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Posterior marginalization accelerates Bayesian
inference for dynamical models
of biological processes

Elba Raimúndez,1,2 Michael Fedders,1 and Jan Hasenauer1,2,3,4,*

SUMMARY

Bayesian inference is an important method in the life and natural sciences for learning from data. It pro-
vides information about parameter and prediction uncertainties. Yet, generating representative samples
from the posterior distribution is often computationally challenging. Here, we present an approach that
lowers the computational complexity of sample generation for dynamical models with scaling, offset, and
noise parameters. The proposedmethod is based on themarginalization of the posterior distribution. We
provide analytical results for a broad class of problems with conjugate priors and show that the method is
suitable for a large number of applications. Subsequently, we demonstrate the benefit of the approach for
applications from the field of systems biology. We report an improvement up to 50 times in the effective
sample size per unit of time. As the scheme is broadly applicable, it will facilitate Bayesian inference in
different research fields.

INTRODUCTION

Mathematical models are important tools for understanding and predicting the dynamics of many processes, such as signaling processing in

biological systems,1–3 patient progression,4,5 and epidemics.6,7 However, the parameters of mathematical models are in general unknown

and need to be inferred from experimental data. This is an inherently challenging problem and complicated by the fact that, in addition

to the dynamical properties of interest (e.g., rate constants and initial conditions), characteristics of the measurement process may also be

unknown. In systems biology, most measurement techniques, including western blotting,8 fluorescence microscopy,9 and mass spectrom-

etry,10 are not fully quantitative but provide only relative information. Moreover, there is often an unknown offset and/or noise level.11 Accord-

ingly, unknown observation parameters, such as scaling factors but also offsets and noise levels, have to be estimated along with parameters

of the mathematical models.12–14

Bayesian inference is often used to estimate unknown parameters.15–17 A particularly common approach is to employ Markov chain

Monte Carlo (MCMC) algorithms, such as (adaptive) Metropolis-Hastings,18 Hamiltonian Monte Carlo methods,19,20 and parallel

tempering,21 to generate representative samples from the posterior distribution. Yet, with increasing number of unknown parameters,

the application of MCMC algorithms becomes challenging.22 This is a bottleneck that leaves sampling methods on the edge of compu-

tational feasibility. In principle, the challenge can be addressed by reducing the dimensionality of the sampling problem, e.g., by

marginalizing over nuisance parameters (as, e.g., demonstrated in cosmology23). However, there is no generic and broadly applicable

framework.

In frequentist inference, a template for the reduction of the dimensionality of parameter estimation problems has been provided.14,24,25

Here, hierarchical optimization approaches have been developed to determine the maximum likelihood estimate. These methods exploit

that the observation parameters can be computed analytically for a given set of model parameters. It has been shown that this benefits

the convergence of optimization methods and the computational efficiency, while providing the same results (see, e.g., Loos et al.24). Yet,

these concepts cannot be directly translated to Bayesian inference as we are not interested in only optimal point estimates, but in (marginal)

posterior distributions over parameters.

In this manuscript, we introduce a generic method for improving sampling efficiency by marginalizing over observation parameters. We

provide analytical results for themarginalization over complex posterior distributions for dynamical biological processes—described, e.g., by

ordinary differential equations (ODEs)—with a broad class of observation models. The marginalization yields a lower dimensional posterior

for MCMC sampling. Samples of the original posterior can be obtained by subsequent sampling of the observation parameters conditioned

on the remaining parameters. To illustrate the properties of the proposed approach, we benchmark its performance with a collection of
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publishedmodels, includingmodels for which current available sampling strategies are computationally infeasible. We demonstrate that the

proposed method achieves higher sampling efficiencies by reducing the auto-correlation of the samples and increasing the transition prob-

abilities between posterior modes. Indeed, it turns computationally infeasible sampling problems feasible, increasing the set of problems

which can be tackled using Bayesian inference.

RESULTS

Many model structures allow for analytical marginalization of parameters and sampling in lower dimensional space

To facilitate Bayesian inference for mathematical models with observation parameters, we developed and implemented a marginalization-

based sampling approach (Figure 1). The approach allows for inferring the parameters of mathematical models, such as ODEs and partial

differential equation models, from data via observation models with scaling, offset, and noise parameters. For a mathematical model with

parameter q and time- and parameter-dependent states xðt;qÞ, consider the case of a one-dimensional observable with additive Gaussian

measurement noise and observation model

y = ðs ,hðxðt; qÞ; qÞ + bÞ + e;with ε � N
�
0;s2

�
(Equation 1)

in which hðx; qÞ describes the measured quantity, s is the scaling factor (˛R), b is the offset (˛R), and s2 is the variance of the measurement

noise (˛R+). A collection of measurements yk at time points tk , with k = 1;.;nt , is denoted as data D = fðyk ; tkÞgntk = 1. Following Bayes’

theorem, the posterior distribution of the parameters ðq; s;b;s2Þ given the data D is

p
�
q; s;b; s2

��D� =
pðD��q; s;b; s2Þpðq; s;b;s2Þ

pðDÞ ; (Equation 2)

in which pðD��q; s;b; s2Þ denotes the likelihood, pðq; s;b;s2Þ denotes the prior distribution, and pðDÞ denotes the marginal probability.

