table 2. Kriging parameters. The input parameters used to develop 10x10 m surfaces for euphotic depth and sea surface temperature using ordinary kri-
ging. These parameters minimized the root mean square error of the final surfaces.

Variable Semi-variogram Model Nugget Range CV Root Mean Square Error

Euphotic Depth (Mean) Gaussian 5.00E-35 15,306 1.03

Euphotic Depth (Stdev) Stable 0 23,348 0.53

SST (Mean) Gaussian 0.002 69,105 0.06

SST (Stdev) Gaussian 0 7,984 0.04

doi:10.1371/journal.pone.0130285.t002
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only (or diverse datasets that will need to be standardized to presence-only), making MaxEnt a
more broadly applicable approach and a more likely candidate for future MHCmodeling
efforts in the MHI.

In addition, MaxEnt compares favorably to presence and absence modeling techniques
including generalized linear models (GLM), generalized additive models (GAM), boosted
regression trees (BRT), genetic algorithm for rule-set prediction (GARP), multivariate adaptive
regression splines (MARS) and environmental niche factor analysis (ENFA) [15, 23, 36, 37, 38,
39]. Specifically, Elith et al. (2006) [36] found that MaxEnt was in the highest preforming
group [in terms of Area Under the Curve (AUC), correlation and Cohen’s kappa] when pre-
dicting the distribution of terrestrial species in several locations around the world. These results

Fig 3. Maps of environmental predictors. These maps show the 10x10 m predictors that were used to develop MaxEnt models and spatial predictions for
Montipora, Leptoseris and Porites. Asterisks denote predictors that were included at multiple spatial scales. The red inset boxes show fine-scale detail for
predictors that are difficult to see.

doi:10.1371/journal.pone.0130285.g003
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suggest that MaxEnt is capable of producing spatial predictions that are (at the very least) as
accurate as some of the more complicated, data and labor intensive modeling techniques
available.

Model development. Ten MaxEnt models (i.e., model ensembles) were developed using
randomly selected subsets of data for each of the MHC genera (i.e.,Montipora, Leptoseris and
Porites). Multiple models were created for each genus to avoid fitting one model too closely to
the data, and to better understand and quantify the stability of, and uncertainty associated
with, MaxEnt’s variable selection and predictive performance. The same 34 predictors and
input parameters were used for all the models. The majority of MaxEnt’s input parameters
were left at their default value, since few guidelines exist for optimizing these parameters [15,
24], and even fewer exist for optimizing these parameters for modeling MHCs [23, 40]. The
few model parameters that were changed include: Random seed (on), Replicated
run = Subsample, Random test percentage (i.e., out-of-bag test points) = 50%, Replicates = 10,
Maximum iterations = 1,000, Regularization = 1 and Default prevalence = 0.038, 0.039 and
0.007 (forMontipora, Leptoseris and Porites, respectively). The prevalence of each genus was
derived from the in situ presence/absence data. The “random seed” refers to the randomly cho-
sen starting point used to subset the data for model training and cross validation. A randomly
chosen starting point and random 50% of the data were used to reduce the likelihood of a single
starting point (or set of points) biasing the overall model results. The regularization value was
determined heuristically, and values = 0.0001, 0.01, 0.1, 1, 2.5 and 5 were tested. A regulariza-
tion value of 1 was chosen because it produced models with the highest test AUCs. Response
curves, jackknife analysis, and spatial predictions were developed for each model replicate.
These results were averaged by genus to produce the final MaxEnt performance metrics and
spatial predictions forMontipora, Leptoseris and Porites.

The spatial predictions output by MaxEnt denote the average probability of occurrence val-
ues for each genus (since the prevalence of each genus was estimated within the study area).
Probability of occurrence denotes the statistical likelihood (between 0% and 100%) that a
genus is present at a given location. It is important to note that probability of occurrence is dif-
ferent from relative habitat suitability, which is the standard output for MaxEnt when preva-
lence of an organism is unknown. Habitat suitability describes (on a relative 0–1 scale) whether
environmental conditions in one location are similar to those at other locations where an
organism was observed. Here, the availability of presence and absence data provided an oppor-
tunity to calculate empirical prevalence for MHCs, and evaluate biases associated with MaxEnt
predictions.

