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Myocardial infarction (MI) is an acute and persistentmyocardial ischemia caused

by coronary artery disease. This study screened potential genes related to MI.

Three gene expression datasets related to MI were downloaded from the Gene

Expression Omnibus database. Differentially expressed genes (DEGs) were

screened using the MetaDE package. Afterward, the modules and genes

closely related to MI were screened and a gene co-expression network was

constructed. A support vector machine (SVM) classification model was then

constructed based on the GSE61145 dataset using the e1071 package in R. A

total of 98 DEGs were identified in the MI samples. Next, three modules

associated with MI were screened and an SVM classification model involving

seven genes was constructed. Among them, BCL6, CEACAM8, and CUGBP2

showed co-interactions in the gene co-expression network. Therefore, ACOX1,

BCL6, CEACAM8, and CUGBP2, in addition to GPX7, might be feature genes

related to MI.
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Introduction

Myocardial infarction (MI), a major cause of death and disability worldwide, is caused

by myocardial cell death due to prolonged ischemia (Thygesen et al., 2007). The most

important risk factors of MI include age, smoking, hypertension, diabetes, and total and

high-density lipoprotein cholesterol levels (Bao et al., 2022; Bruyninckx et al., 2008;

O’Gara, 2013). Chest pain is the most common clinical manifestation of acute MI, which

is often described as stress or compression (Fauci, 2014). The pain often radiates to the left

arm as well as to the jaw, neck, right arm, back, and upper abdomen (Marcus et al., 2007).

Approximately 15.9 million people worldwide developed MI in 2015 (Ji et al., 2015;

Cowan et al., 2018). MI is an emerging public health concern globally. Previous studies

have suggested that ALOX5AP (arachidonate 5-lipoxygenase activating protein) confers a

risk of MI; thus, ALOX5AP is the first specific gene conferring a substantial population-

attributable risk (PAR) of MI (Helgadottir et al., 2004). TGF-β1 (Transforming growth

factor-beta 1) is involved in the modulation of cell growth and differentiation, and plays

an important role in cardiovascular physiopathology and the repair of vascular injury
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(Nikol et al., 1992; Cambien et al., 1996). Meanwhile, the ALDH2

(aldehyde dehydrogenase 2) Lys/Lys genotype is a risk factor for

MI due to its influence on high-density lipoprotein (HDL)

cholesterol level (Gardemann et al., 1998; Takagi et al., 2002).

PLA1 (Phospholipase A1member A) hydrolyzes fatty acids at the

sn-1 position of phosphatidylserine and 1-acyl-2-

lysophosphatidylserine and its abnormal expression is

associated with coronary artery disease (CAD) and MI (Ji

et al., 2019). Furthermore, high-throughput screening revealed

that Nox2 as a potential miRNA target for function improvement

following MI (Wang et al., 2012; Smyth and Smyth, 2013; Yang

et al., 2017; Bao et al., 2022; Kim et al., 2022). However, the genes

closely related to MI development have not been fully identified.

The present study searched microarray datasets related to

human MI. Three gene expression datasets on MI were

downloaded from the Gene Expression Omnibus database and

differentially expressed genes (DEGs) were identified using

MetaDE. The genes associated with MI were further screened

by identifying disease-associated modules. With this

information, we constructed a gene co-expression network. To

classify the MI samples, a support vector machine (SVM)

classification model trained on the GSE61145 dataset was

used. With this trained model, we focused on mining related

genes associated with MI.

Methods

Microarray data

The GSE61145, GSE60993, and GSE34198 gene expression

datasets related to human MI, which were developed based on

the GPL6106, GPL6884, and GPL6102 platforms, respectively,

were downloaded from the Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) database. The

GSE61145 dataset contained data on 14 blood samples from

patients with MI and 10 samples from normal controls. The

GSE60993 dataset included data on a total of 24 samples (7 and

17 blood samples from normal controls and patients with MI,

respectively). Finally, the GSE34198 dataset contained

97 samples (48 and 49 blood samples from normal controls

and patients with MI, respectively).

The raw data were downloaded and the probes were

annotated into gene symbols based on platform annotation

information. Because a single gene could correspond to

several probes (multiple values), the average gene

expression values were calculated for each gene. Afterward,

log2 conversion was performed to transform the gene

expression data from a skewed distribution to an

approximately normal distribution. The data were then

normalized using the limma package (MetaDE) (http://

www.bioconductor.org/packages/2.9/bioc/html/limma.html)

in R language.

Differentially expressed gene and meta-
analyses

DEGs were screened by using the MetaDE package (Wang

et al., 2012) in R based on the GSE61145 and GSE60993 datasets.

The raw data were downloaded and the probes were annotated

into gene symbols based on platform annotation information.

The average gene expression values were calculated for each gene.

Afterward, log2 conversion was performed to transform the gene

expression data from a skewed distribution to an approximately

normal distribution. The data were then normalized using the

limma package in R language. The heterogeneity of gene

expression data based on different platforms was analyzed

using the MetaDE.ES method (Kim et al., 2022), with tau2 =

0 and Qpval >0.05. Differential expression analysis of genes with

homogeneous expression was then performed between the

disease and control groups, with an FDR (false discovery rate)

of < 0.05 defined as the threshold value.