A

B

C

Figure 1. Standard and marginalization-based Markov chain Monte Carlo sampling

(A) Illustration of the general marginalization concept.

(B) Standard approach.

(C) Marginalization-based approach depicting: (Step 1) the sequential integration of the observation parameters s, b, and s2 to evaluate pðqjDÞ, and (Step 2) the

(optional) conditional sampling of the marginalized observation parameters.
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The standard approach is to use MCMCmethods to obtain representative samples from the joint posterior distribution for model param-

eters q and observation parameters s, b, and s2 (2) for subsequent analysis (Figure 1B). All parameters are sampled jointly, disregarding their

nature (Figure 1B); in particular note that the state xðt; qÞ and the value of the observationmap hðxðt; qÞ; qÞ only depend on q but not on s, b, or

s2. This approach is often challenging and even infeasible for models with large datasets since the number of observation parameters can

easily exceed the number of model parameters (see, e.g., Bachmann et al. and Raimúndez et al.26,27).

To simplify the sampling process, we propose amarginalization-based approach, which exploits a decomposition of the sampling prob-

lem in two steps (Figure 1C). In Step 1, we consider the marginalization of the posterior distribution (2) with respect to the observation pa-

rameters s, b, and s2, yielding

pðqjDÞ =
pðDjqÞpðqÞ

pðDÞ
with pðDjqÞ as the marginal likelihood given by

pðDjqÞ =

Z N

0

Z N

�N

Z N

�N

p
�
D
��q; s;b;s2

�
p
�
s;b; s2

��q� ds db ds2; (Equation 3)

assuming that the prior can be written as pðq;s;b;s2Þ = pðs;b;s2��qÞpðqÞ. For various choices of noise models and prior distributions (in partic-

ular conjugate priors), this marginal likelihood can be computed in closed form. This is for instance the case for the combination of additive

Gaussian noise with a joint prior distribution for s, b, and s2,

p
�
s;b; s2

��q� = N
�
s
��n; s2

�
t
�
,N

�
b
��m;s2

�
k
�
,G� 1

�
s2
��a;b�;

in which n;m˛R and t; k;a;b˛R+ denote hyperparameters of the Normal-Inverse-Gamma-distributed joint prior, and G� 1ð ,Þ denotes the
Inverse-Gamma function. The hyperparameters might depend on q. Here, we obtain for observations yi with i = 1;.;nt the closed-form

expression for the marginal likelihood as

pðDjqÞ =
ðb=CÞa

GðaÞð2pCÞnt=2
,G
�
a +

nt

2

�
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kt

ðnt + kÞ
�
t +
Pnt

i = 1h
2
i

�
� �Pnt

i = 1hi

�2s
(Equation 4)

with hi : = hðxðti; qÞ; qÞ and parameter-dependent constant

C : = b +
1

2

0@km2 + tn2 +
Xnt
i = 1

y2
i �

�
km+

Pnt
i = 1yi

�2
nt + k

�
��
km+

Pnt
i = 1yi

��Pnt
i = 1hi

� � ðnt + kÞ�tn+Pnt
i = 1hiyi

��2
ðnt + kÞ

�
ðnt + kÞ

�
t +
Pnt

i = 1h
2
i

�
� �Pnt

i = 1hi

�2�
1A:

As theNormal-Inverse-Gammaprior is a conjugate prior for additive Gaussian noise, themarginal likelihood is analytically tractable. There

are various other cases, including multiplicative Gaussian noise and even distributions with outliers. For the latter, Laplacian noise has shown

to be more robust against measurement outliers.28 Tables S1 and S2 summarize ten practically relevant cases for which we obtained closed-

form expressions, and we are certain thatmanymore are possible. For details on the derivation of all individual results (including two cases for

Laplace distributed noise), we refer to the supplemental data.

Given themarginalized likelihood function pðDjqÞ and the prior pðqÞ, the posterior distribution pðqjDÞ of the parameters of the mathemat-

ical model can be sampled using MCMC and related methods. The sampling can be performed in the space of q, as the observation param-

eters are implicitly considered (Figure 1C).