Model performance. We assessed the discrimination capacity (i.e., its ability to distinguish
between classes) and reliability (i.e., the agreement between predicted and observed values) of
the models [41, 42]. Reliability of the spatial predictions was evaluated using mean absolute
error (MAE). MAE measures the average magnitude of the predictive errors (independent of
their direction). It was calculated by intersecting and subtracting each genus’ probability of
occurrence prediction replicate (with values ranging from 0 to 1) from spatially independent in
situ presence (= 1) and absence (= 0) data. The presences used to calculate MAE were the out-
of-bag (50%) test points set aside by MaxEnt before each model run. The absences used to cal-
culate MAE were set aside at the beginning of the modeling process. Spatially autocorrelated in
situ points were identified using variograms (model = spherical, nugget = 0.5, partial sill = 0.04,
and range = 107 meters), and points closer than 107 m were removed using Matlab. The abso-
lute values of these residual model errors (from the 10 model replicates) were averaged to cal-
culate the overall MAE for each final spatial prediction.

Receiver Operative Characteristic (ROC) curves were used to evaluate the discrimination
capacity of the models. ROC curves measure a model’s performance by comparing its
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sensitivity (i.e., true positive prediction rate) to its specificity (i.e., false positive prediction rate)
over the continuous range of predicted values. The area under each ROC curve (known as the
Area Under the Curve or AUC) was also calculated. AUC values ranging from 0.5 to 0.6 sug-
gest the model is no better at discriminating classes than random chance; values from 0.6 to 0.7
denote “poor”model performance; 0.7 to 0.8 denote “acceptable”model performance; 0.8 to
0.9 denote “excellent”model performance, and values greater than 0.9 denote “outstanding”
model performance [43]. ROC curves and AUCs were generated by the MaxEnt software pack-
age for each model replicate using the out-of-bag test points. Separate ROC curves and AUCs
were also generated for each model replicate from the presence and absence data (used above
to calculate MAE) in R software. AUC was calculated in two different ways because MaxEnt
uses background points rather than true absences to estimate specificity, which makes compar-
ing models for commonly found genera to relatively more rare genera difficult [15]. Back-
ground points are random samples of the full spectrum of environmental conditions in the
study area without regard to the presence or absence of an organism. The use of background
points (and not true absences) means that the maximum possible test AUC value depends on
what fraction of the study area is occupied by the species (maximum possible AUC = 1—(a/2),
where a is the fraction of grid cells occupied by the species) [44].

Spatial distribution of model uncertainty and errors. ROC curves and AUC values mea-
sure model performance but they do not describe the spatial distribution of model uncertainty
and errors [45, 46, 47]. Analyzing the spatial location and clustering of uncertainty and errors
can be important because it may offer clues about sampling bias or missing environmental
covariates that are influencing the distribution of an organism [1, 35, 47, 48, 49]. Here, pre-
dicted uncertainty was quantified for each genus by calculating the standard error among the
MaxEnt 10 model replicates. The magnitude and direction of modeling errors were quantified
from the same data used to calculate MAE. However, instead of averaging these residual errors
across the entire prediction (as was done for MAE), spatially coincident points were averaged,
and their spatial distribution and clustering were evaluated using cluster and outlier analysis in
ArcGIS’s Spatial Analyst Toolbox. This analysis identified statistically significant spatial clus-
ters of high values, low values, and outliers using inverse distance weighting squared and the
Anselin Local Moran's I statistic.

Contribution of predictor variables. Two metrics (i.e., jackknife AUC analysis and single
variable response curves) were used to quantify the contribution of each environmental vari-
able to each model and its performance. These two metrics were evaluated together to deter-
mine which variable(s) were the most influential predictors and at what thresholds. Response
curves were used to describe how probability of occurrence values changed in the context of a
hypothetical single-variable model. Jackknife analysis measures the contribution of each vari-
able to a model’s gain (goodness of fit), and its impact on test AUC values using only one vari-
able at a time, and excluding one variable at a time. This process of inclusion and exclusion
isolates the contribution of each predictor variable from the other variables, and describes
whether a particular variable improves or degrades the performance of a model. A large drop
in AUC indicates that the model is heavily dependent on that particular variable, while a small
drop indicates that the predictor does not contribute much new information (i.e. the informa-
tion it contains is redundant) [50]. The predictors with the top six single variable jackknife test
AUC values are discussed here.
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Results

