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Cardiovascular diseases (CVDs) still represent the primary cause of mortality worldwide.

Preclinical modeling by recapitulating human pathophysiology is fundamental to advance

the comprehension of these diseases and propose effective strategies for their

prevention, diagnosis, and treatment. In silico, in vivo, and in vitro models have been

applied to dissect many cardiovascular pathologies. Computational and bioinformatic

simulations allow developing algorithmic disease models considering all known variables

and severity degrees of disease. In vivo studies based on small or large animals have

a long tradition and largely contribute to the current treatment and management of

CVDs. In vitro investigation with two-dimensional cell culture demonstrates its suitability

to analyze the behavior of single, diseased cellular types. The introduction of induced

pluripotent stem cell technology and the application of bioengineering principles raised

the bar toward in vitro three-dimensional modeling by enabling the development of

pathological tissue equivalents. This review article intends to describe the advantages

and disadvantages of past and present modeling approaches applied to provide

insights on some of the most relevant congenital and acquired CVDs, such as rhythm

disturbances, bicuspid aortic valve, cardiac infections and autoimmunity, cardiovascular

fibrosis, atherosclerosis, and calcific aortic valve stenosis.
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INTRODUCTION

Although the tremendous improvements that modern medicine has witnessed during the
last century in terms of prevention, diagnosis, and treatment, cardiovascular diseases (CVDs)
still remain the leading cause of death worldwide. Inherited diseases (e.g., congenital rhythm
disturbances or extracellular matrix pathologies) as well as acquired forms (e.g., atherosclerosis,
thrombosis, fibrosis, infections, malignancies, or cardiomyopathies) represent some of the
cardiovascular medical challenges still lacking a complete mechanistic comprehension and/or
efficacious treatment (Figure 1) (1, 2).
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Iop Cardiovascular Disease Modeling

FIGURE 1 | Cardiovascular diseases (CVDs) may affect pediatric and adult patients with congenital (A,B) and acquired (C–F) pathologies of the heart and its system.

(A) Rhythm disturbances are caused by mutations of genes codifying, for example, for proteins pivotal in cell electrical activity. (B) Bicuspid aortic valves derive from

the fusion of two of the three cusps: genetic causes are still not clear although hemodynamic impairment is well-known. (C) Atherosclerotic arteries are frequently

reported in adult patients and are characterized by an accumulation of lipids (cholesterol), inflammatory cells, endothelial, and smooth muscle cell dysfunction with

embolization risks. (D) Stenotic heart valves display a fibrocalcific degeneration similar to atherosclerosis. (E) Fibrosis may develop in each cardiovascular structure

(myocardium, arteries, heart valves) through inflammation and increased collagen deposition. (F) Cardiac infections may originate from bacterial or viral contaminations

and might cause cell dysfunction and death, thrombi (detachment of dead cells) and other adverse sequelae.

In this scenario, disease modeling remains crucial to
understand the underlying bases and pathognomonic signs,
advance novel therapeutic treatments, and propose new
preventive actions after a careful evaluation plan. The ability

to fully replicate the specific human CVD phenotype is the
first step toward an effective modeling process. Therefore, the
availability of experimental models able to recapitulate the
pathophysiology of CVDs observed in humans is essential in this
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preliminary phase. So far, different systems have been used for
such a purpose with varying ability to reproduce CVD signs.
In particular, animal models, especially mammalian ones, have
found extensive utilization in the past and remain still the most
largely employed tool to study CVDs in the preclinical settings in
vivo. This experimental modeling can be achieved with animals
naturally suffering from a CVD. Also, transgenics and/or toxic
stimuli might be applied to artificially develop the diseased
phenotype in experimental animals through genetic and/or
epigenetic modifications (3–6). Besides animals, mathematical
and bioinformatic models have been advanced to simulate in
silico the typical phenotypic properties of a healthy heart as
well as the signs of its dysfunctioning (7, 8). Mammalian cells
and/or heterologous expression systems, based on yeasts or
Xenopus oocytes, have also found extensive use in the preclinical
research on CVDs (9, 10). More recently, pluripotent stem cell
technologies have been significantly established as tools to mimic
in vitro congenital CVDs and hypothesize new therapies (11, 12).

This review describes some examples of CVDs preclinically
studied so far by highlighting the advantages and limitations of
the used modeling systems and depicting an emerging approach,
i.e., the application of tissue-engineered constructs to simulate
more appropriately human cardiovascular pathologies (13).

IN SILICO, IN VIVO, AND IN VITRO

MODELING: OPPORTUNITIES AND
CHALLENGES FOR CVD RECAPITULATION

An ideal disease model should completely replicate human
pathophysiology with the vital goal to provide relevant scientific
knowledge to be translated into clinical practice for effective
health care management. As such, cost-effectiveness, easy
manipulation, and adequate statistical power are essential
selection criteria. CVDs are a very heterogeneous class of
congenital and acquired pathologies. They often display complex
molecular interplay, phenotype, and symptomatology by offering
many challenges to effective modeling. Several approaches are
found to be useful to reproduce CVDs based on in silico, in
vivo animal, in vitro two-dimensional (2-D) cellular, and three-
dimensional (3-D) bioengineered models (Figure 2).

In silico tools, such as mathematical and bioinformatic
simulations, are gaining more and more interest because
they provide the possibility of implementing all possible
variables playing in a disease. Bioinformatics is a scientific
field gathering together multidisciplinary approaches (biology,
medicine, chemistry, physics, engineering, etc.) to analyze data
observed experimentally and/or clinically. By this investigation,
a computational model can be built to describe the biological
phenomenon and its perturbations opportunely. In particular,
this modeling modality offers valuable insights when coupled
with -omics technologies. The computational analysis of raw
data generated from whole genome, proteome, and metabolome
evaluations has further contributed to profoundly investigate
the disease alterations of biological systems or physiological
functions. Such modeling proceeds through data mining and
machine learning (14). It is extensively used to advance

predictive CVD models by integrating information generated
across multispatial scales. For example, it may allow studying
the behavior of cardiac ion channels and other proteins
in the context of the cell membrane (often coupled with
heterologous expression systems in vitro). Moreover, it can
reconstruct the pathomechanism leading to the onset or
progression of a specific CVD, or it can contribute to clarifying
the altered dynamics of blood flow and/or pressure in a
dysfunctional cardiovascular region (15–17). Nevertheless, it
requires extensive comprehension of the considered pathology
and its events to advance their bona fide replicas through
algorithms. It needs robust computational systems to run
high-throughput simulations, and it must rely on credible
experimental verifications (18).

Modeling with mammals and also with other animals (fish,
for instance) has been the most used strategy throughout
biomedical history: relatively low costs and easy handling are
advantageous, remarkably for smaller size organisms. Thanks to
the advent of transgenesis, mice have become the mammals of
choice to study human CVDs. Haploinsufficiency, knockdown,
and insertions are only a few of the genetic mutations
introduced into the mouse’s genome for its humanization. Less
frequently, rats, hamsters, and guinea pigs, eventually genetically
engineered, are serving as models, too. The widespread use
of rodents in experimental research enabled the dissection of
the intricate molecular pathways of congenital and acquired
CVDs. However, it is noteworthy to consider that rodents display
many anatomical and physiological differences from humans
(e.g., abundant collateral circulation, particularly in the heart,
increased beating rate, reduced inflammation, absent stenosis)
(19, 20). Dissimilarities with human anatomical and metabolic
properties also exist with other animals, among which are
rabbits, dogs, cows, pigs, and seldomly non-human primates
(19, 20). These animals are more expensive and difficult to
handle due to their size, but they are phylogenetically closer
to the human species. Per se, no animal can work as a perfect
model to recapitulate human CVD. However, it offers the unique
opportunity to gain more knowledge of the peculiar pathology
in vivo in a dynamic, open system considering both the diseased
tissue (or organ) and the organism’s response.

In vitro experimental, investigational tools based on cells are
frequently applied to complement animal-based studies. They
allow focusing on a low number of variables and are principally
utilized to evaluate the contribution of a single pathway or cell
type alteration in a given pathology. In vitro cellular models
have been developed with differentiated animal and human
cells and, more recently, with induced pluripotent stem cells
(iPSCs) (21). This latter option derives from the reprogramming
to pluripotency of somatic cells, harvested by human patients
harboring a genetic disease or by healthy subjects, considered as
controls. The virtually unlimited ability of iPSCs to differentiate
in all cell types of the three germ layers has offered an
unprecedented modality to study diseases in a Petri dish. As
adult human cardiomyocytes, several cell types are often difficult
to obtain by primary culture or might show instability in vitro
(15). When dealing with primary lines, one of the significant
drawbacks of cell culturing is represented by their instability,
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FIGURE 2 | Current tools of CVDs modeling. (A) In vivo animal models, such as rodents, rabbits, and pigs, have been widely used to study CVD pathomechanisms;

however, they display many anatomical and physiological differences when compared to humans. (B) In vitro two-dimensional (2-D) cellular models based on animal

and human cells as well as on pluripotent stem cells demonstrate their validity to evaluate the altered pathway at the single-cell level. (C) In silico bioinformatic tools

gather together all the information and knowledge generated in other models, consider stratification risks, and advance new hypotheses. Reproducible validation is

compulsory. (D) In vitro 3-D bioengineered models are gaining more interest in the cardiovascular research community by offering human platforms for CVD modeling

in precision medicine settings. They might also be applied to verify the therapeutic hypotheses of in silico simulations.

together with the risk of enriching cell types not representative
of a whole heterogeneous tissue population. Regarding human
iPSC-based platforms, incomplete differentiation may fail to
uncover the involved pathways and phenotypical hallmarks of the
real pathologic settings.

