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Theory of rapid force spectroscopy
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In dynamic force spectroscopy, single (bio-)molecular bonds are actively broken to assess

their range and strength. At low loading rates, the experimentally measured statistical

distributions of rupture forces can be analysed using Kramers’ theory of spontaneous

unbinding. The essentially deterministic unbinding events induced by the extreme forces

employed to speed up full-scale molecular simulations have been interpreted in mechanical

terms, instead. Here we start from a rigorous probabilistic model of bond dynamics to

develop a unified systematic theory that provides exact closed-form expressions for the

rupture force distributions and mean unbinding forces, for slow and fast loading protocols.

Comparing them with Brownian dynamics simulations, we find them to work well also at

intermediate pulling forces. This renders them an ideal companion to Bayesian methods of

data analysis, yielding an accurate tool for analysing and comparing force spectroscopy data

from a wide range of experiments and simulations.
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I
n the realm of soft matter, structural stability often hinges on
delicate intermolecular bonds that are easily broken apart
through external forces. The resulting malleability is char-

acteristic of biological matter on practically all scales from single
proteins1–3 over mesoscale cellular scaffold structures4 and
individual cells5 to whole tissues6. Thanks to the development
of a variety of nanomanipulation methods, intermolecular
interactions can nowadays be investigated on a single-molecule
level using a number of techniques commonly referred to as
‘dynamic force spectroscopy’7–12, allowing the experimentalist to
isolate single binding sites and probe their strength by quickly
and reliably inducing hundreds or thousands of unbinding events.
The wealth of stochastic unbinding trajectories thus obtained is
routinely analysed through a schematic but effective description
of molecular bonds in terms of the attraction range xb and the
activation energy E of the binding potential. To extract
quantitatively useful predictions from this simple model, any
theory of unbinding kinetics needs to provide a reasonable
approximation to the underlying molecular dynamics. At the
relatively low loading rates that were conventionally realized in
experiments, any transient effects arising from the finite
relaxation time of the bond itself can be neglected. This has
allowed for the development of a range of analytical theories of
forced bond breaking that greatly facilitate the analysis and
interpretation of dynamic force spectroscopy data13–18. In
contrast, detailed molecular dynamics simulations2 usually
operate in the opposite limit of very high loading rates, where
bond breaking becomes essentially deterministic19. Recently, also
single-molecule assays are increasingly resolving the hitherto
elusive rapid dynamics of bond breaking and accompanying
macromolecular conformational changes, for example, in protein
unfolding upon rapid loading20, or taut DNA recoil21 and
supercoiling22. This provides a strong incentive to also push the
existing theories to higher loading rates. Moreover, in spite of the
experimental progress and improved computational abilities23,
matching the loading rates used in experimental and simulation
studies remains challenging20, making the development of a
unified analytical theory of dynamic force spectroscopy, covering
both fast and slow loading rates, all the more desirable.

To this end, we derive in the following a probabilistic theory of
dynamic force spectroscopy in the spirit of Bell24, Evans &
Ritchie13 and Dudko, Hummer & Szabo14 that becomes exact at
high external forces (or, equivalently, high loading rates) and
reduces to established results at low loading rates. We provide
explicit, closed-form analytical results for the most common
experimental loading protocols. They agree with exact numerical
simulations of the microscopic bond model for all loading rates,
save for a narrow region at the crossover from diffusion-
dominated to deterministic dynamics. This makes them an ideal
companion to Bayesian methods25 and a natural choice for the
analysis of spectroscopy experiments and simulations alike.
Moreover, we show that these results constitute the lowest-
order approximation to a rigorous mathematical formulation of
escape kinetics, which opens the way of their systematic extension
to higher precision.

Results
Theory. Molecular binding and unbinding transitions lie at the
heart of every chemical reaction and have thus been thoroughly
investigated long before the advent of single-molecule manip-
ulation techniques. In 1940, Kramers laid down a comprehensive,
analytically tractable theory of chemical reaction rates26 that has
since then become synonymous with reaction rate theory and can
still be considered state of the art for most applications. The basic
idea is that a molecular bond corresponds to a local free energy

minimum and thus remains stable under weak perturbations. Its
thermal fluctuations can be represented, within an effective
picture, by those of a Brownian particle trapped in some one-
dimensional binding potential U(x), with the ‘reaction coordinate’
x typically corresponding to the distance between two binding
partners. The function U(x) should have a stable minimum at
x¼ 0, surrounded by a region of attraction extending to some
finite coordinate xb40 beyond which U(x) either vanishes or
turns repulsive. As soon as the particle has left the basin of
attraction, x(t)4xb, the bond can be considered broken.
Excluding the possibility of quantum-mechanical tunnelling,
which is negligible on a macromolecular scale, the dissociation
process is a tug of war between thermal and potential forces. The
thermal forces drive the bond coordinate x diffusively out of the
bound state and the deterministic force F(x)¼ �U0(x) drags it
back to the origin. On a probabilistic level, the dissociation rate of
an ensemble of initially bound particles can then be deduced from
an associated Fokker–Planck equation27, a partial differential
equation for the time-dependent distribution of particles that is
mathematically exact, but cannot be solved in closed form
without the help of further simplifying assumptions. In most
cases of practical interest, the activation energy E is large
compared with the thermal energy scale, E44kBT. Dissociation
then becomes a rare event, leaving sufficient time for any
transients caused by the fast microscopic bond dynamics to die
out. In the steady-state situation that ensues, an accurate
analytical solution of the Fokker–Planck equation is possible26,
yielding a time-independent unbinding rate k that scales
exponentially in the activation energy, kpexp(�E/kBT).

