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A B S T R A C T

The standard methodologies for quantitative analysis (QA) of mixtures using Fourier transform infrared (FTIR)

instruments have evolved until they are now more complicated than necessary for many users’ purposes. We

present a simpler methodology, suitable for widespread adoption of FTIR QA as a standard laboratory technique

across disciplines by occasional users.

� Algorithm is straightforward and intuitive, yet it is also fast, accurate, and robust.

� Relies on component spectra, minimization of errors, and local adaptive mesh refinement.

� Tested successfully on real mixtures of up to nine components.

We show that our methodology is robust to challenging experimental conditions such as similar substances,

component percentages differing by three orders of magnitude, and imperfect (noisy) spectra. As examples, we

analyze biological, chemical, and physical aspects of bio-hybrid fuel cells.
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Method details

Fourier transform infrared (FTIR) spectrometers have become a common feature of most
laboratories, and are used in a wide variety of research [1–10]. Over the last 50 years, quantitative
analysis (QA) of mixtures using FTIR has progressed from matching peaks at a few wavenumbers to
matching entire spectra. In the process, FTIR QA has become conjoined with specialized chemometrics
software (usually commercial) that employs sophisticated linear systems theory to direct the entire
course of experiments. The software first prescribes known mixtures to measure, based upon the
concentration ranges of the known substances in the samples (i.e., unknown mixtures) to be tested.
The software uses the spectra of the specified mixtures to construct a QA model. It can then use the QA
model to analyze many samples, quickly and accurately (for samples that conform to the limits of the
QA model).

While this standard methodology for FTIR QA works quite well under many circumstances, it has
some serious drawbacks. For occasional users, the QA software may not be available. Even if available,
it can be a mysterious black box to the uninitiated. The standard linear systems methodology is
needlessly complicated for many analyses. Lastly, extra QA models may be required for mixtures in
which the concentrations of components vary widely, or if another component must be added to the
mixture. Each change in the experiment often requires another QA model (or several more). These
drawbacks may deter users, reducing adoption of FTIR QA as a standard cross-disciplinary laboratory
technique.

We present a much simpler FTIR QA methodology, which we have developed to analyze the
component percentages in mixtures of known substances. (We have tested mixtures with up to nine
components.) The algorithm is straightforward and intuitive, yet it is also fast and accurate.

Explanation of methodology

As usual in FTIR spectroscopy, we start with Beer’s Law, which states that the absorbance spectrum
of a mixture, AMixture

m , is the linear sum of the absorbance spectra of the N components, AComponent
n;m ,

weighted by the component concentrations, Cn:

AMixture
m ¼

XN

n¼1

CnAComponent
n;m (1)

where the m index runs over the M measured wavenumbers, the n index runs over the N components
of the mixture, and M�N. Strictly speaking, this law is only valid in the limit as the absorbance goes to
zero. However, it has been found to be a very good approximation over a wide range of absorbances. In
practice, one can usually dilute a highly-absorbing mixture until Beer’s Law applies (or use a thinner
sample, for transmission FTIR).

The challenge is to find Cn which satisfy (1). More realistically, since there is always noise in the
measurements of AComponent

n;m and (even more so) AMixture
m , one seeks to find Cn which satisfy (1) as nearly

as possible. Thus, one seeks to minimize the root-mean-square error, eRMS, with respect to the Cn,
where:

eRMS ¼
1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m¼1

AMixture
m �

XN

n¼1

CnAComponent
n;m

 !2
vuut (2)
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The current standard treatment would at this point take the partial derivatives of (2) with respect
to the Cn, obtaining a set of M equations over-determined for the Cn, which would then be solved
through singular value decomposition (SVD). Alternative sophisticated methodologies might be used
instead (or in addition), such as principal components analysis (PCA) or partial least squares (PLS).
However, given current computing speeds (even for inexpensive laptop computers), one can
profitably go all the way back to the ‘‘stone age’’ of chemometrics (c. 1900 A.D.) and apply the simple,
brute force, methodology that was used when only a few peak heights were measured. That is, one can
directly calculate eRMS using (2) for every possible combination of Cn, to whatever precision is desired.
We will refer to this as the ‘‘single mesh method’’ (SMM).