The classic 2-D cellular modeling has been surpassed in
most of its limitations by 3-D. Mimicking in vitro the complex
interplay of cells and extracellular matrix can considerably
improve the ability to reproduce the typical disease signs
observed in the clinic. The application of bioengineering
principles has lately demonstrated its relevance in this context
(22). Tissue engineering and regenerative medicine stemmed as
a multidisciplinary approach to heal diseased tissues and organs
and restore homeostasis. By opportunely combining natural or
synthetic scaffolds with specific cell types, tissue engineering
aims to recreate in vitro tissue equivalents (23). The extracellular
matrix can be reproduced artificially by an assembly of synthetic
polymers or obtained naturally by manipulating human and
animal native tissues, for example, by decellularization (24, 25).
3-D bioengineered constructs reproducing the tissue or organ
of interest find increased utilization to simulate physiologic and
pathologic settings in vitro (26–28). They cannot be considered
an open system such as the entire organism. However, they might
investigate dynamic scenarios by enclosing other players, such
as biochemical stimuli, biomechanical conditioning, different
cellular types, etc., in bioreactor platforms (13).

MODELING OF CONGENITAL HEART
DISEASES

Congenital CVDs can be subdivided into two main categories,
underlying structural or non-structural defects. The bicuspid
aortic valve, catecholaminergic polymorphic ventricular
tachycardia, and arrhythmogenic disease are inherited

pathologies associated with mutations of one or more genes
pivotal for cardiovascular function.

Structural Defects
Bicuspid Aortic Valve

Epidemiology, Clinical Presentation, and Underlying Causes
Among the structural malformations affecting the heart and its
vessels, a bicuspid aortic valve (BAV) is the most commonly
observed in the general population with an overall incidence
of 1–2% and male prevalence (29, 30). It can be associated
with diseases of the aorta and other valves by being often
encountered in several complex syndromes (31). It results from
the anatomical fusion of two cusps in an otherwise normal
three-leaflet valve of the left outflow tract, consequently altering
aortic hemodynamics.

BAV presentation may differ individually in complexity
and forms (isolated or syndromic). It can also show an
inheritance pattern typical of a dominant genetic disease with
variable penetrance (31). The underlying mechanistic cause is
largely debated. From valve formation to its calcific evolution,
BAV tissues may display alterations in several pathways and
biological functions. Among the latter, abnormal endothelial
to mesenchymal transition (endMT) and neural cardiac crest
cell behavior as well as extracellular matrix dysregulation and
altered metabolism of nitric oxide have been frequently observed
(30, 32). The NOTCH family was one of the first gene
candidates to be tested as causative. Its signaling is involved
in embryonic valve formation. Any genetic perturbation affects
the extracellular matrix’s normal deposition and other functions,
such as apoptosis and bone development (33, 34). The NOTCH1
non-sense mutation is found in some BAV pedigrees. However,
its association remains with sporadic, familial cases of isolated
disease (35, 36). Linkage analyses performed on BAV syndromic
families reveal the co-involvement of other genes, such as
ACTA2, codifying for smooth muscle actin, and TGFBR 1 and
2, encoding the cell receptors of the TGF beta family (37).
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Interestingly, genetic variants of ROBO4, a gene fundamental for
endothelial cell function, have been found to segregate with BAV
in a study of two families (38). However, no etiologic knowledge
is evident yet despite the use of the most recent high-throughput
gene sequencing technologies.

Animal Models
The comprehension of BAV has been rendered challenging by
the difficulty of modeling the disease in experimental settings.
Few models are currently available to study BAV development
and progression. Nigam and Srivastava described in 2009 a higher
propensity to aortic valve cusps thickening and calcification in
NOTCH1 haploinsufficient mice (Notch 1+/−). They reported
no other BAV signs. Besides this in vivo animal model, they also
confirmed through an independent in vitro study the pro-calcific
effect of Notch pathway inhibition on sheep normal aortic valve
interstitial cells (VICs) (39).

NOTCH mutations were not the only ones disclosed for
BAV-presenting animals. In the study by Fernández et al. (40),
adult eNOS knockout mice, i.e., deficient in endothelium nitric
oxide synthase, and inbred Syrian hamsters displayed BAV with
incomplete penetrance as well as differential cusp involvement.
It was revealed that eNOS deficiency in mice induced an altered
endMT and was responsible for the fusion of the right and non-
coronary cusps. In hamsters, the left and right cusps were found
fused in association with altered neural crest cell behavior. In
another publication, the same group re-confirmed these valve
findings in the hamster and described other signs, such as cranial
defects (41).

A potentially adverse effect on crucial valvulogenic processes
was hypothesized as being caused by altered neural crest cells
(32). The haploinsufficiency of Nkx2.5, a cardiac homeobox
gene, revealed an 8-fold increased propensity toward BAV
development in the experimental model (42); yet, it has not been
described as associated with humans (43).

Generally, animal models show few of the phenotypical
signs typically observed in BAV patients. Besides the causes,
the effects have been carefully investigated by deriving BAV
calcification and stenosis animal models. Calcification frequently
occurs in BAV subjects with a chronic progression, more
rapid and adverse than in patients with tricuspid aortic
valves (44). Calcific aortic valve stenosis modeling is addressed
with more attention in the following section dedicated to
acquired diseases.

In silico Models
Stenotic consequences have also been modeled numerically
in biomechanical analyses of bicuspid valves. Finite element
studies based on in vivo magnetic resonance imaging data have
reconstructed BAV biomechanics in silico. Conti et al. revealed
abnormal cusp stress (+800%) in their analysis performed in
2010 (45). They hypothesized this as having a role in the
globally altered behavior of the diseased aortic valve. High
stress was demonstrated at the aortic wall, too, especially
in aneurysmatic conditions. In 2014, Forsell et al. compared
collagen fiber distribution and stiffness, related either to collagen
or elastin, in aneurysmatic aortic wall rings excised surgically

from patients with tricuspid and bicuspid aortic valves (46).
They revealed that only collagen-related stiffness and, hence,
strength significantly increased in BAV patients and proposed
applying these simulations as complementary to the molecular
investigation. Simulation of fluid dynamics derived from 3-D
computed tomography angiography of BAV patients evidenced
anomalous helical flow through the aorta, characterized by
impingement at the level of its proximal ascending wall. This
computational reconstruction made it possible to appreciate the
augmented shear stress at the interested wall area due to the
abnormal flow (47). Apart from aortic jet flow, BAV fluidics is
also characterized by more turbulent, oscillatory shear stress in
the calcified, fibrosal cusp regions (48).

Interestingly, the advent of 3-D printing technology has
brought more ease in modeling BAV aortic hemodynamics. Gill
et al. recently replicated BAV valve cusps in a custom aorta mold
and studied flow characteristics through 4-Dmagnetic resonance
imaging. Simulations obtained by collected data can serve as
more accurate tools to estimate the transvalvular pressure drops,
often masked by the turbulent aortic flow jet (49). Moreover, it
is increasingly applied for the planning of effective transcatheter
replacement procedures (50).

2-D Cellular Models
Godby et al. developed an in vitro dynamic cellular model to
evaluate the influence of BAV altered biomechanics on VICs (51).
As previously demonstrated by Nigam and Srivastava in sheep
VICs (39), healthy human counterparts underwent phenotypic
changes with nodule formation upon in vitro inhibition of the
NOTCH pathway (51). In addition, by applying a low fluidic
oscillatory shear stress, healthy and BAV VICs expressed lower
levels of ACTA2 and ELN (elastin gene). NOTCH pathway
inhibition in dynamic conditioning had two main consequences.
First, only ELN transcripts resulted in being decreased in BAV
VICs. Second, a smooth muscle actin-positive subpopulation of
myofibroblasts became enriched. The authors postulated such a
myofibroblast increase as the possible mechanism for the onset
of BAV calcification observed in vivo.

The crosstalk between biomechanics and molecular signaling
is nowadays an established concept and is at the basis of
the effects that the extracellular environment, matrices and
scaffolds included, exerts on the cells immersed in it. Novel BAV
modeling approaches should more accurately consider the strict
correlation between biomechanics and cell behavior. Hence, they
should implement all the factors triggering the pathological valve
phenotype of affected patients.