The samples ofmodel parameters q frompðqjDÞ allow for the assessment of themodel properties and its uncertainties. In this regard, there

is no difference of sampling the marginalized posterior distribution pðqjDÞ compared to projecting the full posterior distribution

pðq; s;b;s2��DÞ onto the q component. However, tasks like the assessment and plotting of themodel-datamismatch also require the posterior

of the observation parameters. These can be obtained by sampling from the conditional distribution pðs;b;s2��q;DÞ. As the observation pa-

rameters only influence the observation model (1) and not the calculation of state xðt; qÞ and observable map hðx;qÞ, the conditional distri-

bution can be expressed in closed form and sampled efficiently. For the aforementioned case, a matching sample of observation parameters

for a given model parameter q can be obtained by drawing from Gamma and Normal distributions:

s2 = 1
.
l with lfG

�
a0 = a +

nt

2
; b0 = C

�
;

bfN

	
m0 =

km+
�Pnt

i = 1yi � hi

�
k+ nt

; l0 = lðnt + kÞ


; and

sfN

0@m0 =
ðk+ ntÞ

�
tn+

Pnt
i = 1hiyi

� � �
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Pnt
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��Pnt
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�
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�
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2
i

�
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with hi and C being evaluated for model parameter q. This conditional sampling can be proven to provide the same correlation structure as

directly sampling the full posterior distribution. For details on the derivation of the conditional sampling for the observation parameters we

refer to the supplemental data. As the conditional sampling can be performed independently and does not require model simulation, it is

computationally efficient. For additional observation models see Tables S1 and S2.

In summary, a broad spectrum of parameter estimation problems can be reformulated by performing an analytically tractable marginal-

ization of their observation parameters. Sampling of this lower dimensional posterior distribution for the model parameters q in combination

with conditional sampling for the observation parameters allows the construction of samples from the full posterior distribution. Accordingly,

the original sampling problem is decomposed in two sub-problems, of which the conditional sampling is optional.

Marginalization-based approach yields same results at lower computational cost

To compare the performance for the standard and marginalization-based approach, we performed a range of studies using (i) a simple test

problem and (ii) published models and datasets.

As a simple test problem we considered a model of a conversion reaction process, A#B. This process was considered in various other

publications28,29 and can be described using a two-dimensional system of ODEs, with the concentrations of A and B as state variables.

Here, we considered that the abundance of B is measured up to an unknown scaling, offset, and noise level. Accordingly, the mathematical

model possesses twomodel parameters, the forward rate A to B, q1, and the backward rate B to A, q2, and three observation parameters, the

scaling s, the offset b, and the noise variance s2 (Table 1). A detailed description of the model is provided in the STAR methods section.

In the first step, we used the model to assess the correctness of the analytical marginalized likelihood (4) by comparing its agreement with

numerical integration of Equation 3. The results show a perfect match for a range of different parameter values (Figure 2A). Yet, the evaluation

of the analytical marginalized likelihood was five orders of magnitude faster than the numerical integration (Figure 2B), which highlights the

importance of the analytical derivations. In the second step, we performed 100 independent MCMC sampling runs for the standard and

marginalization-based approach. The runs employed a state-of-the-art adaptive Metropolis-Hastings method.18 We found a superior perfor-

mance of the marginalization-based approach, as the observed effective sample size per unit of time was twice as high as for the standard

approach (Figure 2C). This indicates that themarginalization-based approach facilitates already for simple problems themixing of theMCMC

chains and, hence, provides a more efficient exploration of the posterior. Moreover, the model fit for the best sample found (i.e., maximizing

the posterior) coincided for both approaches (Figure 2D) as well as the marginal distributions for the model parameters q1 and q2 (Figures 2E

and 2F), and the conditionally sampled observation parameters (Figures 2G–2I).

Following the promising results for the test problem, we evaluated the performance of the proposedmarginalization-based approach for

three already published models and datasets (Table 1 and STAR methods section). The models M1 to M3 describe cellular processes: (M1)

epidermal growth factor (EGF)-induced protein kinase B (AKT) signaling; (M2) phosphorylation-dependent STAT5 dimerization; and (M3)

mRNA transfection. The numbers of model and observation parameters differ, and so do the observation functions. Accordingly, different

closed-form expressions for themarginalized likelihood function are used (Tables S1 and S2). More importantly, the full posterior distributions

exhibit different characteristics, ranging for instance from uni- to bimodal.