For mixtures of only 2 components, we have found the SMM quite satisfactory, giving accurate
results to precisions of 0.1% in about 15min. All calculations were done with (non-compiled) Microsoft
Visual Basic 2010, on a laptop with a 2.66GHz Intel Core2 Duo CPU and 4 GB RAM, running under
64-bit Windows 7. The SMM calculation time can be significantly reduced if a priori knowledge is
available for rough estimates (as is often the case). Nevertheless, the solution time for the SMM
increases quickly as one increases N. Therefore we developed a multi-pass method, one step up in
sophistication from the brute force SMM. It was inspired by the local adaptive mesh refinement
(LAMR) algorithms of partial differential equations solvers [11].

Our multi-pass ‘‘LAMR’’ method (MPLM) starts out as the SMM, except with a coarse Cn mesh. The
key principle behind the MPLM is as follows: At each pass, the mesh step-size only needs to be
sufficient to ensure that the resulting Cn values (i.e., the mesh values which minimize eRMS in that pass)
are in the vicinities of the Cn values which will globally minimize eRMS. Our experience has been that
we can set the first-pass mesh step-size, s1, to 10% (bounded from 0% to 50%) and not miss the global
minimum. Even for mixtures of 9 components, plus a background component, this initial coarse
calculation proceeds quickly (<5min).

In subsequent passes, new upper and lower boundaries are set based upon the previous pass, and
the mesh step-size, si, is reduced appropriately. This is shown schematically in Fig. 1. For simplicity,
Fig. 1 shows each pass’s boundaries ‘‘backed off’’ from the previous pass’s result by one entire step-size
(in every direction) of the previous pass’s mesh. In our program, the user can actually choose the
amount of ‘‘backing off,’’ B. In the results presented here, we used B=0.8 steps, in every direction. Also,
Fig. 1 shows the step-size reduced by a factor of 2 for simplicity, but our program allows the user to
choose the step-size reduction. In the results presented here, the mesh step-size reduction, r, was
chosen to be 4, so that si+1 =si*B/r=si/5. Lastly, Fig. 1 shows the same mesh step-sizes used for both
components, but our program does not have that limitation.

To accommodate a variety of choices for s1, B, and r, our MPLM program is coded for up to 9 passes.
For our chosen parameters, 9 passes yields a potential step-size reduction from 10% (at most) for pass

[(Fig._1)TD$FIG]

SMM MPLM

Fig. 1. Simplified illustration, for only 2 components, of improving on the simple mesh method (SMM) with the multi-pass ‘‘local

adaptive mesh refinement’’ method (MPLM). Five MPLM passes are shown, with the mesh halved after each pass. The outer

corners of the black grid represent the initial ranges for the first pass. Each pass gets closer to the optimum fit, located

somewhere within the purple grid. For 2 components, as shown, MPLM would achieve twice the accuracy for 1/10 the effort. For

9 components, the effort would be reduced by 5 million. (Actual parameters used were different, and the speed-up achieved was

even greater; see text.)
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1 to 10%/58
[1_TD$DIFF]=0.000026% for step 9. Since such accuracy is unnecessary (and not merited by our

measurements), our MPLM program saves time by not looping on components once the step-
size<0.01%.

In principle, the MPLM is more prone than the SMM to finding a local minimum rather than a global
minimum. This was especially a concern with many components, since the convergence of many-
variable minimizations has been an active area of study for at least 50 years. However, in practice we
have not found this to be a problem with our MPLM. Probably this is because our component FTIR
spectra are effectively orthogonal. On the occasions when we had similar component spectra, and we
wanted to ensure precise final results for the Cn values, we simply re-ran the MPLM calculations, using
a smaller value for s1. For those re-calculations, in the spirit of MPLM, we also restricted first-pass Cn

boundaries somewhat, based on the first MPLM calculation’s result, to save time on the re-calculation.
The MPLM is no more accurate than the SMM, but is much faster. For N components, and using the

typical mesh and program parameters just mentioned, the number of computations of eRMS using (2) is
reduced by h for the same final precision, where

h ¼ ð100=0:01ÞN

9�10N
� 105N

10�10N
¼ 104N�1 (3)

For 9 components, the reduction in computations of eRMS for MPLM compared to SMM can be a
factor of 1035. Having only a few components and good a priori knowledge of concentrations can
reduce this extraordinary advantage of MPLM over SMM. For most cases of interest, though, MPLM
will be much faster than SMM, for the same desired final precision.