Spatial Predictions of Occurrence
Montipora, Leptoseris and Porites were observed in 3.8% (i.e., 605/15,766), 3.9% (i.e., 617/
15,766) and 0.67% (i.e., 105/15,766) of the field observations, respectively. The average test
AUCs calculated by MaxEnt and separately in R indicated ‘excellent to outstanding’ overall
performance for theMontipora, Leptoseris and Poritesmodels (Table 3).Montipora and Lepto-
seris were predicted to be rare throughout the study area with spatial predictions denoting a
0–1% chance of it occurring in 96.3% and 89.6% of the study area. Porites was predicted to be
even less common and less likely to occur thanMontipora and Leptoseris, with spatial predic-
tions denoting a 0–1% chance of it occurring in 99.5% of the study area. ForMontipora, proba-
bilities for the remaining 3.7% of the study area ranged from 1.1% to 38.4%, with highest
probabilities concentrated in four areas in the middle of the ‘Au‘au Channel. These areas
include near the Lahaina Roads Basin, ~4.2 km off Launiupoko Point, and ~3.1 km off Hekili
Point and ~3.7 km off Papawai Point (Fig 4). For Leptoseris, probabilities for the remaining
10.4% were higher, ranging from 1.1% to 60.7%, and were concentrated in the south/central
region of the ‘Au‘au Channel off of Hekili and Papawai Points (Fig 4). High probabilities were
also found along many edges of drowned basins and ridge tops with a hotspot located at 20°46’
N, 156°41’ S. For Porites, probabilities for the remaining 0.5% of the study area ranged from
1.1% to 67.3% and were focused region along the eastern side of the ‘Au‘au Channel. These
regions included areas between Lahaina Roads Basin and Hekili Point with the main hotspot
south of the Lahaina Pinnacles (Fig 4).

Spatial Prediction Uncertainty & Error
The average uncertainty (i.e., standard error) for theMontipora, Leptoseris and Porites predic-
tions were 0.02%, 0.05% and 0.006%, respectively. The highest uncertainties for each genus
were roughly co-located with its highest probability of occurrence values (Fig 5). The MAE for
theMontipora, Leptoseris and Porites predictions were 16.7% ±0.28, 17.6% ±0.28 and 3.73%
±0.16, respectively. For each genus, there was relative agreement among the majority (i.e.,
70.8%, 69.3% and 92.5%) of observed and predicted probabilities of occurrence values (i.e., dif-
ference between them was<MAE). For the remaining records, 0.0%, 0.1% and 0.3% were pos-
itive and�MAE, and 29.4%, 30.6% and 7.2% were negative and�MAE forMontipora,
Leptoseris and Porites, respectively. These numbers indicate that MaxEnt more frequently
under-predicted (versus over-predicted) the probability of occurrence for all three genera
(Fig 5).

ForMontipora, it is interesting to note that most of the errors�MAE were located in a sin-
gle area of high probability of occurrence, south of Hekili Point. The cluster analysis
highlighted this spatial pattern by identifying six significant negative error clusters and two

Table 3. Test AUC values forMontipora, Leptoseris and Porites. Test AUC values computed by MaxEnt using the 50% out-of-bag presences and back-
ground points, and a separate AUC computation in R using true absences and the same 50% out-of-bag presences used by MaxEnt.

Montipora Test AUC Leptoseris Test AUC Porites Test AUC

Data Used Average Std.
Error

Average Std.
Error

Average Std.
Error

Presences &
Background Points

0.97 (adjusted maximum = 1-
[0.04/2] = 0.98)

0.002 0.93 (adjusted maximum = 1-
[0.10/2] = 0.95

0.002 0.95 (adjusted maximum = 1-
[0.005/2] = 0.99)

0.004

Presences &
Absences

0.95 0.002 0.89 0.003 0.93 0.006

doi:10.1371/journal.pone.0130285.t003
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Fig 4. Observed and predicted MHC distributions. The maps on the left show the location ofMontipora, Leptoseris and Porites corals, and the maps on
the right show the predicted distributions ofMontipora, Leptoseris and Porites habitats. These predicted distributions were created by spatially averaging the
10 model replicates for each genus.