For the considered application problems, the marginalization of the observation parameters reduced the dimensionality of the sampling

problems by up to 50% (ranging from 19% to 50%) (Figure 3A). The validity of the analytical expressions for marginalized likelihoods was again

confirmed using numerical integration (Figure S1). To evaluate the impact of this reduction on the sampling efficiency, we performed 50 in-

dependent MCMC sampling runs using the parallel tempering algorithm with 10 temperatures.21 All the runs were initialized at parameter

values maximizing the posterior probability which were found using multi-start optimization.12 For M1 and M2, these maximum a posteriori

(MAP) estimates were unique, while for M3, two MAP estimates were found with identical posterior values. The sampling was run for 106 it-

erations. Further details are provided in the STARmethods section. The high number of iterations allowed all MCMC runs of the standard and

marginalized problem to converge according to theGeweke test.30 Yet, themarginalization-based approach achieved a higher effective sam-

ple size per unit of computation time than the standard approach (Figure 3B). The improvement was problem dependent and ranged from

Table 1. Key numbers and features of the considered toy and benchmark models

Model ID nq ns nb ns Description Reference

Toy 2 1 1 1 Conversion reaction –

M1 13 3 – – EGF-AKT pathway Fujita et al.37

M2 6 3 – 3 STAT5 dimerization Boehm et al.38

M3 3 1 – 1 mRNA transfection Leonhardt et al.39

M4 26 31 – – Gastric cancer signaling Villaverde et al.40

The number of unknown model parameters nq, unknown scaling parameters ns, unknown offset parameters nb, and unknown noise parameters ns, which are

effectively sampled, are reported.
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2 (M1 andM2) to nearly 50 (M3) times higher efficiency in the marginalization-based approach. As the computation time was similar, the core

reason for this is a reduction in the auto-correlation length (Figure 3C). The model fits for the best sample found were identical for both ap-

proaches (Figures 3D, S2 and S3) as well as the parameter marginal distributions (Figures S4–S6).

In summary, test and application problems demonstrate the acceleration potential of the marginalization-based approach. The improve-

ment was problem specific, with no clear dependence on the degree of dimensionality reduction, but in all cases substantial.

Marginalization-based approach improves transition rates between posterior modes

To understand for which problems themarginalization-based approach is expected to achieve a large acceleration, we considered themodel

M3. The posterior distribution for M3 is bimodal, and a simple explanation for the acceleration would have been that the bimodality is elim-

inated. Yet, this is not the case as the bimodality is related to a symmetry in model parameters. Numerical simulations as well as analytical

results reveal that the observable trajectory remains unchanged when the mRNA and protein degradation rates are interchanged. As long

as the optimal point is not located on the line of equal degradation rates, standard and marginalized posterior are bimodal.

We hypothesized that the large efficiency improvement is related to a lower minimum energy path for the transitions in the marginalized

posterior. To assess this, we computed the minimum energy paths31 for the standard (Figures 4A and 4B) and marginalized posterior

(Figures 4C and 4D) (see details in the STAR methods section). To our surprise, the minimum energy path is almost identical for both ap-

proaches (Figure 4E). Hence, there is at least no difference in the minimum energy path.

A B C

D E F

G H I

Figure 2. Evaluation of the standard and marginalization-based approach for the toy model

(A) Comparison of analytical vs. numerical integration.

(B) Time comparison of analytical vs. numerical integration.

(C) Effective sample size per unit of time for 100 independent runs.

(D) Model fit of the best sample found during sampling from the standard (orange) and marginalization-based (purple) approach.

(E–I) Parameter marginal posterior distributions computed using a kernel density estimate for the model parameters (E) q1 and (F) q2, and the conditionally

sampled observation parameters: (G) scaling factor s, (H) offset b, and (I) noise variance s2.
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In order to understand the improvement observed for runs of adaptive parallel temperingmethods, we performed 10 runs of a single-chain

adaptiveMetropolis algorithm18with 106 iterations for exploring theposterior (T = 1).Weexpected this to simplify the interpretation. Yet, the

adaptiveMetropolis algorithmwas essentially unable to transition between the twomodes of the posterior, meaning that efficiency improve-

ments could not be assessed with reasonable computation time (see T = 1 in Figure 5A). To assess the relative complexity of the sampling

problem for standard and marginalization-based approach, we repeated the evaluation with the single-chain adaptive Metropolis algorithm

for the temperedposterior, keeping the temperature fixed for a specific run.We found that themarginalization-based approachallows already

at lower temperatures for transitions between the modes unlike the standard sampling approach (Figures 5A, S8, and S9). For temperatures

suchasT = 16, the standard approachshowedanaveragenumberof only 5 transitionsbetween themodeswithmany runsonly sampling from

a singlemode (Figures 5B and 5C), while for themarginalization-based approachon average 1:63104 transitions occurred (Figures 5D and 5E).

As theminimumbarrier energy is conserved also for higher temperatures (Figure S7), this increase in the transition rate by four orders ofmagni-

tude for the same algorithm implies a lower overall complexity of the marginalization-based sampling problem.

As the increased transition rate is not caused by an altered energy path, we studied the transition paths. This revealed that the employed

single-chain algorithm facilitates jumps over the valley in the objective function (Figures 5F and 5G), meaning that it transitions between

A

B

C

D

Figure 3. Evaluation of the standard and marginalization-based approach for the benchmark models

Models M1–M3 are shown from left to right.

(A) Number of sampled parameters.

(B) Effective sample size per unit of time.