The main part of our program, containing the core algorithms, is available in the Supplemental
Materials, along with screen shots of the interface. The full Visual Basic project files are rather large,
and can quickly go out of date. The latest project files will be made available by the corresponding
author, upon request.

For the measurements discussed here, because our samples were all aqueous, three additional
steps were taken that are not generally necessary for fitting FTIR spectra using the MPLM. First, we
used water (rather than air) as the background. This eliminated the water component from every
mixture (while implicitly accounting for it). Second, we re-measured the water background just before
each component and sample measurement. This increased the signal to noise of the spectra. Third, we
measured component spectra at various concentrations. Then, we fit the sample spectra using
component spectra measured at concentrations roughly matching those expected in the sample, to
compensate for slight deviations from Beer’s law due to water-component interactions and detector
saturation. If any of our initial guesses for component concentrations were far (>15%) from the results
of the fit, we re-fit using more-appropriate component spectra. Except in extreme cases this refitting
did not change the fit results significantly, but it did increase the accuracy in test samples, so we
retained this technique in our methodology.

Verifications of methodology

Here we show that our methodology is robust under challenging experimental conditions such as
components with similar spectra, component percentages differing by orders of magnitude, and
imperfect (noisy) spectra. We also show that it provides a warning if a mixture contains unknown
components.

Verification with artificial mixture

Our first verification of the methodology was to make an ideal FTIR spectrum for an artificial
‘‘mixture’’ by adding FTIR spectra from nine aqueous components, with appropriate multipliers. The
components were sucrose, glucose, fructose, YNB, ethanol, butanol, acetone, acetaldehyde, and acetic
acid. The percentages are representative of a partially complete fermentation of mixed sugars by
microorganisms. For this verification we assumed the component spectra were perfect, giving a
perfect FTIR spectrum for the ‘‘mixture.’’ The spectra are shown in Fig. 2.
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Fig. 2. Spectra for the components and the artificial mixture. Note the scale change in absorbance for major vs. minor

components. The mixture (�3) and the sugars have been offset in absorbance steps of 0.01, for clarity. The absorbances are

relative to water as the background.
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Not surprisingly, our computer program based on MPLM gave an exact fit. To simulate a real-life
sample spectrum, we added a random value from a normal distribution (of magnitude 0.5% and
centered on zero) to each absorbance value in the ideal spectrum of the mixture. This would be
considered a noisy measurement. Sample spectra with 0.1% random error in the absorbance appeared
most similar to good experimental spectra in our research. (Component spectra can be repeatedly
measured and averaged, until their noise is not an issue compared to sample spectra noise.) To save
some time, the first-pass boundaries of the fits were from 0 to 12, with a stepsize of 3. (This ensured
that none of the correct component values were directly on any of the multipass grids.) The RMS error
for all fits was 0.00042(1). The computational time was 1600s per fit. The component concentrations
thereby obtained, for five runs, are shown in Table 1. It is clear that averaging a few runs allows MPLM
to give relative errors of 2% or less for all components, even with complicated mixtures, component
contributions differing by up to 50�, and large levels of ‘‘measurement’’ noise. The absolute accuracy
for all component percentages was better than our target accuracy of �0.1%.
Table 1
Fit results for artificial mixture’s noisy spectra, with correct values at top. There are five runs of 0.5% noise since the randomness

of the noise affected the fit results. Note also that spectra with 0.1% random error appeared most similar to typical experimental

spectra in our research. The spectra with 0.5% error used here would be considered noisy.

Sucrose Glucose Fructose YNB Ethanol Butanol Acetone Acetald. Ac.acid

Exact 10.000 10.000 10.000 1.000 10.000 2.000 2.000 1.000 1.000

#1 9.996 9.999 10.038 0.984 9.984 2.008 1.999 1.014 1.008

#2 9.972 10.017 10.013 1.007 9.973 1.950 1.989 1.019 0.997

#3 9.977 10.056 10.019 0.978 9.938 1.969 2.042 1.035 0.983

#4 9.987 10.017 10.011 0.990 10.026 1.888 1.990 1.026 0.993

#5 10.051 9.958 10.016 0.992 10.003 1.965 2.006 0.980 0.992

avg 9.997 10.009 10.019 0.990 9.985 1.956 2.005 1.015 0.995

sn 0.028 0.032 0.010 0.010 0.030 0.039 0.019 0.019 0.008

erel �0.03% 0.09% 0.19% �1.0% �0.15% �2.2% 0.25% 1.5% �0.50%
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Verification with a yeast fermentation mixture