doi:10.1371/journal.pone.0130285.g004
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Fig 5. Uncertainty and error associated with MHC predictions. These maps show the spatial uncertainty (i.e., standard error) and spatial errors (i.e.,
difference between observed and predicted values) associated withMontipora, Leptoseris and Porites spatial predictions averaged across the 10 model
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significant positive error outliers. One large (�MAE), negative outlier was also northeast of
Lāna‘i. For Leptoseris, the cluster analysis identified approximately 15 significant negative error
clusters south west of Hekili Point. These significant clusters were located between 75 and 110
m depths on the edge of steep slopes, which dropped off into basins to the southwest. Large
(�MAE) negative error clusters were also located offshore of Papawai Point. For Porites, the
cluster analysis identified five significant, large (�MAE) negative error clusters between Hana-
ka‘ō‘ō and Launiupoko Points. Four of these clusters were located in areas of low (<1%) proba-
bility of occurrence. The remaining cluster was located in an area with higher (1.1%-5%)
probabilities of occurrence adjacent to one small (�MAE) positive error cluster south of
Lahaina Pinnacles.

Defining Suitable Habitats
Montipora, Leptoseris and Porites shared several variables that were influential in their models
(as identified through the jackknife tests) (Fig 6). Shared, important variables included depth,
distance from shore, euphotic depth (mean and standard deviation) and SST (mean and stan-
dard deviation). Slope of slope and rugosity (at 200 m) were also important for predicting Lep-
toseris. That being said, the Montipora, Leptoseris or Poritesmodels were not dependent upon

replicates. Errors were divided into classes based on the MAE, and summarized by ROV transect for display purposes. Each +/- symbol on the map denotes
the mean error along a single ROV transect.

doi:10.1371/journal.pone.0130285.g005

Fig 6. Jackknife analysis. Jacknife analysis forMontipora, Leptoseris and Porites showing the mean AUC when a single variable is used to develop a
model (red, brown and green bars) or excluded from the modeling process (gray bars). This process of inclusion and exclusion isolates the contribution of
each predictor variable from the other variables, and describes whether a particular variable improves or degrades the performance of a model. The AUC
value for a single variable model is depicted inside the bars. The error bars denote one standard error (based on 10 model iterations).

doi:10.1371/journal.pone.0130285.g006
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any single variable (or spatial scale), since their test AUCs did not decline dramatically when
single variables were iteratively excluded from the modelling process. Comparisons across the
genera offer some insight into how they partition the space differently in the study region.
Notably, peak probability of occurrence values were shallowest for Porites (~47 m), deeper for
Montipora (~60 m), and covered a broad, but deeper range of depths for Leptoseris (~85 m)
(Fig 7A). Peak probability of occurrence values for distance to shore were shortest for Porites
(~2.4 km), slightly farther offshore forMontipora (~4 km), and furthest offshore for Leptoseris
(peaks at ~6 and ~9 km) (Fig 7B). It is important to note that no records were collected closer
than 2.4 km from shore. In contrast, to depth and distance to shore, mean and variance of
euphotic depth and mean SST showed broadly overlapping occurrences for all 3 genera. Lepto-
seris had the deepest peak at euphotic depth of 106 m, followed byMontipora at 103 m and
Porites at 99 m (Fig 7C). Leptoseris showed peak probabilities in areas with lower variability in

Fig 7. Single variable response curves. The single response curves for the six most important environmental variables for predicting the occurrence of
Montipora, Leptoseris and Porites: a) depth (meters), b) distance from shoreline (meters), c) mean euphotic depth (meters), d) standard deviation of euphotic
depth (meters), e) mean sea surface temperature (°C), and f) standard deviation of sea surface temperature (°C).

doi:10.1371/journal.pone.0130285.g007

Mesophotic Hard Corals Offshore of Maui

PLOS ONE | DOI:10.1371/journal.pone.0130285 July 8, 2015 15 / 24



euphotic depth than Porites andMontipora (Fig 7D).Montipora showed peak probabilities in
areas with lower SST and higher variation of SST than Porites or Leptoseris (Fig 7E and 7F).

Comparing model results can be misleading when based on organisms with markedly differ-
ing prevalence. Fortunately, all the models created here were for comparatively rare biota (i.e.,
occurred in<4% of the records). Qualitative evaluation revealed that the three genera were
divided in space, and occupied somewhat different parts of the study area. Probabilities for all
three genera were only>0% in a small area south of the Lahaina Pinnacles. Outside the area of
overlap, Porites was predicted to be dominant 2–3 km off of Lahaina,Montipora 3–4 km south
of Hekili Point, and Leptoseris along the ridges 6–9 km offshore around Hekili Point. Many
areas are evident where the three genera occupy adjacent, but not overlapping bands of suitable
habitat. This highlights habitat partitioning among genera along environmental gradients on
the ridges and basin walls in the study area.