This provides a natural starting point for the analysis of force-
induced bond rupture. An external pulling force F acting along
the reaction coordinate x ‘tilts’ the internal binding potential U,
which lowers the effective free energy barrier and increases the
unbinding rate. Within the Bell model24, the reaction distance xb

is assumed to remain fixed under the external force, such that
the force-dependent unbinding rate immediately follows as
k(F)¼ k(0)exp(Fxb/kBT). However, reaction rates are not
measured directly in single-molecule experiments, where actual
unbinding times may follow a broad statistical distribution. Also,
external forces are usually not constant in time. In a typical
experiment, molecular bonds are pulled apart using retracting
actuators such as AFM cantilevers that exhibit Hookean
stretching behaviour and therefore exert forces growing linearly
with their retraction distance. Assuming an external force F(t)
that steadily increases in time, Evans & Ritchie13 derived from the
force-dependent unbinding rate k(F) a general expression for the
experimentally measured distribution p(F) of rupture forces,

pðFÞ ¼ kðFÞ
_FðFÞ

exp �
Z F

0

kðf Þ
_Fðf Þ

df

� �
: ð1Þ

Here, the force dependence of the loading rate _F is optional,
but can be used to take into account nonlinear loading protocols
or nonlinearly elastic force transducers such as polymer
linkers28,29. For a power-law binding potential and a cusp-
shaped binding potential of finite range, Evans & Ritchie were
furthermore able to improve upon the phenomenological Bell
model by accounting for force-induced shifts in the reaction
distance xb. Focusing on a linearly increasing external force,
Dudko, Hummer & Szabo later derived analytic results for cusp-
shaped19 and linear-cubic30 binding potentials. These could
finally be condensed into a uniform expression for the rupture
force distribution and its first two moments that contained a new
fit parameter to smoothly interpolate between different potential
shapes14,15. A recent crop of theories further fleshed out the free
energy landscape by taking into account the force fluctuations
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pertaining to stiff actuators16–18 (that is, actuators with a spring
constant k\E=x2

b). These theories nowadays provide the
standard tools used to convert rupture force histograms
obtained from force spectroscopy experiments into estimates of
the underlying binding potentials.

From a dynamical point of view, these approaches still rely on a
strong separation between the short timescale of internal bond
dynamics and the long timescale of bond dissociation. Although
this approximation is well justified in the original Kramers
theory26 of a force-free bond, it is bound to break down as soon
as the external loading becomes rapid enough to effectively flatten
out the energy barrier before rupture occurs. In that case,
unbinding becomes essentially deterministic as the bond is swept
away ballistically by the external force. As shown by Hummer &
Szabo19 for a harmonic cusp potential, one can accurately predict
the mean rupture force at high loading rates by neglecting
stochastic fluctuations altogether and afterwards obtain a global
approximation to the mean rupture force by manually
interpolating between the high-force result and a conventional
theory that accounts for the low-rate regime.

In the following, we derive a probabilistic theory of forced
unbinding that includes fluctuations even at high pulling speeds
and becomes exact both in the limits of high and low loading
rates. Already the leading order results of this theory surpass
previous work; moreover, it provides a systematic route for
further improvement. We start with the same cusp-shaped
binding potential as Hummer & Szabo,

UðxÞ ¼ Eðx=xbÞ2; xoxb

�1; otherwise

�
: ð2Þ

Formally, the potential becomes negatively infinite at x¼ xb,
corresponding to an absorbing boundary condition (thus
ignoring rebinding events, which quickly become negligible
under external load1). Although it can be argued14 that a
linear-cubic potential constitutes a more faithful approximation
to many real binding potentials, we will show in the following
that the practical difference between both models is often
insignificant; what we lose in generality is more than made up
for by what we gain in terms of analytical tractability.

To set the stage, we first summarize some basic definitions. The
time-dependent probability W(x, t)dx to find any particle in the
ensemble between x and xþ dx follows from the Fokker–Planck
equation27

@tWðx; tÞ ¼ D@2
x � @xAðx; tÞ

� �
Wðx; tÞ; ð3aÞ

Wðxb; tÞ � 0; ð3bÞ

Aðx; tÞ � � D
kBT

@xVðx; tÞþ 2
E

x2
b

x

� �
: ð3cÞ

Here, D denotes the diffusion coefficient and V(x, t) an external
pulling force potential that may either represent some prescribed
force protocol F(t)� � qxV(x, t) or a moving external spring, if
V(x, t)�k[x� y(t)]2/2. The spatially integrated distribution

SðtÞ ¼
Z xb

�1
Wðx; tÞdx ð4Þ

is the proportion of bound particles or ‘survival function’ at any
given time t. A constant survival function S(t)¼ const corre-
sponds to zero escape events and thus a vanishing unbinding rate
k¼ 0. Likewise, a positive escape rate k40 amounts to an
exponentially decaying survival function S(t)¼ S(0)exp(� kt). In
the general case, S(t) may be neither constant nor exponential,
but an arbitrarily complex function of time. However, it is always
monotonously decaying and nonnegative and thus defines a

(potentially time-dependent) generalized unbinding rate k(t),

kðtÞ ¼ � _SðtÞ=SðtÞ: ð5Þ
In principle, we could now solve equation (3a) (or an

equivalent integral formulation31,32) numerically33 to obtain the
time-dependent probability distribution W(x, t), calculate the
survival probability S(t) via equation (4) and feed the result into
equation (5) to precisely compute the unbinding rate k(t) for a
known set of model parameters (E, xb, D). This procedure is,
however, too computationally intensive for the inverse problem of
obtaining E, xb and D from experimental data. To arrive at an
analytical approximation to the unbinding rate that is quickly
evaluated on a computer, we write down a first approximation to
W by ignoring the absorbing boundary,

@tWGðx; tÞ ¼ D@2
x � @xAðx; tÞ

� �
WGðx; tÞ; ð6aÞ

WGðx! �1; tÞ ¼ 0: ð6bÞ
With the external driving potential V(x, t) in equation (3c),

which is at most parabolic, WG is strictly Gaussian for any
localized initial distribution WG(x, t¼ 0)¼ d(x� x0). It is easily
evaluated analytically,

WGðx; t jx0Þ ¼
expð� wE½x� �xðtÞ� x0CðtÞ�2

kBTx2
b½1�C2ðtÞ� Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pkBTx2
b½1�C2ðtÞ�=wE

p ; ð7Þ

where �x tð Þ follows from a purely deterministic equation of
motion,

�xð0Þ ¼ 0;
kBT

D
d�xðtÞ

dt
¼ � 2E

x2
b

�x� @xVðx; tÞ j x¼�x; ð8Þ

C(t) denotes the positional autocorrelation function,

CðtÞ ¼ e� 2wDEt=kBTx2
b ; ð9Þ

and w the relative change in the system’s overall spring constant
introduced by the external actuator; that is, w¼ 1 for external
fields or soft springs k � E=x2

b


 �
, w ¼ 1þ kx2

b=2E otherwise.
Going back to the time-dependent escape rate equation (5), we

note that the computation of _S(t) via equation (4) would be
needlessly complicated. Since escape events can only take place at
the absorbing boundary xb, the outflow of bound particles into
the unbound state is equivalent to the probability flux j(xb, t)¼
� _S(t) across xb. It only depends on local properties of the
probability distribution W, via the continuity equation

jðxb; tÞ ¼ Aðxb; tÞWðxb; tÞ�D@xWðx; tÞ j x¼xb : ð10Þ
Replacing W by WG in equation (10) defines the corresponding

approximate flux jG, survival function SG ¼ 1�
R t

0 jG xb; t0ð Þdt0,
and escape rate kG(t)¼ jG(xb, t)/SG(t).