Our second verification of the methodology used real mixture data, fitting the FTIR spectrum of a
sample from a bio-hybrid fuel cell. The sample was a yeast fermentation of glucose, which had been
run for some time in a direct ethanol fuel cell. It was expected to contain ethanol, glucose, acetic acid,
yeast extract (Y), and bacterial peptone (P). The methodology was challenged by either omitting one or
two components from the fit, or by adding additional components. We evaluated the goodness of the
MPLM fit primarily using eRMS from (2). We also used the slope (a), y-intercept (b), and correlation
coefficient (R2) of a straight-line (y=ax+b) fit between the measured (y) and computed (x) FTIR
absorbances, where the computed absorbances were obtained from (1) using the fitted values for Cn

and the known AComponent
n;m . Ideally eRMS =0, and the straight-line fit would yield a=1, b=0, and R2 =1. The

results are shown in Tables 2 and 3. (R2 and a are subtracted from 1 so that smaller numbers indicate a
better fit in all four statistics columns.)

If a high-concentration component (e.g., ethanol, glucose) is omitted, a cursory visual comparison
of the fit spectrum compared to the sample spectrum is sufficient to determine that an important
component has been left out. The statistical fit indicators in Table 2 are just as clear that something
is amiss. The fitted component concentrations are not even close to correct. On the other hand, if a
low-concentration but non-trivial component (e.g., acetic acid, yeast extract, peptones) is omitted, the
overall quality of the fit still looks good to the eye. The fitted Cn of the major components barely
change, so accidentally omitting a minor component doesn’t entirely invalidate the QA. However, the
statistics are clearly worse.

Sometimes the computed concentration of a component can be changed significantly if its
spectrum is similar enough to the omitted spectrum. The cases for omitting yeast extract or peptone in
Table 2 show that either one alone can imitate the other, especially at low concentrations. Only slight
errors in the other component concentrations are engendered, and there are only small statistical
indications of a problem. However, omitting both (i.e., the Y+P case in Table 2) causes large errors in
the other component concentrations and is clearly flagged as a mistake by all four statistical
indicators.
Table 2
Effect on the MPLM fit of omitting components, using FTIR data from a real sample.

Omitted

Cmpnt.

ethl.

(%)

gluc.

(%)

ac.ac.

(%)

yst.ex.

(%)

pep.

(%)

Y+P

(%)

eRMS

(%)

1�R2

(�10�4)

1�a

(�10�4)

b

(�10�5)

None 9.52 5.31 0.34 1.04 1.34 2.38 .0569 30 34 7.9

Ethanol – 9.23 0.34 0.21 0.00 0.21 .4498 1872 �167 �32

Glucose 15.4 – 0.76 4.35 0.00 4.35 .4091 1468 480 110

Acetic acid 9.54 5.44 – 0.98 1.58 2.56 .0792 52 130 31

Yeast extr. 9.57 5.45 0.33 – 2.34 2.34 .0633 36 60 14

Peptone 9.36 5.18 0.36 2.31 – 2.31 .0671 41 26 6.1

Y+P 7.28 6.54 0.77 – – – .2299 380 480 120

Table 3
Effect on the MPLM fit of adding components, using FTIR data from a real sample.

Added Cmpnt. ethl.

(%)

gluc.

(%)

ac.ac.

(%)

yst.ex.

(%)

pep.

(%)

Y+P

(%)

eRMS

(%)

1�R2

(�10�4)

1�a

(�10�4)

b

(�10�5)

None 9.52 5.31 0.34 1.04 1.34 2.38 .0569 30 34 7.9

Sucrose 9.54 5.15 0.34 0.99 1.39 2.38 .0564 29 27 6.4

Fructose 9.52 5.21 0.33 0.95 1.41 2.36 .0566 29 30 6.9

Adding galactose, methanol, or propanol as possible new components made no difference in the fits for the known