Discussion & Conclusions
MaxEnt produced reliable spatial predictions forMontipora, Leptoseris, and Porites as mea-
sured by the high average test AUC values. The three spatial predictions developed show that
highly probable locations for MHCs are both relatively rare and distributed unevenly in the
study area. No single environmental variable tested here fully explained why suitable MHC
habitat was clustered in certain locations. However, six predictors were identified as being
important for predicting probable habitat across all of the MaxEnt models. Probability of
occurrence values for each coral model overlapped across the range of predictor values exam-
ined here, although peak probabilities occurred at different values of the predictors for different
groups. The more detailed discussion (below) about these predictors, the differences and simi-
larities in peak probabilities among genera, and their influence on habitat predictions by geo-
graphic region offers insight into the factors governing distribution of MCEs.

Montipora
The majority of probable habitat forMontipora is predicted to be on the southeastern side of
the ‘Au‘au Channel between Lahaina Roads Basin and Papawai Point. This southeastern area is
characterized by relatively warmer (at the surface), moderately deep, and less turbid waters
than parts of the north, west, and southwest ‘Au‘au Channel and the study area as a whole.
Euphotic depth, which is a proxy for both PAR and turbidity, also appears to be less variable in
this southeastern location than other parts of the study area, remaining consistent (> 1% PAR
depth within ± 2.3 m) over a six year period from 2004 to 2010. Water temperature measure-
ments taken near this area in 2001 indicate that this layer of warm water (around 26°C) may be
fairly stable down to about 60 m, after which it drops to around 23°C at 111 m [51]. The varia-
tion in temperature profiles down to 60 m is similar to the temperature variation seen in the
SST imagery (i.e., ± 0.9°C). These numbers and patterns suggest that SST may be a proxy for
warmer water down to approximately 60 m in depth, although more measurements are needed
to better characterize the influence of internal waves, tides, and seasons on the spatial and tem-
poral heterogeneity of water temperature at depth [52, 53]. These environmental trends suggest
that on the wholeMontipora prefers relatively warmer, moderately deep waters that remain
optically clear and stable through time. These habitat preferences are highlighted by the jack-
knife results, which show the highest probability of occurrence values at moderate depths (~59
m) and in warmer (26.15 to 26.22° C at the surface), clearer (>1% PAR depth of 103 m)
waters.

These depth preferences and thresholds are in close agreement with the findings of Rooney
et al. (2010) [8], which reported thatMontipora was one of the most common coral genera
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found in 50 to 80 m of water. However, these thresholds differ from the results reported by
Kahng and Kelley (2007) [10], which foundMontipora to be rare in the 50 to 80 m range. It is
interesting to note that the ROV transects in the ‘Au‘au Channel analyzed by Kahng and Kelley
did not intersect with the spatial distribution of highly probableMontipora habitat predicted
by MaxEnt. This geographic mismatch suggests that Kahng and Kelley may have sampled in
areas with relatively poor ambient conditions forMontipora or a different range of environ-
mental variables than were evaluated in this study. It is very likely that the environmental
predictor variables (especially depth, distance to shore and SST) are proxies for other environ-
mental conditions favorable toMontipora recruitment and growth. For example, depth and
distance to shore are most likely correlated proxies for light availability, since generally speak-
ing, the seafloor becomes deeper and the water becomes less turbid further from land. Kleypas
et al. 1999 [54] found this same positive correlation between PAR and distance from shore
when comparing nearly 1,000 reef locations from around the world. High SST may also be a
proxy for calm, lower turbidity waters. The area of highest SST overlaps with the relatively
windless, lower rainfall, lower wave energy, leeward side of west Maui.