Note that the Gaussian expressions become asymptotically
exact for pulling forces greater than the critical force needed to
flatten out the energy barrier, F44Fc¼ 2E/xb (corresponding to
high loading rates _F 44DFc=x2

b in a constant-rate experiment),
due to an essentially ballistic decay of the bound state. Intuitively,
the probability density WG does not have time to ‘sense’ (and
react to) the presence of the absorbing boundary before it is
pulled across xb by the deterministic drift term A(x, t)WG(x, t).
For the escape rate, we thus find the exact asymptotic limit

kðtÞ �_F!1 kGðtÞ ¼ jGðxb; tÞ=SGðtÞ: ð11Þ
The situation is slightly more complicated for slow loading,

where deterministic driving and stochastic dynamics interfere.
Consider first the limiting case of a freely diffusing particle, that
is, if the binding potential, the external forcing and the absorbing
boundary condition are neglected. There is a purely diffusive net
flux jdiff : ¼ �DW 0

G xb; tð Þ at the position xb, half of which is
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randomly backscattered (see Fig. 1). It is suggestive that inserting
a perfect absorber at x¼ xb would suppress the backscattering
and therefore double the diffusive flux across xb. Adding the
deterministic drift back in, we get

jðxb; tÞ �_F!0
j�ðxb; tÞ ð12aÞ

j�ðxb; tÞ � Aðxb; tÞWGðxb; tÞ� 2D@xWGðx; tÞ j x¼xb : ð12bÞ

This expression for the flux can indeed be understood as the
first-order approximation to an exact theory, as discussed in the
Methods section. There we also show that j�(xb, t) provides an
asymptotically exact expression for the escape rate at low loading
rates,

kðtÞ �_F!0
j�ðxb; tÞ=1: ð13Þ

We now observe that the additional factor of two in front of
the diffusive component in j� compared with jG is irrelevant
for the limit of large pulling rates, which is dominated by
the deterministic drift term A(xb, t)WG(xb, t), suggesting that
equation (11) still holds with jG replaced by j�. Moreover, note
that for high energy barriers E44kBT and low pulling rates
_F ooDFc=x2

b, the Gaussian survival probability SG(t) remains
close to 1 since WG extends only negligibly beyond xb for all
relevant times t, that is,

1� SGðtÞ ¼
Z 1

xb

WGðx; tÞdx ¼ O e�ðE�
_F txbÞ=ðkBTÞ

� 
� 1:

ð14Þ

Our two asymptotic results can therefore be combined into the
unified approximation

kðtÞ 	 j�ðxb; tÞ
SGðtÞ

; ð15Þ

which is exact both in the limits of low and high loading rates.
Together with equation (1), this yields the rupture force
distribution

pðFÞ 	 1
_FðFÞ

d
dt

exp �
Z t

0

j�ðxb; t0Þ
SGðt0Þ

dt0
� �

: ð16Þ

Evaluating p(F) in its general form equation (16) still requires
some computational effort, since it depends in a potentially
complicated way on experimental details such as the driving
protocol, the initial distribution of particles within the bound
state and the stiffness of the force actuator. However, for the
common case of a linearly increasing pulling force F¼ _Ft (exerted
by an external field or a soft spring with stiffness k� E=x2

b) we

obtain the closed analytical result

pðFÞ 	 k0

_F
1þ F

Fc
� 2�xðFÞ

xb

� �
eEð1� ½1� �xðFÞ=xb�2Þ=kBT


exp � kBTk0

_Fxb
eEð1� ½1� F=Fc�2Þ=kBT � 1
h i� �

;

ð17Þ

where k0 is the associated force-free Kramers rate for the cusp
potential,

k0 ¼
2DE

kBTx2
b

ffiffiffiffiffiffiffiffiffiffiffi
E

pkBT

r
e�E=kBT ; ð18Þ

and �x Fð Þ is the force-dependent coordinate of the maximum of
WG(x,F),

�xðFÞ ¼ xb
F
Fc
� kBT _Fxb

DF2
c

1� e� 2DEF=kBT _Fx2
b

h i� �
: ð19Þ

In the limit of small loading rates we obtain �xðFÞ � Fxb=Fc
and equation (17) reduces to the expression derived by Dudko,
Hummer & Szabo (DHS) in ref. 14 for n¼ 1/2. In the Methods
section, we provide a compilation of analogous results for stiff
force transducers, arbitrary driving protocols or arbitrary initial
conditions W(x, t¼ 0) (Table 1), as well as a closed expression for
the mean rupture force /FS.