components, and gave 0% for the new components

Butanol+acetone 9.58 5.23 0.31 1.07 1.37 2.44 .0567 24.5 29.2 9.0

Leachate (0.87%) 9.61 5.23 0.23 0.97 1.53 2.51 .0543 27 34 8.3

Sugars+leachate 9.61 5.11 0.23 0.89 1.61 2.50 .0539 30 27 6.9
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Adding either sucrose or fructose improved the fit slightly, according to all four statistical
indicators (Table 3). The fitted concentrations of ethanol, acetic acid, yeast extract, and peptone
remained almost unchanged. The fitted concentration of glucose decreased slightly, almost exactly
compensated for by the increase (from assumed zero) of the sucrose or fructose. The fitted
concentration was 0.18% (0.15%) for sucrose (fructose), for a consistent total sugar concentration of
5.33% (5.36%). Including both sucrose and fructose in the fit gave results almost identical to sucrose
only. Per the manufacturer’s analysis, our glucose was in fact only 99.8% glucose. The MPLM fit found
non-zero concentrations of sucrose probably because it was actually in the sample, originally as a trace
contaminant in the glucose, and becoming more noticeable after the yeast had preferentially
catabolized glucose.

This result is in stark contrast to the results obtained by including galactose, methanol, or
propanol as a component. There was no reason to expect any of them in our sample. Although their
FTIR spectra share some features with spectra of known components (i.e., other sugars and ethanol),
the MPLM was not tricked, regardless of the combinations tried. It consistently gave zero for their
concentrations.

Despite the successes, the statistical indicators were larger than expected, which implied there was
still a missing (trace) component. Adding both acetone and butanol as possible components improved
the fit slightly, with 0.14% acetone and 0.15% butanol. See Table 3. Their presence would be consistent
with contamination by Clostridium acetobutylicum, another organism in our lab. However, the 1:1 ratio
of acetone to butanol does not match what would be expected. We hypothesized that the tubing we
used was leaching plasticizer into the fermentate, due to the high ethanol level. Commonly-used
plasticizers have some molecular structures that are similar to those of acetone and butanol. By
soaking the tubing in ethanol, we obtained the leachate, and its FTIR spectrum. It was added as a
possible component to the fit. Again, the resulting percentages of the other (non-trace) components
were scarcely changed, but the overall fit was noticeably improved. See Table 3. The best fit was
obtained with 0.15% sucrose, 0.01% fructose, and 0.87% leachate. The spectrum of the leachate
(not shown) was similar to dibutyl phthalate, which is indeed a commonly used plasticizer. Thus,
the MPLM was sensitive enough to indicate a potential problem with our setup while it was still a
minor problem.

Example applications of the methodology to bio-hybrid fuel cell research

We now briefly present several ways we have applied the MPLM for FTIR in our bio-hybrid fuel cell
research, as illustrative examples of its utility and sensitivity.

Tracking cultures of microorganisms

Cultures of bacteria or fungi can be difficult to track with most analysis methods, because the
component concentrations change dramatically, often in opposite directions. FTIR, however, can
handle high and low concentrations simultaneously. In a research environment, many variables of the
cultures can change, such as organisms, media compositions, temperatures, oxygenation, stirring, and
resulting products.

Fig. 3 shows a typical (simple) example, an anaerobic fermentation by yeast (Saccharomyces

cerevisiae) of a syrupy solution of 45% glucose in water plus some trace nutrients. After 500h, the
glucose level has dropped by more than half, while the ethanol level has climbed from zero to almost
14%. (The other media components are nearly steady and are not shown.)

Tracking fuel cell anode reactions

In a bio-hybrid fuel cell, the microbes provide a fuel (e.g., ethanol) that powers a conventional fuel
cell. In Fig. 4, we show results from the MPLM, tracking a run in a direct ethanol fuel cell (DEFC). Even
in the presence of media components (not shown), the falling/rising levels of ethanol/acetic acid in the
anode compartment of the DEFC can be accurately ascertained. (The normalized values are relative
concentrations, to account for evaporative losses.)
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Fig. 3. During a fermentation of glucose by yeast, the falling/rising levels of glucose/ethanol can be easily tracked.
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Tracking protonation state as a pH indicator

Directly determining the pH of solutions by using FTIR spectra for H3O+ and OH� would be a very
difficult measurement, since the concentrations of those ions are low, especially in nearly-neutral
solutions. This presents a problem for precisely tracking pH in bio-hybrid fuel cells using FTIR.
Fortunately, in our research, pH changes occur mostly due to production of acetic acid. The acetate ion
exists in either a protonated (CH3COOH) or deprotonated (CH3COO�) state, and the two states have
different FTIR peaks. Treating the two states as separate components, and tracking the concentration
of each state, allows us to determine the pH, either through a calibration measurement (as below) or
through the Henderson-Hasselbach equation. Alternatively, one could use the method in reverse to
measure pKa [12].