Leptoseris
The majority of probable habitat for Leptoseris is predicted to be in the southern part of the
‘Au‘au Channel close to where it meets with the Kealaikahiki Channel. This area has similarly
warm water temperatures as in the eastern and southeastern areas discussed above. However
unlike these two areas, the southern part of the ‘Au‘au Channel had deeper waters on average.
It also has the most consistently warm (26.2°C) and clear waters (> 1% PAR depth within ± 2
m) compared to any other part of the ‘Au‘au Channel or study area as a whole. Also, the water
temperature at depth most likely remains within the tolerated range for Leptoseris (i.e.,>
19°C) down to 120 m in this area [10, 51, 54]. Collectively, these environmental trends suggest
that Leptoseris prefers slightly deeper, substantially less turbid and less variable waters (in
terms of turbidity and, possibly, temperature) thanMontipora. These habitat preferences are
quantified by the jackknife results and response curves, which show the highest probability of
occurrence values for Leptoseris occurred at the deepest depths (84 m), in the least turbid
(>1% PAR depth at 106 m) and least variable waters (>1% PAR within ± 2.1m and SST
±0.33°C) in comparison to the other genera models.

These depth preferences and thresholds are in close agreement with the findings of Kahng
et al. 2010 [9], which reported that Leptoseris corals were commonly found in the deepest parts
of the mesophotic zone across the Pacific. They also agree with those of Rooney et al. 2010 [8]
and Kahng and Kelley (2007) [10], which documented that the hard substrata between 80 to 90
m was dominated by aggregations of Leptoseris. However, Leptoseris has been recorded at
deeper depths in the MHI, including at 131 m and 153 m near Penguin Banks and Kealakekua
Bay, respectively [10, 55]. Leptoseris’s presence at these exceptionally deep depths suggest that
temperature is not a limiting factor for its growth in Hawai‘i [10, 54], even though temperature
at the water surface was identified as an important predictor in this modeling process. There-
fore, SST (especially standard deviation) is most likely a proxy for another environmental vari-
able describing the stability of the water conditions in the area. The availability of PAR was
identified as one of the least variable conditions by MaxEnt. Leptoseris’ preference for less tur-
bid and more optically stable waters also aligns with the findings of Kühlmann 1983 [56],
which showed that corals with flat morphologies (like Leptoseris) are particularly sensitive to
sedimentation [9]. Flat morphologies are also less effective for passive suspension feeding than
the branching structure of many azooxanthellate corals [9]. Despite potentially being less effec-
tive at heterotrophy and more susceptible to sedimentation, the flat, plate-like morphologies
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and dark brown pigmentation of Leptoseris and other mesophotic corals have advantages,
including being specialized for capturing the maximum amount of light [9, 10].

In addition to being found most commonly at the deepest depths, Leptoseris’ highest proba-
bility of occurrence values were located the furthest from shore (6.1 km), likely because dis-
tance to shore is correlated with and a relatively good proxy for increasing depth, decreasing
turbidity and reduced variability in PAR [54]. In addition to these six predictors, rugosity and
slope of slope (both at 200 m scales) were also important for predicting Leptoseris distributions.
None of the other MaxEnt models identified seafloor complexity as being important. The
inclusion of these morphometrics suggests that some other variable associated with high com-
plexity (specifically available hardbottom) may also play a role in determining the distribution
of Leptoseris. This pattern is in keeping with Rooney et al. 2010 [8], which noted that Leptoseris
andMontipora both inhabited mainly hardbottom habitat (although they were also present in
some softbottom areas).

Porites
The majority of probable habitat for Porites is predicted to be on the eastern side of the ‘Au‘au
Channel between Hanaka‘ō‘ō and Launiupoko Point. Similar to the southeastern area
described above, this area is characterized by relatively warmer, slightly shallower and less tur-
bid waters than found in other parts of the study area. Based on the temperature profiles
reported above [51], temperature most likely remains within the tolerated range for some spe-
cies of Porites down to over 100 m in this area [10, 54]. It is also important to note that turbid-
ity levels vary slightly more (> 1% PAR depth within ± 2.7 m) and SST varied slightly less
(±0.33°C) in this area than in locations further to the south where the ‘Au‘au and Kealaikahiki
Channels meet. Collectively, these environmental trends suggest that Porites prefers shallower
waters thanMontipora and Leptoseris. These depth preferences agree with the findings of Roo-
ney et al. 2010 [8], which reported that depths from 30 to 50 m were dominated by several shal-
low water coral species, including Porites lobata. They also agree with the results of Grigg 2006
[51], which reported that while Porites lobata can grow at depths up to 100 m, it is more com-
mon to find this species at depths shallower than 50 m.