Congenital Rhythm Disturbances
Rhythm disturbances represent a particular class of congenital
diseases. Affected patients may present a structurally normal
heart but develop abnormal electric cardiac activity in response
to specific triggers. This class of pathologies is generally
rare but heterogeneous. Cardiac rhythm pathophysiology often
occurs due to mutations in genes codifying for ion channels.
Some examples of rhythm disturbances are catecholaminergic
polymorphic ventricular tachycardia (CPVT), long QT (LQT),
and arrhythmogenic cardiomyopathy (AC).
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In the past, the modeling of these diseases was mainly
performed through animals. Transgenic mice were generated by
introducing a targeted mutation of the disease genes homologous
to reproduce the human genotype. Additional approaches have
also been followed to integrate with further molecular studies
and/or computational simulations (15).

CPVT

Epidemiology, Clinical Presentation, and Underlying Causes
CPVT manifests clinically with supraventricular arrhythmias
after physical/emotional stress or catecholaminergic surges.
Disease prevalence is still unpredicted; among diagnosed
patients, about 30% are not responsive to pharmacological
treatment and may undergo fatal arrhythmias (52).

Several CPVT forms were described as depending on
the mutation of different genes. RYR2, CSQ2, and TRDN,
respectively, encoding for ryanodine receptor 2 channel,
calsequestrin 2, and triadin, were reported as mutated. Despite
the heterogeneous gene involvement, the resulting phenotype is
a defective calcium handling. Indeed, all these genes codify for
proteins that possess an essential function on calcium regulation
in cardiomyocytes. When the RYR2 gene is mutated, the
spontaneous release of calcium from the sarcoplasmic reticulum
due to its store overload is a typically observed phenomenon,
which induces arrhythmic events, such as after depolarizations
and triggered activities (11, 53).

In silico Models
Successful analyses of multisubunit channel functionality in
CPVT were performed using in silico models simulating the
sarcoplasmic membrane or based on in vitro heterologous cell
systems (54–57). Based on these studies, RYR2-related CPVT
was hypothesized as induced by two possible mechanisms
explaining the calcium-leaking behavior of the defective
channel. An inability to bind to the accessory protein
FKBP12.6 has been postulated as the reason for the calcium
channel’s instability (58, 59). Alternatively, a loss of subunit
interaction or domain unzipping in the ryanodine receptor 2
heterotetrameric complex has been suggested to alter calcium
homeostasis (54).

Animal Models
An animal study based on a RYR2 knock-in mouse demonstrated
that a gene mutation was unlikely to induce an ineffective
protein–protein binding. No alterations were observed in the
binding between the RYR2 channel and FKBP12.6, either at rest
or after epinephrine or caffeine stimulation (60).

2-D Cellular Models
Results from a patient-specific iPSC-based in vitromodel by Jung
et al. support domain unzipping as a plausible cause of abnormal
calcium release in cardiomyocytes with defective RYR2 (11).
This study demonstrated for the first time that pharmacological
treatment with dantrolene can effectively stop arrhythmic events
generated by catecholaminergic stimulation. The dantrolene-
induced phenotypic rescue was later confirmed by other in vitro

iPSC models and in clinical patients carrying RYR2 mutations
(EudraCT Clinical trial) (61).

Other drugs were tested in similar settings for the treatment of
CPVT. Enhancement of mitochondrial calcium uptake by efsevin
was demonstrated as a valid strategy to abolish arrhythmias
in an in vitro model based on human CPVT iPSC-derived
cardiac myocytes and in vivo in a transgenic mouse carrying
a human typical disease mutation (62). Pölönen et al. tested
in vitro the antiarrhythmic activity of carvedilol and flecainide.
These drugs are known beta-blockers administered clinically to
treat chronic heart failure and CPVT. For this purpose, three
iPSC lines were used: two generated from CPVT patients with
different mutations and one from a healthy subject. Under
adrenergic stress, calcium transient abnormalities manifested in
CPVT iPSC-derived cardiomyocytes but could be suppressed
by tested drugs although with varying degrees of efficiency
(63). Similar results are also shown by Maizels et al. in
another in vitro model based on iPSCs displaying other CPVT
mutations (64). Remarkably, flecainide was able to inhibit
calcium alternans abnormalities (63, 65). Characterized by
alternating amplitude patterns, cardiac alternans are not life
threatening but can be considered a risk stratification marker of
the most malignant CPVT forms (66). Due to their relevance
in predicting disease severity, in silico computational models
have been designed to hypothesize inducing mechanisms and
abolishing modalities (67).

3-D Tissue-Engineered Models
In vitro CPVT modeling has recently gained more information
by coupling iPSC technology with heart tissue engineering.
Park et al. (68) developed a microphysiological model of
CPVT to reproduce the substrate conditions for reentrant or
focal arrhythmias observed in the working myocardium. This
tissue was recreated in vitro by combining gelatin chips and
three different lines of CPVT iPSC-derived cardiac myocytes
(iPSCs derived from a healthy donor were used for controls).
In the settings of adrenergic stimulation or increased pacing,
this platform recapitulated the spiral wave reentry, which is
the typical cause of tachycardia events in the heart tissue
of diseased patients. This behavior was only prominent for
CPVT engineered myocardial tissues and was abolished by
dantrolene by confirming previous observations collected in the
2-D modality (11, 61). The 3-D CPVT model was revealed to
be substantially superior to the 2-D conditioning for its ability
to increase maturation and stabilize the electrical activity of
iPSC-cardiomyocytes at rest (68).

A drug-testing platform based on CPVT cardiac-engineered
tissue was proposed by Goldfracht et al. (28). A hydrogel
derived from decellularized porcine heart extracellular matrix
was enriched with chitosan and used as a scaffold to
reconstruct myocardium with cardiac myocytes differentiated
from one CPVT, one long QT, and one healthy iPSC lines.
The enriched hydrogel efficaciously contributed to rendering
more differentiated and mature cardiac myocytes derived from
iPSCs in all lines tested. At high pacing frequency, reentrant
arrhythmias were effectively reproduced. Several drugs, such
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as lidocaine, an antiarrhythmic agent, carbenoxolone, a gap
junction blocker, quinidine, a sodium channel inhibitor, and/or
dofetilide, another antiarrhythmic compound, were administered
under stress and confirmed the effects observed in the clinical
treatment of patients. The application of a prolonged electrical
field potential could also restore normal electrical behavior,
thus experimentally simulating the electrical cardioversion
clinical procedure.

AC

Epidemiology, Clinical Presentation, and Underlying Causes
Another challenging congenital disease in the clinical practice
is represented by AC, a rhythm disturbance with right ventricle
or biventricular structural dysplasia. The hearts of suffering
patients (1:2000–1:5000 prevalence) may display fibrofatty
deposits, generally in the right part. These interfere with
the conduction system and become a substrate for non-
ischemic ventricular arrhythmias and, ultimately, sudden death.
This disease has been associated with inherited autosomal
mutations (predominantly dominant) in genes encoding for
junctional proteins (plakophilin-2, plakoglobin, desmoplakin,
desmogleins, etc.), their accessory components or associated
nuclear membrane proteins (TMEM transmembrane protein,
TGFβ 3, and β -catenin) (69).

The mechanism by which cardiac muscle is replaced
by fat and fibrous tissue is still poorly understood, and
various hypotheses have been formulated, including increased
ketogenesis and mitochondrial dysfunction (70). Due to the
phenotypic complexity of AC disease, several factors are thought
to contribute to its pathomechanism.

Animal Models
Heterologous expression systems were initially useful to
understand the defective desmosome developed by mutated
gene products (71). AC modeling has been mainly performed
through animal studies. Like humans, boxer dogs may develop
AC spontaneously when they are natural carriers of mutated
desmosomal proteins (72).

Transgenesis strategies have been applied to generate AC
mouse models (69). Although these mice carry the same
mutations observed in boxer dogs and humans, their phenotype
is not identical: no fat infiltration is generally observed in the
rodent heart myocardium. In addition, transgenesis techniques
are more successful in reproducing loss of function thanmissense
mutations (73).