We prepared a solution of 1M sodium acetate (pH 9.74) and titrated it with 12.1M hydrochloric
acid, measuring the pH and taking an FTIR spectrum at each titration step. At intermediate pH values,
[(Fig._4)TD$FIG]
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where the solution is a mixture of the CH3COOH and CH3COO� states, the spectrum can be fit as a
linear combination of the spectra for the two end points of the titration, where the acetate ion is
almost entirely either protonated (pH 1.56) or deprotonated (pH 9.74). Spectra for each titration step
are given in Fig. 5, labeled with the measured pH, along with a sample fit for pH 4.37. The relative
fraction of each spectrum vs. measured pH is given in Fig. 6. Because of slight density changes,
the fraction totals at intermediate pH did not add up to exactly 1.0. The correction for this is also
shown in Fig. 6.

Measuring diffusion across membranes

Diffusion across a reverse osmosis (RO) membrane was measured by placing two 10% (v/v) acetic
acid solutions into two chambers separated by an RO membrane. The two solutions were
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measured pH. The relative fraction is either taken directly from the fits (red and blue lines), or is normalized to the total fraction

in the fits (green and cyan lines). The total fraction from the fits is also shown (black line).
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of diffusion. The sample spectrum (h-chamber, after 24h) has begun to show deuterated characteristics.
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distinguished by using regular acetic acid in one chamber (labeled the h chamber) and acetic acid
where the methyl group was deuterated in the other (labeled the d chamber) This setup was used to
eliminate osmotic pressure effects that would complicate the interpretation of the data if the acetic
acid chamber was separated from a completely aqueous chamber by the RO membrane. After setup,
the system was then allowed to equilibrate by diffusion of both forms of acetic acid across the RO
membrane. Small samples were taken from both chambers twice per day for three days. As shown in
Fig. 7, the FTIR spectrum of d-acetic acid has peaks that are slightly shifted (by about 10cm�1) from
those for h-acetic acid.

Comparison with Fig. 5 spectra indicates that the 10% acetic acid (being a weak acid) is essentially
completely protonated. Despite the small spectral differences, the MPLM can accurately analyze the
mixtures with no difficulty, to obtain the concentrations shown in Fig. 8. The filled circles (squares) in

[(Fig._8)TD$FIG]

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70

h-acetic in d chamber
d-acetic in d chamber
h-acetic in h chamber
d-acetic in h chamber

Adjoining Chamber

Original Chamber

Time (hour)

N
or

m
al

iz
ed

 C
on

ce
nt

ra
tio

n

Fig. 8. Even small concentrations of very similar molecules can be accurately tracked, as in this experiment to measure the

diffusion of acetic acid across a membrane. Initially the h (d) chamber contains 10% regular (deuterated) acetic acid. It is clear

that diffusion of deuterated molecules is slightly slower.
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Fig. 8 show the normalized concentration of h-acetic (d-acetic) acid in the d (h) chamber where it was
initially absent, while the open circles (squares) show the h-acetic (d-acetic) concentration in the h (d)
chamber where it was initially 10%. (The initial concentrations are normalized to 1 in the graph.) The
deconvoluted data obtained using the methodology can be fit using Fick’s First Law [13] to calculate a
membrane permeability of 2.7cm/s for regular h-acetic acid. Not only does the data fit well to theory,
but the accuracy and precision of the methodology also enables one to determine that the d-acetic acid
diffuses slightly more slowly, as expected (permeability of 2.5cm/s).

Conclusion

We have described the MPLM in terms of FTIR, since we have only used it for FTIR. However, we
can think of no intrinsic reason why the MPLM couldn’t be used for UV–vis spectroscopy, Raman, SERS,
X-ray reflectance, or any experimental method in which the spectrum from a mixture is a linear
combination of the spectra from the constituents. Moreover, the MPLM could be trivially extended to
combinations of complementary measurements (e.g., FTIR+Raman), allowing for greater discrimina-
tion in mixtures of similar components. It could also of course be restricted to only sections of the
spectra with sufficient signal-to-noise ratio.
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