Given these consistent depth preferences, it is likely that Porites is limited by the availability
of PAR more so than by temperature [9, 51] or by any other predictor included in this study.
This relationship is not new, as the depth limit of reef building corals has long been associated
with decreasing PAR [54, 57, 58]. Even though Porites distributions may primarily be light-lim-
ited, the single variable response curve for standard deviation of euphotic depth (Fig 7D) also
suggests that Porites can tolerate slightly more turbid (although still exceptionally clear) waters
than eitherMontipora or Leptoseris. This increased resiliency agrees with the findings of Piniak
2007 [59], who reported that Porites lobata experienced less tissue damage from sedimentation
than didMontipora capitata because of its more rugose morphology. These habitat preferences
are quantified by the response curves, which show the highest probability values for Porites
occurred at comparatively shallow depths (43 m; Fig 7A) and in the most turbid (>1% PAR
depth at 99 m; Fig 7C) and most variable waters (>1% PAR varied by 2.6 m; Fig 7D) compared
to any of the other models. Porites’ highest probability values were also located the closest to
shore (2.4 km), likely because distances closer to shore are correlated with and a relatively good
proxy for decreasing depth, increasing turbidity and increasing variability in PAR.

Montipora, Leptoseris and Porites: Model Uncertainty and Error
Based on the above model outputs, it is clear that the distributions ofMontipora, Leptoseris
and Porites were not fully explained by the modeling process, given the high uncertainties and
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large (�MAE) spatially clustered errors and outliers in some locations. The areas south of
Hekili Point, southwest of Hekili Point and between Hanaka‘ō‘ō and Launiupoko Points are
notable places where high probabilities of occurrence, high uncertainty, and large (�MAE),
spatially clustered errors and outliers co-occurred for theMontipora, Leptoseris and Porites
predictions, respectively. The high values for these model metrics (i.e., probability of occur-
rence, uncertainty and error) most likely co-occurred because MaxEnt identified overlapping,
but slightly different environmental envelopes for each model replicate. Different, overlapping
envelopes were defined because different, randomly chosen training datasets were used to
develop each model replicate used in the model ensemble. These envelopes may also have var-
ied because of the positional uncertainty (± 15–100 m) associated with the training points.
Such uncertainty means that, in some cases, the location of the training points were off by a
maximum of 10 raster pixels (based on 10x10 m raster predictors). These two sources of varia-
tion and their impact on MaxEnt’s environmental envelope underscores the utility of a model-
ling ensemble approach, since this type of spatially-explicit uncertainty can help scientists and
resource managers put confidence limits on their research and regulatory decisions and plan-
ning processes.

In addition differences among training datasets and model replicates, the high values for
these model metrics also most likely co-occurred becauseMontipora, Leptoseris and Porites are
responding to or impacted by ecological factors (e.g., disease, competition or recruitment),
anthropogenic impacts (e.g., impacts from land based sources of pollution) or other environ-
mental conditions (e.g., availability of uncolonized substrate) at finer temporal or spatial scales.
It is difficult to identify which of these conditions (or combinations of conditions) best explain
these anomalous areas. However, forMontipora, further analysis of the SST standard deviation
surface showed that SST varied more widely south of Hekili Point (i.e., by about 0.5°C) than in
any other location in the study area with high probabilities of occurrence forMontipora. This
higher variation is also reflected in the single variable response curve forMontipora, which
shows a spike in probability of occurrence that is approximately 0.2°C higher than Leptoseris or
Porites (Fig 7F). While these temperature fluctuations are comparatively small [22], they may
stressMontipora corals in this location. Thermal stress has been shown to impair coral growth
[60], and to make corals more susceptible to other impacts from disease, human uses, and cli-
mate change [61, 62, 63, 64].

For Leptoseris, further analysis of the ROV data used for this modeling exercise showed that
the area southwest of Hekili Point had higher (>50%) amounts of hardbottom than in any
other location in the study area with high probabilities of occurrence for Leptoseris. Of these
hardbottom areas, many were classified as rubble in the ROV data, particularly those closer to
shore. These nearshore, hardbottom areas were not visible in the depth surface and seafloor
complexity derivatives because rubble does not have a lot of relief (at the 10x10 m scale). How-
ever, rubble still provides important habitat for coral recruitment, and may help explain why
MaxEnt under-predicted Leptoseris in this location. Including acoustic backscatter and/or an
accurate map denoting hardbottom and softbottom locations may help capture additional,
low-relief hardbottom areas, and help improve future Leptoseris predictions.