2-D Cellular Models
Cellular models generally complement or stem from in vivo
studies to closely investigate AC signs and mechanisms at
the single-cell level. For example, cardiac progenitors derived
from a plakoglobin-mutated mouse model showed a facilitated
conversion to adipocytes by Lombardi et al. (74). As such,
a transdifferentiation cell event could be the mechanism by
which the AC phenotype manifests. The defective plakoglobin
is not able to correctly assemble at the desmosomal junction.
Hence, it could remain unbound and translocate to the nucleus,
where it may compete with β-catenin for the activation

of the T-cell factor/lymphoid enhancer binding factor. This
series of molecular events could lead to the activation of
the fat transcriptional program at the muscular one’s expense,
thus transforming a myocyte into an adipocyte. This possible
impairment of the Wnt pathway could be a viable hypothesis
for AC pathomechanism. Cardiac progenitor cell conversion into
the adipocytic lineage is demonstrated to be reversed in vitro by
GSK-3β inhibitor, i.e., a Wnt signaling activator (74).

iPSC-cardiomyocytes derived from clinical patients harboring
plakophilin 2 gene mutations are proven to be useful tools
to effectively model human AC (12, 75–79). In the study by
Caspi et al., the upregulation of pro-adipogenic transcription
factor peroxisome proliferator-activated receptor gamma
(PPAR-γ ) and other adipogenesis-related genes was confirmed
by the phenotypic accumulation of lipid droplets in iPSC-
cardiomyocytes. As previously demonstrated for cardiac
precursors isolated from transgenic mice, the Wnt pathway
reactivation by the GSK-3β inhibitor was sufficient to reverse
the pathophysiological phenotypic changes (75), proving once
again the significance of the in vitro iPSC-based models in drug
testing. Furthermore, Kim et al. showed that apoptotic events
and abnormal calcium handling could also manifest. They
observed exaggerated lipogenesis and revealed that a metabolic
change from an embryonic glycolytic to an adult-like energetic
state is necessary for AC development (77).

More recently, Dorn et al. evidenced the importance of
cell–cell and cell–matrix contacts in regulating development
and lineage specification. In the AC setting, the cell adhesion
weakening favors the differentiation of cardiac myocytes into
brown/beige adipocytes. By combining in vitro studies based
on iPSCs, embryonic stem cells, and cardiac mesenchyme to
in vivo lineage tracing, they also investigated the link between
embryonic development and disease pathomechanism. The
prominent involvement of the right ventricle underlies the
transdifferentiation proneness of a specific set of “myo-adipo
progenitor cells,” which originates from the secondary heart field
and expresses the homeobox genes Isl1 andWilms tumor 1 (Isl1+

Wt1+ cells) (12).
As observed by Martewicz et al. (79), mechanical stress

dramatically influences the response of AC iPSC-cardiomyocytes
grown on patterned surfaces: a strong activation of fibrosis
pathways but, unexpectedly, not of adipogenic ones, was revealed
in their model.

3-D Tissue-Engineered Models
Bioengineering a tissue to mimic AC is in its initial stage.
Nevertheless, it provides clear insights into the influential
relationship between cells and the extracellular matrix in this
congenital rhythm disease. A decellularized cardiac scaffold
served Tung et al. to develop a tissue-engineered AC heart model.
The combination of iPSC-derived cardiac myocytes and a cellular
scaffold allowed recapitulating in vitro the 3-D complexity of AC:
cellular alignment, tissue architecture, and lipid accumulation.
It also increased cell maturity in myocytic structure, ion
channel repertoire, junctional proteins, and calcium handling,
which are challenging to reach through 2-D culturing. Three-
dimensionality also augmented metabolic and apoptotic cell
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functions. Sustained reentrant activities were observed in AC-
engineered heart tissues upon pacing and resulted in being
exacerbated by a gap junction blocker (80).

ACQUIRED HEART DISEASES

Several CVDs may develop during a subject’s lifetime as
associated with many factors, including lifestyle, genetic
predisposition (non-pathogenic polymorphisms), and/or
external triggers. Most of these diseases, e.g., calcification,
fibrosis, and atherosclerosis, have a chronic progression that
is often severe. Others, such as infections, are mainly acute
pathologies, whether adequately diagnosed and treated, but can
also cause heart failure by induction of autoimmunity (81).

Cardiac Infections and Cardiac
Autoimmunity
Epidemiology, Clinical Presentation, and Underlying Causes
Infections, especially bacterial, have represented a severe
therapeutic challenge in the past for what are now industrialized
countries. They can still be considered a medical threat
in the underdeveloped world. Antibiotic treatments have
entirely revolutionized the history of bacterial infections. These
pharmacological therapies have drastically reduced the adverse
effects of associated rheumatic fevers on the heart, especially
on its valve apparatus and myocardium (82, 83). The sequelae
of group A β-hemolytic Streptococcus pyogenes pharyngeal
infections cannot be effectively prevented in developing countries
due to indigence, inadequate hygienic conditions, and/or poor
therapeutic compliance but they could be defeated by a specific
vaccine, claimed for treatment but still not available (84).

Rheumatic fevers develop in the pathophysiological response
to bacterial and also to viral infections. Viral cardiac diseases are
mostly triggered by coxsackieviruses, adenoviruses, parvovirus
B19, human herpesvirus-6, and more recently by Sars-CoV-2
(COVID-19) (85).

Autoimmunity is often a common-denominator mechanism
in the reaction cascade to bacterial and viral microorganisms. It is
predicted to arise from an erroneous recognition of endogenous
epitopes as non-self due to their resemblance to proteins
belonging to pathogenic organisms (82, 86). Consequently, the
immune system is likely to be cheated by the microorganism’s
mimicry strategies to increase its survival in the host through
cross-reactive antigens. Of note, rheumatic heart disease may
generate subsequent infections with cardiac tropism and also
as a consequence of other autoimmune diseases, such as
systemic lupus erythematosus, rheumatoid arthritis, and systemic
sclerosis (87).

Streptococcal Infections

Animal Models
Experimental modeling of cardiac infections is crucial
to understand the fundamental mechanism underlying
autoimmunity development and also to evaluate possible
therapeutic targets and pharmacological treatments. The
recapitulation of the human cardiac pathophysiology of
Streptococcus pyogenes using animals failed. Animals generally

display a limited susceptibility to this pathogen and a fast
resolution of induced infection (84) apart from a specific rat
strain. Lewis rats immunized with peptides of the conserved
region of streptococcal M protein developed antibodies against
this last epitope and cardiac myosin. Hearts isolated from this
autoimmune model showed the typical signs of rheumatic
disease, including valvulitis and myocarditis (88). More recently,
in a similar rat model, Chen et al. demonstrated that miR-155-5p
inhibition of S1PR1 and SOCS1 genes, respectively, encoding for
sphingosine-1-phosphate receptor 1 and suppressor of cytokine
signaling 1, abolished the autoimmunity and rheumatoid effects
of streptococcal infection (89).

In silico Models
In silico modeling of rheumatic heart disease induced by
Streptococcus pyogenes infections might be considered more
helpful in the design of possible therapies. In particular, reverse
and structural vaccinology approaches have the potential to
develop successful vaccine hypotheses. For such an aim, novel
gene candidates could be explored in the whole bacterial genome.
Moreover, conformational studies of streptococcal epitopes could
help to design a vaccine based on a multidomain antigen
molecule (84).

Sars-CoV-2 Infection
Sars-CoV-2 infection represents the most current menacing,
worldwide health emergency. The COVID-19 pandemic is
characterized by a series of clinical signs that can reach, in
the worst evolution scenario, a fatal severe acute respiratory
syndrome, too. Its symptomatology was initially compared to
SARS due to the pulmonary involvement. However, during its
spreading throughout the world and the medical observation
of its progression, it appears more evident that the lungs and
other organs, heart included, are targeted by this infection. Viral
myocarditis, arrhythmias, and ultimately heart failure are among
the clinical signs reported (90, 91).

The sudden clinical appearance of COVID-19 has found the
biomedical community unprepared to face this infection’s fast
and severe evolution. It has boosted the research to find effective
disease modeling platforms and therapeutic strategies urgently.
Little information was initially available on the virus, apart from
its family, i.e., coronavirus, similar to SARS and other viruses
inducing seasonal cold. A spike protein guarantees its viral entry
ability thanks to the affinity for the host’s angiotensin-converting
enzyme 2 (ACE2) (92–94). The multicellular expression of this
protein justifies the multiorgan tropism shown by this virus.

2-D Cellular and 3-D Tissue-Engineered Models
In vitro infection studies with several human and animal
carcinoma cell lines—including pulmonary Calu3, colorectal
Caco2, and cervical HeLa adenocarcinoma cells—demonstrated
their essentiality to understand the mechanism of the viral entry
(91, 92), but they could less efficiently reproduce the in vivo
post-entry phase in normal human tissues.

The pluripotency of human iPSCs is a powerful tool for such a
task. It shows usefulness in vitro to evaluate the organ-specific
cellular events induced by this pandemic virus. iPSC-derived
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platforms are applied with high reproducibility and throughput.
Yang et al. differentiated human iPSCs in the three germ
layers and generate pancreatic endocrine cells, liver organoids,
endothelial cells, cardiomyocytes, macrophages, microglia, and
cortical and dopaminergic neurons. Upon inoculation with
the Sars-CoV-2 virus, the most infected iPSC-derived cells
were pancreatic cells, liver organoids, cardiomyocytes, and
dopaminergic neurons. Moreover, a higher permissiveness to
viral entry was confirmed in adult primary cholangiocyte
and hepatocyte cell lines (95). These preclinical outcomes are
consistent with the higher expression of ACE-2 shown by these
cells and recapitulate the clinically observed affection of lungs,
gastrointestinal system, heart, and brain in diseased patients.