Some remarks about the comparison of data and theory may be
useful, here. First, note that, in any case, a comparison of data and
theory for the distribution p(F) is substantially more informative
than merely fitting /FS. Yet, every analytical approximation to
the true rupture force distribution depends on at least three
different parameters (binding energy E, attraction range xb and
diffusivity D). Direct fits of experimentally obtained rupture force
histograms are therefore prone to get trapped in some local
optimum in parameter space, thus often missing the best possible
solution. One way to obtain more reliable results is to first
aggregate several data sets obtained under different loading rates
and subsequently perform a ‘global’ fit using a single set of
parameters only. Conventionally, this is done by either perform-
ing a least-squares fit of several histograms at once or by fitting
the mean rupture force as a function of loading rate13–15,19. Both
approaches can be improved upon systematically using a
maximum-likelihood approach25 that, instead of optimizing for
some arbitrary measure of fit quality (such as the squared
residual), employs Bayesian analysis to select those model
parameters most likely to underlie the given rupture force
histograms. Compared with conventional fitting methods, the
maximum-likelihood approach straightforwardly extends to
heterogeneous data sets encompassing different linker
stiffnesses or loading protocols. Moreover, it has proven
significantly more robust with respect to small ensemble sizes25,
a potentially crucial advantage in the analysis of real-world

W (x, t )

xb

jdrift

jdiff.
j

a

W (x, t )

xb

jdrift

2jdiff.
j *

b

Figure 1 | Flux into an absorber at xb. (a), Given some statistical distribution W(x, t) of particles, these particles can be driven across the position xb, either

ballistically by external forces (jdrift) or diffusively through random thermal noise (jdiff.). (b) Inserting an absorber at xb effectively eliminates diffusive

backscattering, thus doubling the diffusive contribution to the resultant probability flux j� into xb.
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experiments. In general, the larger the range of applicability of a
given theory of force spectroscopy, the better the results obtained
using the maximum-likelihood approach. This fact should work
to our advantage, as our model covers a much wider range of
loading rates than the predominant Bell–Evans ‘standard
model’13 and its recent extensions by DHS14 and others16–18.
In the remainder and in the Supplementary Note 1, we illustrate
the data fitting procedure with some examples and provide some
practical tools and protocols for optimized data analysis.

Application to simulation data. Although our theory becomes
exact in the limits of high and low external loading rates, the
quality of our approximation at finite loading rates is a priori
unclear. To assess the practical applicability of our method, we
have thus generated synthetic rupture force distributions using
Brownian Dynamics simulations of the underlying microscopic
bond model (see Methods). As Fig. 2 exemplifies, our theory is as
good as the approach by Hummer & Szabo19 in capturing the
mean rupture force /FS as a function of loading rate. Moreover,
whereas the Hummer–Szabo model builds on an athermal
treatment of the underlying microscopic equation of motion,
we fully account for thermal fluctuations. These can be significant
even within the ‘ballistic’ regime _F4DFc=x2

b, as Fig. 3 and the
experimental data by Rico et al.20 show. Hence, our approach
allows us to perform a complete and systematic Bayesian analysis
(see Methods and ref. 25) of rupture force histograms (as opposed
to mean rupture forces), thus making full use of the available
experimental data. As apparent from Fig. 3, our approximation
still breaks down at intermediate loading rates, because, in our

formalism, we do not actually absorb particles as they cross the
absorbing boundary at xb but merely count them. After leaving
the potential well, they build up a ‘phantom population’ that may
later produce an unphysical backflow into the bound state. In
principle, this deficiency could be rectified, at least for the cusp
potential, by extending the systematic integral equation approach
outlined in the Methods to higher orders. Yet, the range of
applicability of equation (16) already covers the vast majority of
unbinding events. By simply truncating p(F) after its first zero
crossing, we obtain an analytical expression for the rupture force
distribution that works well at all loading rates, except for a
narrow range close to a critical value _Fc ¼ DFc=x2

b.
Although we find the derivation of an analytical, global

approximation to the rupture force distribution p(F) satisfying in
itself, its practical utility lies first and foremost in the accurate and
efficient analysis of experimental unbinding data. To estimate
how well our model stacks up against the prevailing methods of
data analysis, we have thus analysed numerically obtained rupture
force histograms, see Supplementary Fig. 1. We considered both
the cusp-shaped potential and a linear-cubic binding potential
(Supplementary Figs 2 and 3), using local and global (maximum-
likelihood) fits both of equation (16) and of the rupture force
distributions derived by DHS14 and Maitra & Arya17 (as well as a
‘cusp-optimized’ counterpart to their results, detailed in
Supplementary Note 2) for soft and stiff linkers, respectively.
Furthermore, we emulated conventional experimental procedures
by fitting the mean rupture force F, using both the analytical
expressions derived by Friddle15, associated to the DHS-model14,
and Maitra & Arya17, as well as the numerical interpolation
formula derived by Hummer & Szabo19. In the Supplementary
Note 1, the interested reader will find a comprehensive discussion
of all these approaches, the gist of which is as follows. At high
loading rates, unsurprisingly, our theory proves superior to
existing probabilistic theories13,14,16,17. More importantly,
however, the combination of the maximum-likelihood analysis
and our globally valid approximation is powerful enough to
compete with the best conventional models even for a linear-
cubic binding potential while requiring neither prior knowledge
of the potential shape nor additional fit parameters. The only
other global model to date, the numerical interpolation formula
obtained by Hummer & Szabo, yields similarly good results as our
own approach if supplied with sufficient data, although the
increased computational cost of numerical integration leads to
longer fitting times. Using a smaller range of loading rates (that is,
3–6 decades in _F instead of 12), the higher information content of
our full-histogram description can produce significantly better
results. Moreover, as our approach inherits the greater generality
and robustness of the Bayesian maximum-likelihood analysis, this
gap is bound to widen with small ensemble sizes or heterogeneous
data sets. Since the maximum-likelihood method is somewhat
more difficult to implement in practice than traditional methods,
we wrote (and provide for free use) a ready-made Mathematica
notebook that covers some of the most common force
spectroscopy setups, see Supplementary Data 1.

Discussion
Our theory provides an analytically tractable generic model of
dynamic force spectroscopy that reproduces previously known,
accurate results14,17 at low loading rates and improves upon the
results derived by Hummer & Szabo for high loading rates19 by
including stochastic fluctuations. It provides excellent results
also at intermediate loading rates, thus constituting an ideal
companion to Bayesian methods of data analysis. Apart from
serving as a systematic and convenient replacement for current
theories of force spectroscopy, our approach may prove crucial to
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Figure 2 | Mean rupture force /FS as a function of loading rate. Circles:

/FS as determined from our numerical simulations (see Fig. 3). Crosses:

best DHS15 fit (E¼ 9.49
 kBT, xb¼ 1.01 nm, D¼ 574 nm2 s� 1). Triangles:

best Hummer–Szabo19 fit (E¼ 10.2
 kBT, xb¼ 1.0 nm, D¼ 1015 nm2 s� 1).