(C) Auto-correlation length.

(D) Model fit of the best sample found during sampling. A subset of the experimental data is shown for M1 and M2. Complete datasets and parameter marginal

distributions are depicted in Figures S2–S6. A comparison of analytical vs. numerical integration is shown in Figure S1.
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high-probability regions around the local optima. These direct transitions appear at a high rate for the marginalization-based approach (Fig-

ure 5G), while they rarely happen for the standard approach (Figure 5F). For the latter, most transitions are along low-energy paths with pos-

terior probabilities dropping below theminimumenergy path. Accordingly, the transition behavior is for themarginalization-based approach

more efficient than for the standard approach.

In summary, the in-depth study of the mRNA transfection model (M3) showed that the marginalization-based approach can achieve sub-

stantial accelerations as the structure of the sampling problem is simplified, e.g., by facilitating transitions between modes. The improve-

ments are related to the interplay of sampling approach and problem geometry. In particular for challenging (e.g., multi-modal) problems

a much greater improvement could be observed.

Marginalization-based approach enables Bayesian inference for large models

As the marginalization-based approach appeared beneficial for challenging problems, we assessed in a next step whether it enables Bayesian

inference forproblems forwhich standardapproachesdidnotprovide reproducible results ina reasonable time frame.Specifically,weconsidered

anODEmodel for signal transduction ingastric cancercells (cell lineMKN1) thatwasdeveloped tounravel responseand resistancemarkers.27This

model possesses in total 57 unknown parameters, of which 26 are model parameters and 31 are observation parameters (Table 1, M4).

The application of themarginalization-based approach resulted in a reduction of the dimensionality of the sampling problem by over 50%

(Figure 6A). For the 26 model parameters which remain to be sampled, we compared the marginal likelihoods as computed using the pre-

viously derived analytical formulas and numerical integration (Figure 6B). The agreement of the results (Pearson correlation rz 1:0) confirmed

the correctness of our analytical integration.

To determine the parameters of the model, we performed sampling using standard and marginalization-based approach. The adaptive

Metropolis-Hastings algorithm18 and the adaptive parallel tempering algorithm21 employed in the previous sections were run 10 times with

different starting points and random seeds for 106 iterations for the adaptive Metropolis-Hastings and 105 iterations for the adaptive parallel

tempering algorithm. We found that while all runs in the marginalization-based approach (and for both sampling algorithms) successfully

finished within a run time limit of 7 days, only 7 out of 10 runs successfully finished for the standard approach for each sampling algorithm.

TheMAP estimates observed in the different runs provided similar fits (Figures 6C and 6D). In contrast, themarginal distributions of themodel

parameters differed, with themarginalization-based approachmostly providing broader parameter distributions than the standard approach

(Figures 6E and 6F). The assessment of the reproducibility of the marginal distributions revealed a high variability between different runs per-

formed using the standard approach (Figures 6E and S10). On the contrary, for the marginalization-based approach a good agreement be-

tween runs was observed (Figures 6F and S11), indicating reproducibility. To verify that the behavior observed for the individual parameters is

maintained in the full parameter space, we analyzed the overall agreement of all parameter samples across all runs for the standard and

marginalization-based approach by visualizing the samples using the uniform manifold approximation and projection (UMAP) representa-

tion.32 We found that the individual runs of the standard approach represent individual clusters in the UMAP (Figure 6G), while the individual

runs of the marginalization-based approach were indistinguishable (Figure 6H). This finding was supported by the distribution of the nearest

neighbors (Figure S12). This revealed that: (i) in the marginalization-based approach all the individual runs sample from the same distribution

and (ii) the standard approach failed for both algorithms considered here.

A B

C D

E

Figure 4. Comparison of the minimum energy path for model M3

(A–D) Landscape of the optimized (A and B) posterior and (C and D) marginalized posterior for different fixed values of the model parameters b and d. The

difference with respect to the maximal posterior value is depicted.

(E) Transition coordinates for the minimum energy path.
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The study of the model of signal processing in gastric cancer cells revealed that marginalization-based approach allows for reproducible

sampling in problems, where the standard approach failed.While for themarginalization-based approach all runs provided consistent results,

the standard approach failed to converge within an average central processing unit (CPU) time of 150 h rendering its application impracti-

cable. Furthermore, our study provides improved estimates for the parameters (Figure S13) of important processes of a drug used in clinical

practice.

In summary, the application of our marginalization-based approach to Bayesian inference for models with relative measurement data

shows consistently that our approach yields the same marginal distributions for the parameters as the standard approach, while being highly

more efficient in exploring the parameter space and enabling Bayesian inference of larger models, which was not possible before with the

standard approach.