More hints on the mechanism and effects of Sars-CoV-2
infection on cardiac myocytes are proposed through two recent
in vitro studies based on human iPSCs (96, 97). In particular,
Sharma and colleagues described the entry and replication ability
of the Sars-CoV-2 virus in infected iPSC-derived cardiomyocytes.
Perinuclear localization, contractility loss, apoptosis, and death
were observed within a time-lapse of 72 h (96). Kwon et al.
showed that extracellular vesicles from Sars-CoV-2-infected
lung epithelial cells can behave like a virus vehicle for iPSC-
cardiomyocytes (97).

In silico Models
In silico models of the spike interaction for the viral entry have
been developing, too. Combined with in vitro 3-D hiPSCs-based
studies, they are impressively facilitating the successful testing of
drugs, promptly applied in the clinics for the therapy of infected
patients (98).

Bacteria- and Virus-Based CVD Modeling

Approaches for Imaging and Treatment
Apart from infection disease modeling, the peculiar cardiac
tropism shown by some pathogenic microorganisms can be
exploited to target imaging and therapies. Several strains of
Escherichia coli and Salmonella typhimurium exhibit selectivity
for the heart muscle rather than for non-cardiac tissues. Le et al.
took advantage of this bacterial strain’s ability to target infarcted
myocardium in a rat model through a defective S. typhimurium
strain, engineered to express an inducible luciferase gene. These
genetically engineered Salmonella cells were infused in the tail
vein of the rat. Upon luciferase induction, bioluminescence
imaging confirmed bacteria localization in the infarcted heart
(99). Bacterial strains with cardiac tropism could be attenuated
and engineered as a vehicle for gene or drug therapies. Such a
therapeutic approach will need further investigation in terms of
pathogenicity, even if used bacteria are attenuated.

Similar to defective bacteria, attenuated viruses with cardiac
tropism have been proposed as possible vehicles for gene
therapies or in vivo bioengineering strategies. Direct cardiac
reprogramming based on retroviral vectors was demonstrated
by Qian et al. (100, 101). By local injection of attenuated
retroviruses engineered to express GATA4, MEF2c, and TBX5,
cardiac fibroblasts were directly induced to cardiomyocytes in a
model of ratmyocardial ischemia (101). As for any bacteria-based

treatment, therapeutic strategies relying on viral vectors require
extreme caution, especially considering reactivation risks.

Cardiovascular Fibrosis
Epidemiology, Clinical Presentation, and Underlying Causes
Fibrotic tissue results from an unsuccessful attempt by the body
to repair after an acute or chronic insult (mechanical damage,
autoimmune response, infections, etc.). In the normal process
of wound healing, damaged epithelial/endothelial cells secrete
inflammatory cytokines that contribute to platelet activation
and fibrin clot formation. Therefore, a lymphoproliferative
response is started with leukocytes recruited to the injury site
and releasing profibrotic chemokines, as TGF-ß. Consequently,
damaged cells and myofibroblasts—possibly differentiated
from circulating mesenchymal stem cells or transdifferentiated
from epithelial/endothelial cells—are stimulated to secrete
metalloproteinases. These released enzymes digest the basal
membrane. The secretion of other cytokines enables the
recruitment and activation of neutrophils, macrophages,
T and B cells, and eosinophils. During debris removal by
macrophages and neutrophils, myofibroblasts synthesize a new
extracellular matrix, invaded by vessels newly constituted by
endothelial cells. Wound contraction is initiated by activated
myofibroblasts, causing collagen reorganization, blood vessel
loss, scar elimination, epithelial/endothelial cell proliferation,
and migration onto the reconstituted basal membrane. Such
a return to healthy tissue is not achieved when inflammation
remains unresolved. In such a condition, a persistently active
myofibroblast population dedicates to extracellular matrix
secretion and ultimately starts fibrosis (102).

As recently reviewed, fibrosis is an age-related disease and
may interest the cardiovascular system and other organs (103).
Fibrosis occurs in several pathologies involving the heart and
its structure, such as valvulopathies, hypertension, arrhythmias,
myocardial ischemia, and heart failure, and often contributes
to their severe clinical course. So far, no efficacious therapy to
prevent its development and sequelae is available (104–106).
The peculiar characteristics of the fibrotic process affecting the
cardiovascular system is described in the following sections
dedicated to heart, valves, and arteries.

Fibrosis in the Heart
In the fibrotic heart, cardiac fibroblasts acquire a contractile and
migratory myofibroblast phenotype very quickly, as proposed
by Berk et al. (104). This transition is significantly regulated
by endothelin 1 and angiotensin II, which, in turn, contribute
to activate TGF-ß. Consequently, cardiac myofibroblasts initiate
a sustained profibrotic program, especially in the hypertensive
heart. The extracellular matrix is abnormally synthesized and
only partially cross-linked. An anomalous deposition occurs
for several proteins, such as collagens I and III, elastin
and its precursor fibrillin, fibronectin, proteoglycans, and
glycosaminoglycans. The degradation of extracellular matrix,
controlled by metalloproteinases and their tissue inhibitors,
results in impairment, too (107–109). Persistent vascular injury
is another characteristic event in heart fibrosis. Apart from
TGF-ß, a plethora of pro-inflammatory cytokines circulates
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during this phase. They contribute to the recruitment of more
smooth muscle cells, monocytes, and fibroblasts, and thus,
they subsidize a chronic profibrotic state. As a result, stiffness
increases by inducing alterations in myocyte cells’ contractility
and relaxation properties. Modifications of the cardiovascular
cellularity, including cardiomyocytes and smooth muscle cells,
occur (104). These alterations irreversibly lead to global heart
failure (systolic and diastolic).

In silico Models
Computational modeling of fibrosis in the context of other
diseases affecting the myocardium mainly focuses on the effects
on blood flow dynamics and electrical activity in global heart
function. Such an integrating approach appears essential to
stratify the risk of adverse disease evolution in affected patients
(110, 111).

At the cellular magnitude, fibrosis modeling has gained more
interest in better characterizing involved signaling pathways and
identifying effective pharmacological treatments. Activation of
endothelial cells during endMT was, for example, simulated
computationally by Weinstein et al. (112). A dynamic Boolean
model of the pathways involved in the endMT generated a
framework easily modifiable to investigate gain- or loss-of-
function, disease evolution, and pharmacological targeting.

Animal Models
In vivo animal models of cardiovascular fibrosis were generated
and allowed to increase knowledge on the fibrotic process’s
evolution. Simulations of human hypertension based on
rats hypersensitive to a salt diet evidenced the substantial
accumulation of extracellular matrix not during the initial
remodeling phase of left ventricle hypertrophy, but throughout
its transition toward congestive heart failure. This abnormal
extracellular matrix organization is shown to be caused by the
upregulation of endothelin I and angiotensin II genes (113–115).

However, the differences between rat strains (normotensive
and spontaneously hypertensive)—and generally amid rodents
and humans—substantiate animal models’ incomplete suitability
to recapitulate the complex pathologic events observed in
clinical patients.

2-D Cellular and 3-D Tissue-Engineered Models
In vitro mouse and human cellular models contribute to define
the specific role and mutual effects of the different cell types
participating in cardiac fibrosis. Activated cardiac fibroblasts
increase the secretion of extracellular matrix in response to
the paracrine signaling of cardiomyocytes, mechanically, or
electrically stimulated (116, 117). Still, it is likely the amount of
this first cell type but not the extent of the secreted extracellular
matrix to induce the loss of contractility in the latter (118).
Recently, Ibarrola et al. demonstrated for the first time through
an in vitromodel based on adult human cardiac fibroblasts and an
in vivomurine model of mitral valve prolapse that the activation
of the mineralocorticoid receptor contributes to myocardial
fibrosis (119), thus identifying a valid target for drug treatment.

In vitro 3-D models of cardiac fibrosis combine several
cell types (e.g., cardiac fibroblasts and myocytes) and scaffolds
(collagen, gelatin methacryloyl hydrogels, etc.). By playing with

the ratio between these two different tissue elements, they finely
investigate the induced molecular and biomechanical changes
(118, 120–122). These in vitro simulations provide evidence
of the continuous crosstalk existing among involved cells in
physiologic and pathologic conditions. The impairment of this
crosstalk in myocardial fibrosis was revealed to be a consequence
of the aging of fibroblasts (123). Stiffness typical of myocardial
fibrosis can provoke the reactivation of extracellular matrix genes
in cardiac myocytes (derived from iPSCs) (124) and might be
rescued by cardiac progenitors (125). Besides the mechanistic
studies, these models are predicted to show a strong efficacy
in the developmental process of a finally effective, antifibrotic
pharmacologic treatment.

Different cells, scaffolds, and conditioning can be included and
modulated to reproduce at best all the possible variables observed
in vivo. In particular, the use of patient-specific iPSCs could boost
the development of a tailored antifibrotic medicine in a model
taking as granted the genetic variants and, hence, the clinical
subject’s predisposition.