Squares: /FS determined from p(F) (see Methods section), using the fit

parameters obtained in Fig. 3. Pentagons: asymptotic analytical

approximation equation (40) to /FS, using the fit parameters obtained in

Fig. 3. Inset shows the same data in double-logarithmic coordinates. The

mean rupture force converges onto the Hummer–Szabo19 asymptote _F1/2 at

large loading rates, _F � DFc=x2
b, and onto the logarithmic DHS asymptote

/FSB[ln _F]1/2 (ref. 14) at intermediate loading rates, kBTk0=xb� _F�
DFc=x2

b (dashed red lines, shifted upwards for better visibility). In the limit
_F-0, external forces are too small to induce rupture, yielding as the

measured rupture force the force at the time of spontaneous unbinding,

/FSB _F/k0. For our choice of system parameters, the best currently

available experimental setup20 would already be able to access the ballistic

regime where /FS increases with _F1/2.
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the analysis of future high-speed force spectroscopy setups and
full-scale MD simulations. Finally, we note that at low enough
loading rates, the effect of a polymeric force transducer onto the
resultant rupture force distributions can be approximated by
choosing F(t) and _F(t) accordingly28,29. At higher loading rates,
the dynamics of force propagation within the polymer21,34,35 may
become relevant, which could be an interesting subject for future
theoretical developments based on our theory.

Methods
Alternative derivation of equation (12b). The (non-Gaussian) probability dis-
tribution function W(x, t) is, in the presence of an absorbing boundary at x¼ xb, in
general not analytically tractable. However, it is related to its Gaussian counterpart
WG(x, t) in a simple manner32,33,

Wðx; tÞ ¼WGðx; tÞ�
Z t

0
WGðx; t jxb; tÞjðxb; tÞdt; ð20aÞ

Wðx � xb; tÞ ¼ 0; ð20bÞ
where j(x, t) is the associated probability flux, satisfying the continuity equation

@Wðx; tÞ
@t

¼ � @jðx; tÞ
@x

; ð21aÞ

with the boundary conditions W(x, t)|x-�N¼W(xb, t)¼ 0. The Gaussian
distribution WG(x, t) and flux jG(x, t) also satisfy the continuity equation (21a) for
WG(x, t)|x-±N¼ 0. Alternatively36, the absorbing boundary condition in
equation (20b) can be interpreted as a sink term s(x, t)o0 8t, resulting in the
modified equation

@Wðx; tÞ
@t

¼ � @jðx; tÞ
@x

þ sðx; tÞ; ð21bÞ

where W(x, t)|x-±N¼ 0. Using the fact that the flux vanishes at infinity,
j(x-�N, t)¼ 0, we integrate equation (21a) to obtain

@

@t

Z xb

�1
Wðy; tÞdy ¼ � jðxb; tÞ; ð22Þ

or equivalently, _S(t)¼ � j(xb, t).
Taking the time derivative of equation (20a) gives

@Wðx; tÞ
@t

¼20að Þ @WGðx; tÞ
@t

� d
dt

Z t

0
WGðx; t jxb; tÞjðxb; tÞdt

� � @jGðx; tÞ
@x

þ
Z t

0

@jGðx; t jxbtÞ
@x

jðxb; tÞdt

� WGðx; t jxb; tÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼dðx� xbÞ

jðxb; tÞ;

ð23Þ

which can be compared with equation (21a), leading to

@jðx; tÞ
@x

¼ @jGðx; tÞ
@x

�
Z t

0

@jGðx; t jxb; tÞ
@x

jðxb; tÞdtþ dðx� xbÞjðxb; tÞ: ð24Þ

Inserting this expression into equation (21b) and then integrating over the interval
(�N, xb] results in

jðxb; tÞ ¼
ð22Þ � @

@t

Z xb

�1
Wðy; tÞdy

¼ð21bÞ
jGðxb; tÞ�

Z t

0
jGðxb; t jxb; tÞjðxb; tÞdt

þ 1
2

jðxb; tÞ�
Z xb

�1
sðy; tÞdy:

ð25Þ

We now want to determine the sink term, s(x,t). We shall therefore make the
ansatz

sðx; tÞ ¼ � 2gðtÞWðx; tÞdðx� xbÞ; ð26Þ

which, by introducing the effective flux c(xb, t)¼ jG(xb, t)þ g(t)WG(x, t), reduces
equation (25) to

jðxb; tÞ ¼ 2cðxb; tÞ� 2
Z t

0
cðxb; t jxb; tÞjðxb; tÞdt ð27Þ

Equation (27) was originally derived by Buonocore et al. in ref. 37, where it was
noted that the function g(t) can be uniquely determined using

lim
t0!t

cðxb; t jxb; t
0Þ ¼ 0; ð28Þ

a criterion that follows from the fact that for all t,

WGðx; t j xb; tÞ ¼ dðx� xbÞ: ð29Þ

Solving equation (28), we obtain g(t)¼ �A(xb, t)/2 (ref. 38) and thus

cðxb; tÞ ¼ 1
2

Aðxb; tÞWGðxb; tÞ�D
@WGðx; tÞ

@x

��� x¼xb : ð30Þ

Formally, equation (27) can be solved iteratively,

jðxb; tÞ ¼2cðxb; tÞ� 4
Z t

0
cðxb; t jxb; t1Þcðxb; t1Þdt1 � . . .