DISCUSSION

Bayesian inference for models of biological processes requires the consideration of parameters of the dynamical systems as well as the mea-

surement process. The unknown scaling factors, offsets, and noise levels often resemble a large fraction of the overall parameters.12 This com-

plicates sampling and can render the generation of representative samples practically infeasible. Here, we address this challenge by proving

that an (analytical) marginalization of the posterior even for dynamical models, for common observation and noise models, and plausible

priors. We provide analytical result for additive normal, multiplicative log-normal, and additive Laplace noise for different choices of unknown

parameters and priors. This approach allows for the construction of a sample from the full posterior by (i) sampling amarginalized posterior for

the parameters of the dynamical systems and (ii) conditional sampling of the observation parameters.

We evaluated the performance of our marginalization-based approach and compared it to the standard approach for four published

models, with differences in their complexity. This revealed an increased effective sample size per unit of time, and increased transition

A B

C

D

E

F G

Figure 5. Quantification of the transitions between the posterior modes for different temperatures T for model M3

(A) Number of transitions per 106 iterations for a range of temperatures for the standard (orange) and marginalization-based (purple) approach. A total of 10

chains per temperature value are depicted.

(B and D)Marginal distribution computed using a kernel density estimate and (C,E) parameter trace for themodel parameter b of a representative chain obtained

with the (B,C) standard and (D and E) marginalization-based approach for T = 16.

(F and G) Direct transitions between the posterior modes of a representative chain along with the minimum energy path obtained with the (F) standard and

(G) marginalization-based approach for T = 16. See also Figures S7–S9.
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probabilities between posterior modes. The marginalization-based approach was for all considered problems more efficient than the stan-

dard approach, but—more importantly—it also enabled the assessment of the posterior distribution for larger models for which the standard

approach failed to converge in the considered time frame. Interestingly, there was no strong relation between the reduction of the problem

dimensionality and the improvement in efficiency. The improvement seems to rather depend in the characteristics of the marginalized pos-

terior and the interplay of these characteristics with the employed sampling algorithm. This is consistent with previous finding for hierarchical

optimization,25 where a minimal reduction of the problem dimensionality was shown to substantially improve the conditioning of the optimi-

zation problem. Based on our observations we expect the sampling behavior to benefit substantially even from the removal of a small number

of parameters, as (i) the likelihood value is often very sensitive to them, which produces narrow rims in the posterior distribution, and as (ii) the

removal of a small number of parameters can result in a substantially increased probability to jump between modes. The latter was observed

for themodel ofmRNA transfection. A reviewof the PEtab benchmark collection33 showed that 20 out of 30 dynamical models used in systems

biology andmedicine possess unknownobservation parameters. Hence, a large number ofmodeling projects could profit from the approach.

The approach presented here is not limited to relativemeasurement data, but also applicable to absolutemeasurements. As for these, the

noise parameters would still have to be inferred (Tables S1 and S2).We provide the detailed derivation in the supplemental data. Accordingly,

our approach can be used for combinations of relative and absolute data. Also, it is applicable to different measurement process functions

and noise models to the ones considered here. We hypothesize that also an extension to correlated noise is possible, but this remains to be

assessed.

The choice of conjugate priors for themarginalized parameters eased the analytical derivation of themarginal posterior. This implies in our

case that observable and noise parameters are not independent under the prior. Mostly, this is not a problem since both parameters are

related to the measurement process. However, in some cases, there might be known parameters to be independent; therefore, other prior

distribution assumptions must be considered. It should be noted that the concept of marginalization is not restricted to integrals that are

A B C D

E F G H

Figure 6. Convergence of the marginalization-based approach for model M4

(A) Number of sampled parameters.

(B) Scatterplot for the agreement of analytical and numerical integration.

(C and D) Model fit of the best sample found during sampling for, (C) a subset of the experimental data represented as mean +/� standard deviation and (D) the

complete dataset in form of a scatterplot, the standard (orange) and marginalization-based approach (purple). (E–H) Results from adaptive Metropolis (top) and

parallel tempering (bottom) are shown.

(E and F) Parameter marginal posterior distribution obtained using the (E) standard and (F) marginalization-based approach computed using a kernel density

estimate for model parameter q1.

(G and H) Dimensionality reduction for all samples from all runs for the (G) standard and (H) marginalization-based approach using the UMAP representation.

Different shades correspond to individual runs. The UMAPs were constructed using the Python package umap.32 See also Figures S10–S12.
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analytically solvable, but also numerical integration schemes can be considered. However, this would increase the required computation time

(as observed in Figure 2B), but very likely the improved mixing properties would be maintained. Whether the improved mixing out-weights

the increased computational cost will be problem dependent but might not be unlikely (and would have been the case for the mRNA trans-

fection model (M3)) as the numerical integration over observation parameters will not require numerical simulations of the model. In future

research projects this question should be tackled via a comprehensive benchmarking. Similarly, while in this manuscript only cases were pre-

sented in which the conditional sampling of observation parameters was straightforward due to the use of conjugate priors, the approach is

also applicable if this does not hold. In this case the sampling of the parameters q is not impaired, but MCMC sampling or rejection sampling

might need to be used to obtain sample for the observation parameters.