Fibrosis in Heart Valves and Arteries
The fibrotic process encountered in heart valves and arteries
shares many similar aspects with that characterizing the
myocardium but involves the interaction of different cells
and extracellular matrix proteins. In heart valves, the cellular
crosstalk is mainly established between endothelial cells and
VICs, and in arteries, it interests predominantly the first
cell type, together with fibroblasts and smooth muscle cells.
Less represented cellular types, such as leukocytes, should be
considered, too (126). In addition, both tissues display an
extracellular matrix architecture that is physiologically more
fibrous than in the myocardium. A substantial prevalence of
collagen I is characterizing arteries and heart valves (127, 128). In
this context, fibrosis is a pathological event often associated with
others, such as stenosis or myxomatous degeneration in the heart
valves and atherosclerosis in the arteries, separately described
elsewhere in this review.

However, pure valvular and arterial fibrosis modeling is
essential to understanding the single contribution given by this
disease in a more composite pathological milieu. Only in vitro
approaches can offer this possibility. Examples of arterial fibrosis
modeling are reported in this section and in “Atherosclerosis,”
while valvular fibrotic aspects are described in detail in “Cardiac
aortic valve stenosis.”

2-D Cellular and 3-D Tissue-Engineered Models
Typical signs of fibrotic arterial lesions (e.g., cell differentiation,
proliferation, neointima formation) were accurately simulated in
vitro with independent 2-D culturing of smooth muscle cells and
explants of the aorta, both from rats, through the application
of variable shear stress, intramural pressure, and/or vascular
damage (129, 130).

Atherosclerosis

Epidemiology, Clinical Presentation, and Underlying Causes
The process leading to developing medium- and large-diameter
atherosclerotic lesions in human arteries is multifaceted,
complex, and progressive, involving many endogenous and
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exogenous players. Starting from the teenage period, it can
progress and become manifest after 40–50 years. It is a disease
widely spread among the worldwide population, especially in the
Western industrialized countries, where a cholesterol-rich diet
is the main culprit for its aetiogenesis (131). Women show a
reduced tendency to develop atherosclerosis than men. Until the
menopausal period, estrogen hormones exert an atheroprotective
effect (132). Sex-dependent protection from atherosclerosis is
negatively influenced by autoimmunity, which aggravates the
inflammatory state characterizing this pathology (133).

An atheromatous plaque is an arterial lesion, which develops
at the intimal layer. The atherosclerotic process starts with
the injury of the intimal endothelial cells by several blood-
related stimuli, such as pro-inflammatory cytokines, altered
lipid content, and high pressure. Intimal damage induces an
increase in permeability and activation of endothelial cells, thus
allowing the arterial wall retention of low-density-lipoproteins
(LDL) containing cholesterol. LDL arterial entrapment favors
leukocyte adhesion and wall penetration. It also stimulates
endocytosis by macrophages, transforming these cells into foam
cells and contributing to plaque formation. Smooth muscle
cells migrate from the media to the intima, attracted by
chemokines released by activated cells, such as platelet-derived
growth factor. This induces the switch of their phenotype from
contractile to synthetic. An extracellular matrix enriched with
collagen and elastin is secreted by migrated smooth muscle
cells around the plaque, thus forming a fibrous cap. The
extracellular space becomes crammed with cellular debris and
partially digested lipids by dying macrophages, thus sharpening
the inflammatory response in the plaque region. More robust
recruitment and activation of inflammatory cells, especially
macrophages, chronically contributes to the instability of the
plaque by a boosted oxidative stress, an increased release of
enzymes able to digest the extracellular matrix as well as
chemokines inducing smooth muscle cell death or favoring
thrombogenic events (19, 131, 134).

Per se, atherosclerosis is not a lethal condition. It alters the
local shear stress physiological conditions, thus maintaining a
state of activation in intimal endothelial cells. In addition, it
limits the blood flow in the interested region due to generated
arterial stenosis. The plaque may undergo an unstable evolution
and rupture, resulting in the release of fragments into the
bloodstream with thrombotic sequelae, such as myocardial
infarct and stroke (19, 131, 134).

Essential efforts for (patho)physiology recapitulation and
inclusion of all the risk factors accompany the mimicking
of human atherosclerosis by in vitro and in vivo models.
Differently from other mammalian species, humans are
characterized by peculiar arterial anatomy with smooth muscle
cells normally present in the intimal and medial layers as well
as by a distinctive polarization pattern of inflammatory cells
in innate and adaptive responses (19). Unhealthy lifestyles
(e.g., smoke, fat-rich diet, insufficient physical exercise),
preexisting pathological conditions (e.g., hypertension, diabetes
mellitus), and genetic susceptibility are typically associated with
human atherosclerosis onset and/or progression (131, 135).
Atherosclerosis is undeniably one of the most modeled CVDs.

Experimental approaches, mostly based on animals in vivo,
have significantly contributed to a greater understanding of its
pathomechanism although still far from full knowledge.

Animal Models
Mice, hamsters, rats, rabbits, guinea pigs, and lately pigs have
been used as small or large models to investigate chronic
atherosclerosis progression as previously reviewed (19, 136–140).
In several animal models, species propensity to spontaneously
develop atherosclerosis and/or feeding with cholesterol-rich diets
have been exploited to induce or accelerate the development
of atherosclerotic lesions in experimental settings. Through
transgenesis strategies, it is possible to reproduce more efficiently
the human disease phenotype in animal models, classically
in mice, rats, rabbits, and in the last years in pigs, too
(136, 138, 139, 141). Of note, hypercholesterolemia is almost
the unique factor that has been considered in animal-based
approaches (138).

Unlike humans, rabbits, and pigs, mice do not show a
spontaneous predisposition to develop atherosclerosis. They
are characterized by a different lipid gene regulation and
metabolism with high-density lipoproteins (HDL) as the most
critical cholesterol carrier (instead of LDL) (136). In addition,
they possess a very definite immune polarization of the two
populations of T helper lymphocytes (TH1 and TH2) and
macrophages (M1 and M2) (19).

Due to easy handling and short lifetime, mice have been
extensively used after transgenesis. Variants of human genes,
recognized as associated with dyslipidemia and atherosclerosis,
were introduced in the murine genome. Mice with defective
apolipoproteins (e.g., apoE family) and LDL receptors
reproduced hyperlipidemia, atherosclerosis onset, progression
into advanced plaque, and complications. These models were
also useful for monitoring disease evolution over time by
applying knockout, insertional, or overexpression approaches
and/or cholesterol feeding (142, 143). They demonstrated
relevance for mechanistic and pharmacological studies to
prevent or delay atherosclerosis. The drugs captopril, fosinopril,
losartan, ramipril, and pravastatin were proved efficacious in
mice, and nowadays, cardiology clinics apply them as an effective
pharmacological treatment to lower hypercholesterolemia
(144–147). Cutting-edge therapeutic strategies were also recently
tested, such as microRNAs, nanoliposomes, and small interfering
RNA nanoparticles to mitigate inflammation and smooth muscle
cell migration (148–153). In addition, mouse transgenic models
were useful to investigate the relationship between sex and
atherogenesis, unraveling the protection from inflammation by
testosterone but not from estrogen (154).

Rabbits are the second mammalian species mostly utilized in
atherosclerosis modeling thanks to the higher phylogenetic and
metabolic proximity to humans than mice. However, the reduced
levels of hepatic lipase and hepatotoxicity after high-fat feeding,
accompanied by the absence of plasmatic apoA-II and potent
inflammatory response render this animal model dissimilar to
humans and with more limited application than mice (137, 140).
Inbreed selection of a Watanabe heritable hyperlipidemic strain
with spontaneous hypercholesterolemia and genetic engineering
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for lipoprotein lipase, apoA-II, and hepatic lipase has partially
overcome these limitations (137, 155–158).

Porcine models offer ideal conditions to reproduce human
atherosclerosis in its many facets (arterial interest, intimal
progression with foam cells and smooth muscle cells, high plaque
vascularization with consequent hemorrhagic risk, calcification,
and core necrosis). Atherosclerotic lesions in the pig do
not advance spontaneously and supplementary triggers, as a
hypercholesterolemic diet, are necessary. The high experimental
cost can be a limiting factor in the use of the porcine model.
As in the rabbit-based studies, these restrictions have been
surpassed by inbreeding (159, 160), arterial mechanical damage
(161), genetic engineering (161–164), and finally by the use of
transgenic minipigs (163–165). By using engineered pigs, Pedigri
et al. demonstrated that atherosclerotic lesion development is
accelerated by chronically altered shear stress and is characterized
by a thin cap fibroatheroma (164). Porcine atheroscleroticmodels
are relevant to test new imaging devices and treatments, too
(138, 166–169).

In silico Models
To dissect specific aspects of atherosclerosis, dual in vitro
and in silico models by membrane bilayer reconstruction
or cell conditioning are more affordable and suitable, being
frequently applied to confirm observations coming from
in vivo models. Membrane composition, particularly its
phospholipid tail saturation and cholesterol quantity, profoundly
impacts atherosclerotic plaque evolution. Bilayer models could
potentially take into account atherosclerosis risk factors as well
(170, 171).