�ð� 2Þnþ 1
Z t

0
cðxb; t jxb; t1Þ

Z t1

0
cðxb; t1 jxb; t2Þ



Z tn� 1

0
cðxb; tn� 1 jxb; tnÞjðxb; tnÞdtn . . . dt2dt1;

ð31Þ

where 0otnotn� 1o?ot1ot and j(xb, tn) vanishes as n-N. Truncating the
above result after the first term yields a first-order approximation j0(xb, t) to the
flux that coincides with equation (12b),

jðxb; tÞ 	 j0ðxb; tÞ � 2cðxb; tÞ
¼ Aðxb; tÞWGðxb; tÞ� 2D@xWGðx; tÞ j x¼xb

¼ j�ðxb; tÞ:
ð32Þ

Asymptotic exactness at low loading rates. Our escape rate k(F) and rupture
force distribution p(F) both reduce to the results of DHS (equations 3 and 4 in
ref. 14 for n¼ 1/2), in the limit _F-0. The flux j�(xb, F) in equation (12b) is a sum
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F
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Figure 3 | Analytical theory compared with simulations. Using a single set of model parameters, our theory (equation (17), solid lines) provides an

accurate global approximation to both slow (a) and fast (c) external force protocols (as compared with the intramolecular relaxation timescale, x2
b=D ¼

1 ms in our case), apart from a narrow range (b) close to a critical loading rate ( _FcE105 pN s� 1 for our choice of parameters). The ‘experimental’ rupture

force histograms have been generated by direct stochastic integration (see Methods section), using E¼ 10
 kBT, T¼ 300 K, xb¼ 1 nm, D¼ 1,000 nm2 s� 1

and _F¼ 1y1011 pN s� 1. Our best-fit parameters obtained with equation (17) are E¼ 10.15
 kBT, xb¼0.98 nm, D¼976 nm2 s� 1. Since the mean

rupture force varies by orders of magnitude at large loading rates, we use double-logarithmic scaling for _F4107 pN s� 1 (c).
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of the Gaussian flux jG xb; Fð Þ ¼ A xb; Fð Þ�D@x½ �WG x; Fð Þjx¼xb
and the diffusive

flux jdiff : xb; Fð Þ ¼ �D@xWG x; Fð Þjx¼xb
. Due to their asymptotic behaviour,

jGðxb; FÞ
WGðxb; FÞ �

Oð _Fx2
b=DFcÞ; _F�DFc=x2

b
DbF; otherwise

�
; ð33aÞ

jdiff :ðxb; FÞ
WGðxb; FÞ �

wDbFcð1� F=FcÞ; _F�DFc=x2
b

wDbFc; otherwise

�
; ð33bÞ

with Fc¼ 2E/xb and F(t) defined according to equation (53) for each limit,
respectively, the diffusive flux dominates over the Gaussian flux at low loading
rates. Using the expressions found in Table 1, we can determine the escape rate
under the assumption that S(F)E1 for _F-0,

kðFÞ j _F�DFc=x2
b
	 jdiff ðxb; FÞ j _F�DFc=x2

b

� k0w3=2 1� F
Fc

� �
ebE½1� wð1� F=FcÞ2 �;

ð34Þ

where k0 denotes the Kramers rate (equation 18). For w¼ 1 (that is, an external
field or a soft spring, k � E=x2

b) the rate above coincides with equation 3 in ref. 14
for n¼ 1/2. For an external spring we have w ¼ 1þkx2

b=2E and obtain equation
(3-S) of the Supplementary Note 2. Similarly, for _F�DFc=x2

b it can be shown that
p(F) reduces to equation 4 in ref. 14 for n¼ 1/2 in the case of an external field
(F(t)¼ _Ft) and to equation (4-S) for springs (y(t)¼ _yt), respectively.

Mean rupture force. To compute the mean rupture force /FS shown in Fig. 2,
we have eliminated the spurious zero crossings of p(F) at intermediate loading rates
_F � DFc=x2

b by setting

p�ðFÞ ¼ pðFÞ; pðFÞ40
0; otherwise

�
ð35Þ

and computed from p�(F) the mean rupture force via

Fh i ¼
R1

0 Fp�ðFÞdFR1
0 p�ðFÞdF

: ð36Þ

Alternatively, we can (for constant _F and m¼ 1) provide a rough analytical
estimate that is exact in the limits of small and large loading rates, respectively,

Fh i ¼
Z 1

0
fpðf Þdf 	 hFi _F�DFc=x2

b
þhFi _F�DFc=x2

b
: ð37Þ

For large loading rates the mean rupture force evaluates to

Fh i _F�DFc=x2
b
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pwE _Fxb

2D

s
e� wbE=2
 1þ 1

wbE

� �
I1=4

wbE
2

� �
þ I� 1=4

wbE
2

� ��

þ I3=4
wbE

2

� �
þ I5=4

wbE
2

� ��
	

wbE� 1

ffiffiffiffiffiffiffiffiffiffi
2 _Fxb

Db

s
þO wbEð Þ� 1
 �

;

ð38aÞ
where In(z) is the modified Bessel function of the first kind. This result coincides
with the deterministic mean rupture force originally derived in ref. 19.

For small loading rates FooFc, we arrive at a result previously obtained from
the Bell–Evans model by Gergely et al.39,

hFi _F�DFc=x2
b
� eqX E1ðqXÞ

wbxb
: ð38bÞ

Here, q¼ exp(bE[1� w]), X¼ w1/2k0/b _Fxb and E1(z) denotes the exponential
integral,

E1ðzÞ ¼
Z 1

z
ds

e� s

s
; ð39Þ

Inserting equation (38a) and (38b) into equation (37), we thus end up with

hFi 	 eqX E1ðqXÞ
wbxb

þ

ffiffiffiffiffiffiffiffiffiffi
2 _Fxb

Db

s
: ð40Þ

It should be noted that we provide /FS only for the sake of completeness. In
fact, it is wasteful to discard experimentally measured force fluctuations instead of
directly fitting the full histograms p(F) and we thus advise against the use of
equation (40) (as much as any other available predictions for /FS) for analysing
the experimental data.

Simulations. To generate rupture force histograms across a large range of external
loading rates, we have used a stochastic Euler scheme to directly integrate the
equivalent Langevin equation for the Fokker–Planck equation (3a),

g _xðtÞ ¼ �U 0ðxÞ� @xVðx; tÞþ xðtÞ; ð41Þ
where x(t) denotes Gaussian, white noise,

xðtÞh i ¼ 0; xðtÞxðt0Þ ¼ 2kBTgdðt� t0Þ ð42Þ
and g the bond friction coefficient, g¼ kBT/D. External force is applied either
through an external field V(x,t)¼ � x _Ft (corresponding to a deterministic force)
or through a moving external spring centred at y(t)¼ _yt. Initial particle positions
are drawn from a Boltzmann distribution; once the particle position x(t) crosses xb,
we consider the bond broken and record the corresponding rupture force.
Although one might argue that prior knowledge of the barrier position xb allowed
us an unrealistic advantage over actual experiments, we note that even beyond the
critical pulling force, strong variations in the intramolecular binding potential
U around xb manifest themselves in experimentally detectable force signatures,
see Supplementary Note 3 and the accompanying Supplementary Fig. 4.