The proposed method was beneficial in combination with adaptive Metropolis-Hastings and adaptive parallel tempering algorithms. We

expect that the same will hold true for sampling algorithms exploiting gradient information, such as Hamilton Monte Carlo sampling.19,20 As

the marginal likelihood is differentiable, merely the derivation and implementation of the gradient are required. The usage of methods which

exploit the Riemann geometry of the parameter space of statistical models, e.g., Metropolis-adjusted Langevin algorithm,34 might be slightly

more involved. This requires the derivation of the marginalized Fisher information matrix. While we assume that this can be derived in closed

form or at least be accurately approximated, the corresponding results are not yet available. Alternatively, automatic differentiation could be

employed to obtain gradients.35 The assessment of the impact of posterior marginalization on the performance of these samplers as well as

other sampling methods would be highly beneficial but is beyond the scope of this work.

In this study, we focused on the assessment of parameter uncertainties for ODEmodels. Yet, as the marginalization-based approach pro-

vides a complete parameter sample, it facilitates also the evaluation of prediction uncertainties.16 Accordingly, we expect that it might

contribute to resolving reliability problems of Bayes prediction uncertainty analysis encountered in recent studies.36 Furthermore, the pro-

posed approach is not limited to ODEs, but directly applicable for other deterministic models, e.g., partial differential equations.

In summary, the marginalization-based approach provides a new tool for Bayesian inference for models with observation-related param-

eters. It substantially benefits the efficiency of sampling-based approaches and renders the generation of representative posterior samples

for large models possible. As it is agnostic to the structure of the underlying dynamical model, it is widely applicable to mathematical models

from different research fields, such as engineering, physics, and ecology.

Limitations of the study

This study has threemain limitations. The first limitation is the number of models that were considered in the study. The extrapolation of these

results when testing on 4 published models may be not applicable to all models, and behavioral exceptions may occur. However, when se-

lecting our candidate models we tried to cover different degrees of complexities and structures. Similarly, this applies to the sampling algo-

rithms used. Secondly, our approach may be in principle applicable to other model types, such as partial differential equations. While we

expect to get similar results, this remains to be evaluated. Lastly, the specification of such a ‘‘constrained’’ observation model is another lim-

itation. Ideally, the approach could be combined with automatic-differentiation schemes to flexibly facilitate the use of multiple observation

models.
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METHOD DETAILS

Mechanistic modeling of biological systems

We consider models based on ODEs of the form

_xðt; qÞ = f ðxðt; qÞ; qÞ; xðt0; qÞ = x0ðqÞ;
in which the vector field f : Rnx3Rnq/Rnx determines the temporal evolution of the states xðt; qÞ˛Rnx . The unknown model parameters,

which are estimated from themeasurements, are denotedby q˛Rnq . Usually, q includes reaction rate constants and initial amounts of species.

Here, nx is the total number of modeled species, and nq the total number of model parameters. The states xðt; qÞ andmodel parameters q are

linked to the observables via the observation map h : Rnx 3 Rnq/Rny , where ny is the total number of observables. The observables are the

measured properties of the model. Most measurement techniques only provide relative information about the absolute concentrations of

interest8,9 and, frequently, measurements are noise corrupted. Hence, to obtain the measurements y (i) the model observables must be re-

scaled by introducing scaling factors and offsets, and (ii) the model also must capture experimental errors by defining a noise model. Most

commonly, independent and additive Gaussian distributed noise models are assumed

yj;i = sj;i , hjðxðti; qÞ; qÞ + bj;i + εj;i;with εj;i � N
�
0;s2

j;i

�
; (Equation 5)

with observable index j, time index i, scaling factors s˛Rny3nt , offsets b˛Rny3nt , and noise parameters s˛Rny3nt . Here, nt denotes the total

number of time points. These parameters are often unknown and, therefore, also need to be estimated along with the unknown model pa-

rameters. Other usual noise assumptions include log-normal distributed noisemodels11 and Laplace distributed noisemodels.28 In this study,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Code for mathematical modeling, analysis and

visualization used in the manuscript

This paper https://doi.org/10.5281/zenodo.7199473

Software and algorithms

Python version 3.10 Python Software Foundation https://www.python.org

AMICI (Python package) Github https://github.com/AMICI-dev/AMICI

pyPESTO (Python package) Github https://github.com/ICB-DCM/pyPESTO

Other

Benchmark PEtab model repository collection Github https://github.com/Benchmarking-Initiative/

Benchmark-Models-PEtab
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we focus on the case of additiveGaussian noise (5), but implementations for log-normal and Laplace distributed noisemodels are provided in

Tables S1 and S2 and supplemental data.