Atherosclerotic pathophysiologic pathways aremainly studied
and reconstructed in computational models. The genetic and
genomic insights and knowledge gained by experimental animals
and by affected patients are gathered together by several tools,
such as genome-wide association studies. The latter depict the
involved gene networks as well as the pathways that could be
targeted to inhibit smooth muscle cell proliferation and stabilize
atherosclerotic plaques (172, 173). Furthermore, comparative
analyses of gene expression in other associated pathologies (e.g.,
stroke) and in the presence of risk factors (e.g., smoke) are
allowing the discovery of diagnostic and prognostic markers of
disease severity (173, 174).

All information collected by different atherosclerosis models
was implemented in computational iterations to simulate the
early and late stages of disease development in different scenarios
of severity (175–177) and possibly may find use in the risk
stratification of atherosclerotic patients.

2-D Cellular Models
Cellular models were utilized alone or in tandem with in vivo
approaches to confirm collected observations at the single-cell
level. Endothelial cell lines, in particular derived from the human
umbilical cord (HUVEC), serve mostly for this task to evaluate
the effects of biochemical and/or mechanical damage, intended
as first triggers for the development of the atherosclerotic lesion.
These models of endothelial damage are useful to dissect the
pathways that result in being dysregulated after contact with

oxidative LDL (178, 179), with free fatty acids (180, 181),
and in conditions of reduced shear stress or mechanical insult
(182–184). Positive effects of atherosclerosis sign attenuation
were disclosed by several in vitro studies using microRNAs on
activated endothelial cells: miR-106a-5p, miR-144-5p, miR-200a,
miR-490, and miR-500 (185–189).

Migration, acquisition of a synthetic phenotype, and
proliferation represent pathological alterations of smooth muscle
cell behavior during atherosclerosis. In vitro modeling using
these cells aims at recapitulating these events for a clearer
understanding of the underlying causes. Moreover, it intends to
search for new prevention and intervention modalities, such as
more accurate stenting procedures (190). In 1995, the group of
Demer described at first the existence in the bovine arterial media
of smooth muscle cells more prone to calcification and identified
similar cell populations in human aortas (191). P38 mitogen-
activated protein kinase, chemokine ligand 5 (CCL5)/chemokine
receptor 5 (CCR5), and PPAR-γ gene signaling were among
the pathways found to be involved in these smooth muscle
cell alterations (192–195). In vitro pharmacological treatment
with pyrogallol-phloroglucinol-6,6-bieckol from the brown
alga Ecklonia cava reversed the altered phenotype of smooth
muscle cells in vitro and in vivo (193). 17β-oestradiol-mediated
upregulation of the PPAR-γ gene induced vascular protection in
human coronary artery smooth muscle cells (195).

Patient-specific predisposition should also be considered
in modeling atherosclerosis. Smooth muscle cells were
differentiated from iPSCs derived from type 2 diabetes mellitus
patients. They expressed higher arylacetamide deacetylase
esterase levels when pharmacological protection from CVD
was established. Metabolomic studies showed that these
cells possessed fewer alterations in lipid metabolism and
bioassembly. Esterase overexpression was confirmed to increase
atheroprotection in primary smooth muscle cells as well as in
apoE knockout mice (196).

3-D Tissue-Engineered Models
Atherosclerotic shifts in blood flow dynamics affect endothelial
function and platelet/leukocyte behavior. These effects are
predicted to be recapitulated best by in vitro, 3-D bioengineered
models (197–199). A circular microfluidic, endothelial cell–based
stenosis platform was advanced by Venugopal Menon et al.
By flow variations, the activated and dysfunctional state of
endothelial cells and leukocytes is recapitulated and reversed by
treatment with aspirin and metformin (200). Lv et al. develop
a 3-D artificial vessel lined with endothelial cells to evaluate
the cellular effects of stenting in a pulsatile flow system (201):
restenosis and vasospasm were clearly identified as risks in these
procedures by reactivation of endothelial cells.

Moreover, human bioengineered arterial equivalents could
more accurately reproduce the dysfunctional interactions
between the extracellular matrix and different cell types existing
in atherosclerosis using bioreactors as a body surrogate and,
thus, increasing the control over biological variables that could
be associated with in vivo modeling. In 2013, Robert et al.
advanced the first bioengineered model of atherosclerosis by
submitting a tissue-engineered artery to LDL, HDL, and/or TNF
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alpha conditioning in the presence of circulating monocytes.
Endothelial activation and increased permeability to lipoproteins
were recapitulated. Monocytes transmigrated into the intimal
layer without apparent evolution toward foam cells (26). The
same group bioengineered a typical fibroatheroma by applying
the hanging-drop technique (202). More recently, they developed
a simple pulsatile flow system to recreate in vitro the specific
flow conditions observed in aneurysms and atherosclerosis. By
exposing bioengineered arteries to different velocity regimens,
Hosseini et al. showed that no impairment of extracellular
matrix genes (collagen I and elastin) was appreciable. They also
revealed that the altered gene regulation of metalloproteinases
and their tissue inhibitors reflected flow variations and could be
reversed by doxycycline, already applied in the clinics for CVD
treatment (203).

Cardiac Aortic Valve Stenosis
Epidemiology, Clinical Presentation, and Underlying Causes
Cardiac disease or stenosis of the aortic valve (AVS) is the most
frequently acquired valvular disorder in Western countries (127,
204) although also the mitral valve can be frequently affected
(82). Its prevalence is continuously rising, especially among
the aging population. Currently, no effective pharmacological
therapy can slow down the progression of this chronic disease,
which becomes symptomatic only after reaching clinical severity
and high mortality risk (205). BAV-affected patients have an
increased tendency to develop AVS. More than 300,000 valve
replacement procedures are performed annually as a unique
treatment for end-stage valvular disease (24, 206) to restore
physiologic blood flow. An AVS echocardiographic sign is a
valvular jet velocity reaching 4.7 m/s, and slower values of 2.4
m/s, although altered, indicate sclerosis. Upon histopathological
examination, a stenotic aortic heart valve appears to be composed
of evident lipocalcific deposits in the fibrosal aortic cusp aspect
and at the commissures (207). These tissue alterations are
responsible for strongly reduced leaflet mobility.

The AVS process has been considered in parallel to
arterial atherosclerosis due to the pathomechanistic shreds of
evidence (208). Similar hallmarks are injury and activation
of endothelial cells, permeability and deposition of lipids,
monocyte/macrophage recruitment, differentiation of cells (VICs
in this case) toward amyo/calcific phenotype, neovascularization,
and tissue mineralization. However, smooth muscle cells are
not involved, and calcification occurs earlier in stenotic
aortic valves than in atherosclerotic arteries. In addition, no
influence of diabetes is found to be particularly relevant
for AVS development and/or progression (207). Moreover,
specific genetic predisposition to AVS has been demonstrated as
associated with apolipoprotein B and (a), angiotensin-converting
enzyme, and IL10 gene polymorphisms (209).

It is still poorly understood how a sclerotic valve may
become stenotic. Nevertheless, the recurrence of impaired
gene expression, extracellular matrix dysregulation, altered
hemodynamics, and coexisting risk factors are considered as
possible causes. In particular, an endMT program reactivation
characterized by altered NOTCH1 gene pathway regulation
in valve endothelial cells is hypothesized as the first event

of the pathologic molecular cascade leading to AVS (210).
Lipid accumulation starts when activated valve endothelial
cells increase permeability, and intra-intimal transport by
apolipoproteins B and E is facilitated (211).

In silico Models
For risk stratification and health care management, AVS
computational modeling, especially of patient-specific disease,
offers new strategic insights. Adda et al. used an in vitro mock
circulatory system to investigate different scenarios of AVS
severity, stroke volume, heart rate, and mean arterial pressure.
Their study evidenced that a stenotic valve impairment with
effective orifice area <0.85 cm2 has to be considered severe with
a mean gradient ≥25 mmHg in conditions of low flow or ≥37
mmHg in the presence of normal flow (212). The modeling of the
fluid interactions of AVS patients by Kivi et al. revealed that the
transvalvular pressure gradient increases by 3.6-fold from healthy
to severely calcified valves with a consequent 2.2-fold decrease
of blood velocity in coronary arteries at early diastole (213).
Bhuva et al. applied machine learning to study sex and regional
differences in myocardial plasticity due to AVS. Cardiovascular
magnetic resonances of AVS patients were collected before and
after 1 year surgery. Data were used to develop a 3-D model of
wall thickness, showing that remodeling was more pronounced
in the septum of male patients both pre- and post-surgery (17).

Animal Models
In atherosclerotic mouse models based on defective
apolipoproteins, the calcific involvement of the aortic valve
beside the coronary arteries is usual (214). Cusp thickening
and stenosis might be observed only after lipopolysaccharide
administration, generally introduced to enhance inflammatory
response (215). In order to reproduce more effectively all the
clinical signs of human AVS in mice, Niepmann et al. proposed
the use of a novel model developed with coronary wires altering
the shear stress at the cusp valve endothelium (216).