Maximum-likelihood method. Following ref. 25, the likelihood P of a given set of
parameters E, xb, D is computed as follows,

P Ff gj E; xb;Dð Þ; _F1; . . . ; _FM
� �
 �

¼
YM
i¼1

YNi

j¼1

pðFj j ðE; xb;DÞ; _FiÞ; ð43Þ

where {F} denotes the totality of rupture forces taken into consideration and

p Fj j E; xb;Dð Þ; _Fi

 �

ð44Þ
the rupture force distribution p given by equation (16), evaluated at the measured
rupture forces F¼ Fj, with model parameters (E, xb, D) and _F¼ _Fi. The logarithm
of the right-hand side is then maximized using the ‘NMaximize’ method provided
by Wolfram Mathematica. Since the maximum-likelihood method is somewhat
more involved than conventional fitting procedures, we provide a ready-made
Mathematica notebook that allows the user to analyse her data through a simple
graphical interface (Supplementary Data 1).

Nonconstant loading rates and arbitrary initial conditions. In deriving
equation (17), we have started from a localized initial condition W(x,t¼ 0)¼
d(x� x0), calculated the corresponding distribution of first passage times and in

2 (y (t ) − x )2

V (x, t )

t

F (t )

〈x 〉slow

a

0 xb

�mol. �

y (t )

〈x 〉slow

〈x 〉G
b

0 xb y (t )

〈x 〉slow

〈x 〉G
c

0 xb y (t )

�

(x/xb)2

Figure 4 | Measuring rupture forces with a stiff transducer. (a) As long

as the bond remains intact, the combined bond-transducer system can be

seen as two harmonic springs connected in series. At low pulling speeds,

positional fluctuations within the bound state translate into force

fluctuations that can be smoothed out via a time-moving average (see

inset). (b) As long as the effective free energy barrier is still large compared

with kBT, the probability distribution W(x, t) closely approximates a

Gaussian centred within the bound state and /xSslow(t) virtually coincides

with /xSG(t). (c) At high pulling forces, the static force-balance argument

a fails, as it yields an equilibrium position /xSslow(t) beyond xb. The

improved approximation /xSG(t) instead is always bounded above by xb.
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the end averaged over all possible starting points x0oxb using an equilibrium
Boltzmann distribution. This choice of initial condition should be appropriate to
most real-world scenarios, but since our theory readily extends to nonequilibrium
initial conditions (corresponding, for example, to a particle held fixed by an
auxiliary trapping potential that is turned off at t¼ 0), Table 1 provides a generic
rupture force distribution for arbitrary choices of W(x, t¼ 0)�W0(x). Importantly,
for a thermally stable, smoothly varying binding potential U the initial distribution
is generally Gaussian around the energy minimum at x¼ 0,

W0 x; 0ð Þ 	 exp � U 00 0ð ÞþV 00 0; t ¼ 0ð Þ½ �x2

2kBT

� �
; ð45Þ

but its width may deviate from the value obtained from our cusp-shaped model
potential. To better account for other types of binding potentials (such as the often
used linear-cubic potential), we can thus treat

U 00 0ð ÞþV 00 0; t ¼ 0ð Þ
U 00cusp 0ð ÞþV 00 0; t ¼ 0ð Þ ¼

U 00 0ð ÞþV 00 0; t ¼ 0ð Þ
2E=x2

b þV 00 0; t ¼ 0ð Þ � m ð46Þ

as an additional fit parameter, in analogy to the parameter n used by Dudko,
Hummer & Szabo14 (although in contrast to n, our fit parameter m is relevant only
at high loading rates _F�DFc=x2

b since at low loading rates the memory of the
initial condition fades away long before rupture occurs).

In Table 1, we also provide a generic expression for arbitrary force protocols
F(t) that do not necessarily scale linearly in time.

Stiff force transducers. For stiff transducers, that is, external spring constants
k\E=x2

b, the relation between rupture time and rupture force depends to a certain
degree on the experimental time resolution. Instead of a deterministic time-
dependent pulling force F(t), one measures then a force within the transducer that
fluctuates with the bond coordinate x(t). These fast fluctuations are typically
smoothed out using a time-moving average, which in a conventional low-speed
experiment corresponds to an equilibrium average, with respect to the time-
dependent combined potential U(x)þV(x, t) (molecular bondþ transducer),
yielding thus as the measured rupture force

F ¼ k½yðtÞ� xðtÞ�: ð47Þ
As long as the effective free energy barrier is still large compared with kBT

(which can safely be assumed in the limit of low loading rates _F�DFc=x2
b), the

actual distribution of bound particles is essentially a Gaussian centred within the
bound state. Hence, the anharmonicity of the molecular binding potential beyond
xb can be neglected and the equilibrium position /xS of bound particles follows
from a simple force-balance argument17 (see Fig. 4a),

kmol:hxislowðtÞ ¼ k½yðtÞ� xh islowðtÞ�; ð48aÞ

xh islowðtÞ ¼
kyðtÞ

kmol:þ k
; ð48bÞ

where kmol: ¼ U 00cuspð0Þ ¼ 2E=x2
b for the cusp potential. Setting w ¼ 1þ kx2

b=2E,

Table 1 | Analytical approximations to the rupture force distribution p(F).