We denoted the group of all measurements as D = fyj;igj = ð1;.;ny Þ
i = ð1;.;ntÞ .

Benchmark models

For the evaluation of the marginalization-based approach, we employed in total five models (one toy model and four published M1–M4) and

their corresponding datasets (Table 1).

Toy: Model of a conversion reaction

The conversion reaction model was introduced in28 and describes a reversible chemical reaction, which converts a biochemical speciesA to a

species B with rate q1, and B to A with rate q2 (Figure 2). Wemodified the observation model to include scaling and offsets.For the evaluation

of the proposedmethod, we generated one artificial dataset which is depicted in Figure 2D. For details on the model structure and synthetic

data generation we refer to the supplemental data.

M1: Model of EGF-dependent AKT pathway

The model of EGF-dependent AKT pathway has been introduced in37 and possesses in total 16 unknown parameters: 13 model parameters

and 3 scaling factors (Table 1, M1). The available experimental data are a total of 144 data points under 6 different experimental conditions for

3 observables. For each data point, the corresponding variance of the measurement noise is provided, therefore it does not need to be esti-

mated. The complete dataset is depicted in Figure S2.

M2: Model of STAT5 dimerization

The model of STAT5 dimerization has been introduced in38 and possesses in total 9 unknown parameters: 6 model parameters and 3 noise

parameters. To this model, we have added 3 scaling factors (Table 1, M2), one per observable, for the sake of testing the proposed method.

The available experimental data are a total of 48 data points for 3 observables. The complete dataset is depicted in Figure S3.

M3: Model of mRNA transfection

The model for mRNA transfection has been introduced in39 and possesses in total 5 unknown parameters: 3 model parameters, 1 scaling fac-

tor, and 1 noise parameter (Table 1, M3). The complete dataset is depicted in Figure 3D. For further details of the model structure we refer to

the supplemental data.

M4: Model of gastric cancer signaling

Themodel for gastric cancer signaling has been introduced in.27 Here, we considered the Cetuximab responder cell lineMKN1. The available

experimental data for the responder cell line were a total of 303 data points under 106 different experimental conditions for 31 observables.

For each data point, the corresponding variance of the measurement noise was provided, therefore it did not need to be estimated.

For all models we used the parameter ranges and prior distributions introduced in the original publications. The priors are mostly

uninformative.

Parameter optimization

To determine themaximuma posteriori (MAP) estimates, weminimized the negative log-posterior function. Thisminimization was performed

using multi-start local optimization, an approach which was previously shown to be reliable.12,40 For local optimization, we used the trust-re-

gion optimizer fides.41 Parameters were log10-transformed to improve numerical properties.40,42,43 We generated 100 starting points for local

optimization, except for model M4 for which we used 500 starting points.

Bayesian parameter inference

To performBayesian parameter inference, we usedMCMC sampling following the pipeline presented in.44 Similar to parameter optimization,

sampling was performed using log10-transformed parameters. The MAP estimates ðbq; bs; bb; bs2Þ for the full problem (aka without marginaliza-

tion were used to initialize the MCMC chains44: all runs for the standard sampling approach were initialized using the full optimal vector

ðbq; bs; bb; bs2Þ (found using multi-start local optimization); while for all runs for the marginalization-based sampling approach were initialized

using the corresponding subset bq. Note that for the runs for the marginalization-based sampling approach also the MAP estimate for the

marginalized problem could have been used, yet, differences were minor and the chosen approach allowed us to match runs of standard

and marginalization-based sampling approach. The parameter posterior distribution was sampled using the adaptive Metropolis18 and par-

allel tempering45,46 algorithms implemented in the Python toolbox pyPESTO.47 For the parallel tempering algorithm, we used 10 chains

initialized. For all runs of the parallel tempering algorithm, we initialized the first chain – which samples the posterior – with the best optimi-

zation result found using multi-start local optimization, the second chain with the second best optimization result, and so on.
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Convergence after burn-in was assessed using the Geweke test30 and auto-correlation length using Sokal’s adaptive truncated periodo-

gram-estimator.48 Both methods are implemented in pyPESTO and we refer to the respective original publications for technical details. The

effective sample size is given by

neff =
n

1+ 2
PN

t = 1rt

where n is the number of samples remaining after discarding burn-in period, and rt is the estimated auto-correlation at lag t.

For all models, the prior hyperparameters for both sampling approaches were the same as used for optimization.

Tempering scheme for the posterior analysis

The posterior for standard and marginalization-based approach were tempered to assess transition characteristics (Figure 5). We used the

tempered posteriors

pT

�
q; s;s2

��D�f�p�D��q; s; s2
�
p
�
q; s;s2

��1=T
:

and

pT ðqjDÞf�pðDjqÞpðqÞ�1=T :
with temperature T.
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