Alongside the widely used mouse, larger animals also served
as in vivo platforms to study AVS evolution. Cuniberti et al.
used a New Zealand white rabbit model of hypertension to
evaluate the link between this risk factor and AVS (217). Sider
et al. replicated the first events of heart valve sclerosis through
a 5 month-long hypercholesterolemic model based on Yorkshire
pigs. Lipid accumulation and proteoglycan-enriched extracellular
matrix but no myofibroblast phenotype and calcification were
observed (218).

2-D Cellular Models
In vitro cellular models have provided much understanding of
the altered pathological pathways in AVS. As mentioned, valve
endothelial cells are the first player in the sclerotic valve cusp.
Still, the central role in AVS development is exerted by the
heterogeneous cell population of VICs, which, upon stimulation,
can acquire a myofibroblast phenotype and ultimately switch to
calcifying cells.

Semilunar and atrioventricular heart valve fibrosis models
were initially created in two dimensions. By reproducing
transvalvular pressure and/or TGF-ß biochemical stimulation,
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they allowed clarifying their effects on VICs. In particular,
increased cell activation was observed as prompted by a stiffer
extracellular matrix (219). A more substantial susceptibility was
shown for VICs derived from the left inflow and outflow tracts
(220), thus reflecting the significant involvement of the aortic
and mitral valves observed in the clinic. Furthermore, endMT
in involved valve endothelial cells strongly potentiated VIC
activation (221).

Analogous to arterial disease (191), calcification-prone cell
populations have been identified in the fibrosa of canine, bovine,
and human aortic valve cusps by tissue explant, cell cloning
technique, and in vitro calcification modeling (222, 223). The
conditioning with TGF beta-1, 25-hydroxycholesterol, and/or
bone morphogenetic protein 2 stimulated in nearly 1 month
a massive generation of calcified nodules in canine VICs
(222). Upon in vitro exposure to lipopolysaccharide (LPS) for
12 days, clones of bovine VICs displayed different responses
with only one osteocalcin-positive cell type undergoing calcific
switch after expressing higher levels of alkaline phosphatase
(223). The proteomic analysis on these conditioned VIC
subpopulations showed alterations in the expression of nearly 50
cytosolic and membrane-associated proteins. Modifications were
observed after LPS conditioning in several functions: chaperone-
mediated protein folding, protein metabolism and transport, cell
redox/nitric oxide homeostasis, cytoskeletal organization, and
nitric oxide bioactivity. In particular, tackling the nitric oxide
pathway by controlling the L-arginine/ADMA ratio through
L-arginine administration was efficient to prevent calcification
(224). In addition, conditioning with natural biomolecules
pyrophosphate and ATP was sufficient to strongly inhibit
LPS-mediated mineralization of calcifying clonal VICs in 2-
D and 3-D cultures (225). As LPS, other pro-inflammatory
stimuli have been shown to induce VIC calcification. Warnock
et al. exposed porcine aortic valve cusps to high cyclic
pressures. They verified altered transcription for genes related
to inflammatory responses, such as the cytokines TNF-α, IL-1α,
and IL-1β, as well as acute phase protein pentraxin 3 and also
metalloproteinases (226).

Microenvironment sensing is a highly developed ability in
VICs. These cells sense the extracellular matrix modifications
and, consequently, respond by varying their gene expression.
RhoA/ROCK and PI3K/AKT pathways are the most activated
ones in response to stiffness. Upon their upregulation, VICs
differentiate into activated myofibroblasts, which are highly
proliferative, secreting extracellular matrix, and enriched with
smooth muscle actin stress fibers (227).

The evidence that NOTCH1 repression suppresses VIC
calcification comes from a previously described study by Nigam
and Srivastava (39). They observed no occurrence of calcification
in sheep VICs after the inhibition of the bone morphogenetic
protein 2 downstream target genetic pathway through siRNA-
mediated knockdown.

3-D Tissue-Engineered Models
As for modeling other CVDs, 3-D VIC-based systems are
valuable tools to reproduce the complex pathophysiologic
events occurring in calcific aortic valve cusps (225, 228–230).

Mabri et al. showed that increasing the matrix modulus
of poly(ethylene glycol) hydrogels induced VICs’ phenotypic
acquisition of smooth muscle actin stress fibers (231). Hjortnaes
et al. established a 3-D platform recapitulating the early AVS
phases. Osteogenic stimulation was provided to valve tissue
constructs generated by coupled hydrogels and aortic VICs.
The latter underwent differentiation to smooth muscle actin-
and Runx2-expressing myofibroblasts and finally calcification.
Mineralization could be reduced by silencing smooth muscle
actin gene expression, thus leading to hypothesize myofibroblast
differentiation as the first step in AVS calcification (229). In the
study by Duan et al. 3-D hydrogels with tunable stiffness were
populated with VICs and submitted to osteogenic media. Once
again, a dynamic feedback loop was identified, demonstrating
the essential role of the mechanosensitive RhoA/ROCK pathway
in calcification (228). Dahal et al. speculated on the role of
glycosaminoglycans on AVS pathologic endMT throughmodular
tissue reconstruction (221). Collagen scaffolds supplemented
with chondroitin sulfate, hyaluronic acid, and dermatan sulfate
simulated early- and late-stage AVS phases. The modeling with
chondroitin sulfate-enriched scaffolds correlated with enhanced
endMT and increased extracellular matrix synthesis. The impact
of a more complex extracellular matrix on VIC behavior
has also been considered by Monroe et al. Using laminar
constructs with variable composition, they noted reduced cell
survival and increased collagen secretion in mineralizing cells
(230). More recently, hydrogels derived from decellularized
valve extracellular matrices were used as scaffolds for 3-D
AVS modeling (232), revealing superiority for cell growth and
proliferation over pure collagen.

AVS therapeutic could be complex with previous modeling
modalities, but pathology bioengineering might help in the
testing and fast release of new treatments. Targeting the typical
AVS microRNA dysregulation could be a valid strategy to
stop disease progression as recently reviewed by van der
Ven et al. (233). For example, miR-34c was confirmed in a
3-D bioengineered AVS model to inhibit VICs’ osteogenic
differentiation through c-JUN terminal kinase pathway
suppression (234). As observed in 2-D VIC cultures, Weber et al.
proved the involvement of purinergic signaling in AVS through
their 3-D models (235). Potentially, a novel pharmacological
compound could be identified to lower adenosine levels and,
hence, protect from valve degeneration.

CLOSING REMARKS

In silico, in vivo, and in vitro models have unquestionably
helped increase the comprehension of CVDs, propose underlying
molecular mechanisms, and/or test novel therapeutic hypotheses.
More and more, cardiovascular research is moving toward
integrating the different approaches applied so far to overcome
their own limitations and inabilities to fully reproduce the human
pathophysiology of the heart and its system. Along this direction,
the advent of frontline technologies, such as human iPSCs
and tissue engineering, represent a decisive milestone to bridge
these gaps. The ability to reconstruct high-fidelity equivalents of
human tissues and organs in vitro by applying bioengineering
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principles has started to demonstrate its validity to decipher the
healthy and pathologic interactions among cells and extracellular
matrix. The recapitulation of this functional crosstalk and its
impairment through tissue engineering provides novel or more
specific insights on the molecular pathways involved in CVDs
and could be addressed as therapeutic targets. These in vitro
platforms appear to be highly modular tools. A unique possibility
for a personalized approach of precision medicine is offered by
playing with defective extracellular matrices (e.g., increasing the
stiffness of synthetic hydrogels or using decellularized pathologic
cardiovascular tissue), patient-specific cells (e.g., differentiated
iPSCs harboring a genetic mutation or a peculiar polymorphism),
and/or with their differential ratio. Diseases, such as CPVT,
AC, atherosclerosis, cardiovascular fibrosis, and AVS, have
already been reproduced in vitro through a bioengineering
approach. The study of BAV and cardiac infections—and other
pathologies not considered in this review—could positively
take advantage of tissue engineering–based modeling. For
example, the emergent property of biofilm formation, shown
by some bacterial species on cardiovascular mucosae, could
be modeled by recreating in a Petri dish the endo-myocardial
layers of the ventricular wall and bacterial contamination. Such
a simulation could possibly allow proceeding into the search
of modalities for biofilm dissolution and tackle a medical
threat, such as bacterial multidrug resistance, especially in
nosocomial infections.

Besides this, tissue-engineered human models of
cardiovascular pathologies could serve as reliable platforms

to verify the mechanistic and therapeutic predictions on CVDs,
generated by inference from coupled -omics technologies and
machine learning.

These bioengineered platforms are just showing the first
signs of potential into effective disease modeling. They are
predicted to bring an incredible advancement in patient-
tailored pharmacological strategies and health care management
improvement for both congenital and acquired CVDs.
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