General definitions WG x; F� x0jð Þ ¼
exp � wE x��x F�ð Þ� x0C F�ð Þ½ �2

kB Tx2
b

1�C2 F�ð Þ½ �

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkBTx2

b
1�C2 F�ð Þ½ �=wE

p , WG x; F�ð ÞwE �	 kB T
exp � wE x��x F�ð Þ½ �2

kB Tx2
b

M F�ð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkB Tx2

b
M F�ð Þ=wE

p ,

C F�ð Þ ¼ exp � 2wDE
kBTx2

b

t F�ð Þ
� 

, �x F�ð Þ ¼ xb
w

F�

Fc
� F� 0ð Þ

Fc
C F�ð Þ� 1

Fc

RF�
F� 0ð Þ

C f�ð Þdf�

" #
,

Fc ¼ 2E
xb

, M F�ð Þ ¼ 1þ 1
m � 1
h i

C2 F�ð Þ, A xb; F�ð Þ ¼ wD
kB T

F�

w � Fc

h i
, F� ¼ wF tð Þ; _F � DFc=x2

b

F tð Þ; otherwise

�

External field setup
V(x, t)¼ � F(t)x, w¼ 1

External spring setup
V(x, t)¼ k[x� y(t)]2/2, w ¼ 1þ kx2

b=2E;
F(t) defined in equation (53)

xb

F(t)

E

Arbitrary force F(t)

pðFÞ 	 � _F�ðF�Þ
_FðFÞ

@
@F� exp

�
�
R F�

F�ð0Þ

R xb

�1
W0ðyÞ Aðxb ;f

�Þ� 2D@x½ �WGðx;f� j yÞdy

_F�ðf�Þ


 1�
R f�

F�ð0Þ

R xb

�1
W0ðzÞ Aðxb ;j�Þ�D@x½ �WGðx;j� j zÞdz

_F�ðj�Þ dj�
� �� 1

df�
 ��� x¼xb

arbitrary initial conditions W0ðxÞ
E

xb

F(t)

External moving spring, centred at y(t)

E

xb

Ḟ(t)

Arbitrary force F(t)

pðFÞ 	 � _F�ðF�Þ
_FðFÞ

@
@F� exp

�
�
R F�

F�ð0Þ
Aðxb ;f

�Þ
_F�ðf�Þ þ

2wDbFc
_F�ðf�ÞMðf�Þ 1� �xðf�Þ

xb

h i� 

WGðxb; f�Þ

h
1�

R f�

F�ð0Þ
Aðxb ;j�Þ

_F�ðj�Þ þ
wDbFc

_F�ðj�ÞMðj�Þ 1� �xðj�Þ
xb

h i� 

WGðxb;j�Þdj�

i� 1
df�


equilibrium initial conditions W0ðxÞ / expð� mwUðxÞ=kBTÞ

E

xb

y(t)

External moving spring, centred at y(t)

E

xb

y(t)

Linear force ramp FðtÞ ¼ _Ft;!m¼1

equation (17)

pðFÞ 	 1
_F

2
_F�xb ½1�CðF�Þ�

wFc MðF�Þ � 2
MðF�Þ � 1
� �

Aðxb ;F
�Þ


 �
WGðxb ;F

�Þ

exp wDFc
_F�x2

b

ffiffiffiffiffiffi
wE

pkB T

p
e� wEð1� F�=wFc Þ2=kB T � e� wE=kB T
� �� �

CðF�Þ ¼ exp � 2wDE
kB T _F�x2

b

F�
� 

; �xðF�Þ ¼ xb
F�

wFc
� kBT _F�xb

w2DF2
c
½1�CðF�Þ�

h i
equilibrium initial conditions W0ðxÞ / expð� mwUðxÞ=kBTÞ

E

xb

ẏt

Linearly moving spring, centred at y(t)¼ _y(t)

We provide here closed formulas for various common experimental situations, as well as generic expressions for nonlinear loading protocols and arbitrary initial conditions. All scenarios assume a
monotonously increasing (or decreasing) external load, which allows us to unambiguously convert rupture forces into the time domain via the functional inverse t(F) of the time-dependent rupture force
F(t) (that is, for a linearly increasing force ramp F(t)¼ _Ft, t follows as t(F)¼ F/ _F). Notice that equation (17) is a special case of the bottom entry of this table for w¼ m¼ 1.
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this simplifies to

Fslow tð Þ ¼ k y tð Þ� xh islow tð Þ
� �

¼ ky tð Þ
1þk=kmol:

� ky tð Þ
w

: ð49Þ

Large external forces, on the other hand, may shift /xSslow(t) beyond xb,
rendering the static force-balance argument obviously inadequate. We obtain a
reasonable generalization of equation (48b) by instead truncating the time-
dependent approximate probability distribution WG(x, t|x0) at x¼ xb and using
that to compute /xS(t),

xh iðtÞ 	 xh iGðtÞ;

xh iGðtÞ ¼
R xb

�1 xWGðx; t jx0ÞdxR xb

�1 WGðx; t jx0Þdx

¼ �xðtÞ�
ffiffiffiffiffiffiffiffi
2=p

p
sxðtÞ

erf xb � �xðtÞ� x0CðtÞffiffi
2
p

sxðtÞ

h i
þ 1

e
� xb � �x tð Þ� x0 C tð Þð Þ2

2s2
x tð Þ ;

ð50Þ

with mean �xðtÞ, variance s2
xðtÞ and the autocorrelation function C(t) defined as

usual (note that the particle position x0 at t¼ 0 is irrelevant in the low-force limit
and is eliminated in the high-force limit by averaging over the initial distribution of
particle positions W(x0, t¼ 0)),

�xðtÞ ¼ � kxb

wFc

Z t

0

_Cðt� t0Þyðt0Þdt0; ð51aÞ

s2
xðtÞ ¼

kBTx2
b½1�C2ðtÞ�

2wE
; ð51bÞ

CðtÞ ¼ exp � 2wDEt
kBTx2

b

� �
: ð51cÞ

In the limit of low pulling forces, equation (50) reduces to the established result
equation (48b), xh iGðtÞ � �xðtÞ � xh islowðtÞ. In the high-force limit, however, an
equilibrium average is no longer warranted as a force spectroscopy setup with
sufficient time resolution should instead measure the transducer force at the very
moment of rupture,

FfastðtÞ ¼ k½yðtÞ� xb�: ð52Þ
This equation coincides with the operational definition of ‘rupture force’ used

by Hummer & Szabo19. Since in the limit of high loading rates, xb is generally
negligible compared with the transducer position y(t) at the moment of rupture
and since /xSG(t) is bound above by xb, we can use k[y(t)�/xSG(t)] as a global
approximation to the rupture force; the disadvantage of this approach is that F(t)
becomes difficult to solve for t. At intermediate pulling speeds, it may be reasonable
to perform the functional inversion numerically; in practice, however, we propose
to simply replace F(t) by its respective asymptotic limits,

FðtÞ � kyðtÞ=w; k _y�DFc=x2
b

kyðtÞ; otherwise

�
: ð53Þ
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