Lastly, for Porites, further analysis of the mean current surfaces showed that these errors
roughly follow a boundary (vertically and horizontally) where water velocities change. This
trend is also indirectly captured by the jackknife results for Porites, which identified the mean
current predictor (at 85 m depth) as having a relatively high AUC (AUC = 0.75) compared to
Montipora or Leptoseris (AUC = 0.69). Given that water velocities may be changing, this
boundary may also denote the division between environments that are exposed to different
amounts of wave energy and near bed shear stress. Wave exposure in particular has been iden-
tified as a major factor influencing the distribution and composition of coral reefs in Hawai‘i
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[65, 66, 67, 68, 69], and Porites species have been shown to be more abundant in environments
with low-to-intermediate wave energies [70]. Including predictors denoting wave energy, bot-
tom water velocity and/or near bed shear stress could help improve the spatial prediction for
Porites in the future [70].

Study Area Overall
Several physical conditions help make our study area (specifically the southeastern portion) an
ideal place for MHCs [19, 66]. These conditions include having consistently good water clarity
and being protected from strong wind and wave energy. Good water clarity is important
because it affects the amount of PAR available at depth, while protection from strong wind and
wave energy creates conditions favorable to faster rates of coral accretion [65, 71, 72]. Com-
bined, these oceanographic and weather conditions create patches of comparatively warm,
calm, clear waters that remain relatively consistent through time.

Although there were some slight differences among the MaxEnt models, these three envi-
ronmental conditions (i.e., warm, clear and consistent water conditions) along with depth were
the most important variables for predicting the distribution ofMontipora, Leptoseris, and Por-
ites. This trend may help explain why the distributions ofMontipora, Leptoseris, and Porites
fell primarily between Hanaka‘ō‘ō and Papawai Points, which appear to have the least variable
local weather and water conditions in the study area. This environmental stability occurs for a
number of reasons, including being wholly sheltered by the western Maui Mountains from the
damaging North Pacific waves and strong trade winds. Shielding from strong winds and large
waves may explain why a consistently warm mass of water sits between these two points almost
year round. Water quality conditions appear to be equally stable in this location. This is proba-
bly due to a number of factors, including relatively lower amounts of rainfall and relatively
lower amounts of urban and agricultural development in the adjacent coastal watersheds.

While these regional environmental conditions seem to explain mesophotic coral distribu-
tions very well at the scales examined in this study, it is also highly likely that several other bio-
logical and ecological factors, including predation, inter/intra-species competition and
recruitment, have and are playing a significant role in shaping distributions, especially at finer
spatial and temporal scales [1, 33, 73]. For example, Spalding 2012 [74] suggests that abundant
macroalgae (e.g., Caulerpa filicoides, Distromium species) may compete withMontipora for
space, and may have a measurable impact onMontipora’s spatial distribution in the ‘Au‘au
Channel. Kahng and Grigg 2005 [75] reported that the introduced species, Carijoa riisei, com-
petes with native black corals in the ‘Au‘au Channel. It is possible Carijoa riisei also competes
with and impacts the distribution of other benthic organisms nearby. That being said, the influ-
ence of these biological and ecological forces on the spatial heterogeneity and species diversity
of mesophotic corals is still poorly understood, and may change based on species, depth, loca-
tion and scale. More research, especially in situ ecological manipulations, are needed to exam-
ine how these forces shape mesophotic coral community assemblages. This growing body of
information can then be used iteratively to improve model specification in the future.

Conclusions
Although significant research questions and data gaps remain, the MaxEnt predictive models
created here performed well and can help researchers and managers explore questions related
to spatial ecology and place-based conservation in the absence of timely, in situ information
about MHCs. These models quantitatively showed that mesophotic coral distributions are con-
centrated between Hanaka‘ō‘ō and Papawai Points in the ‘Au‘au Channel because this area has
some of the least variable environmental conditions in the study region, hosting warmer,
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clearer, and calmer water conditions almost year round. Although mesophotic corals are also
responding to other environmental and ecological cues beyond the ones discussed here, these
mathematic and spatial patterns suggest that other areas in the MHI with local environmental
conditions similar to those between Hanaka‘ō‘ō and Papawai Points may also host higher con-
centrations of MHCs. Future research efforts should focus on identifying and systematically
sampling locations with similar environmental conditions. Understanding the broader geo-
graphic distributions of mesophotic corals will help resource managers to effectively target eco-
logically important areas for conservation [76].
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