Screening modules and disease-related
genes based on the meta-analysis

Weighted gene co-expression network analysis (WGCNA)

(MetaDE) is a typical system biology algorithm used to construct

gene co-expression networks based on high-throughput mRNA

expression data. The genes and modules related to MI in this

study were analyzed for DEGs based on the WGCNA algorithm

(Langfelder and Horvath, 2008). The correlation coefficient between

gene expression was calculated using the function Smn � |cor(m,n)|.
Then, the coefficient was then weighted by the exponential adjacency

function amn � power(Smn ,β). According to the principle of scale-free
networks, the weight coefficient β was determined for the adjacency

function. Tomeasure the dissimilarity between nodes, the correlation

matrix (Smn) was transformed into an adjacency matrix (amn). A

hierarchical clustering tree was then constructed based on the

dissimilarity coefficients between genes, with different branches of

the clustering tree representing different genemodules. Finally, t-tests

were used to analyze the correlations between network modules and

disease states.

Construction of the gene co-expression
network and enrichment analysis

The co-expressed modules that were closely associated with

disease state were analyzed and the module genes were collected

to construct the co-expression network. Genes related to disease

were subjected to gene ontology (GO) enrichment analysis using

the clusterProfiler package (Yu et al., 2012) in R based on the

hypergeometric distribution algorithm. P < 0.05 was defined as

the threshold value. The formula for the hypergeometric

distribution algorithm is shown in Eq. 1.
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p � 1 −∑H−1
i�0

(M
i

)(N −M
K −H

)
(N
K
)

, (1)

where N represents the number of genes with GO functional

annotations; K represents the number of DEGs among N genes,

and M represents the number of genes that are annotated with a

particular GO function.

Support vector machine (SVM)
classification modeling

To classify the samples, an optimal classification hyperplane

must be selected from numerous options tomaximize the distance δ
between the sample set and the classification hyperplane.When ε = |

wxi + b| = 1, the distance between the two types of sample points is 2

((|wxi + b|)/‖w‖) =(2/‖w‖). The goal is to construct an optimal

classification hyperplane under the constraint of Eq. 2 to maximize

(2/‖w‖) and minimize (‖w‖2/2).

{wxi + b≥ 1, yi � 1
wxi + b≤ − 1, yi � −1

i � 1, 2/, l
. (2)

Most classification issues can be treated as nonlinear

separable problems, and quadratic programming problems can

be modified as follows by introducing the slack variable ξi in

Eq. 3.

⎧⎪⎪⎨⎪⎪⎩
min

1
2
‖w‖2 + C∑ ξ i, ξ i ≥ 0

constraint condition: yi((wxi + b))≥ 1 − ξ i

,

i � 1, 2/, l

(3)

where ξi is the slack variable and C is the penalty coefficient.

With GSE61145 as the training dataset and all genes of interest

as classification factors, the SVM model was established using the

e1071 package (MetaDE) in Rto distinguish the disease and control

samples. The classification factors were added individually until all

of them had been added to the SVM classifier. The classification

accuracy of the SVMclassifier was then calculated and the genes that

affected classification accuracy were removed. The SVMmodel was

then validated in the GSE60993 and GSE34198 gene expression

datasets.

Results

DEG screening

A total of 1,231 DEGs were identified by theMetaDE package

(Langfelder and Horvath, 2008; Wang et al., 2012; Yu et al., 2012;

Meyer, 2013). The top 10 DEGs are listed in Table 1, including

GZMK (granzyme K), HLA-DQA (histocompatibility complex,

class II, DQ alpha), and EOMES (eomesodermin). First, the

heterogeneity of gene expression data based on different

platforms was analyzed using the MetaDE.ES method, with

tau2 = 0 and Qpval >0.05. Then, the differential expression

analysis of genes with homogeneous expression was conducted

between the disease and control groups, with an FDR (false

discovery rate) of <0.05 defined as the threshold value. A total of

1,231 DEGs were identified. The top 10 DEGs with the smallest

p-values in the gene difference analysis between the disease and

control groups were selected; that is, the genes with the largest

difference between disease and control groups. The present study

analyzed the co-expressed modules that were closely associated

with the disease state and identified the module genes to

construct a co-expression network. Genes related to disease

were subjected to gene ontology (GO) enrichment analysis.

KEGG pathway enrichment analysis was not performed.

Modules and genes closely related to
disease

To satisfy the precondition of scale-free network distribution,

we selected a power of 18 as the adjacency parameter. The results

of the consistency analysis showed a high correlation between the

GSE61145 and GSE60993 datasets (correlation coefficient = 0.86,

p-value < 1e-200). Additionally, GSE61145 was used as a training

set to identify disease-associated modules (Figure 1A). Module

partitioning for the GSE60993 dataset (Figure 1B) showed high

consistency with the GSE61145 dataset. We then calculated the

correlation coefficient between module and disease state (normal

and MI samples) for the GSE61145 (Figure 2A) and GSE60993

(Figure 2B) datasets, respectively (Table 1). According to the

correlation coefficients, the top three modules (black, pink, and

red) were identified.

Gene co-expression network
construction and enrichment analysis

The correlation coefficients between genes in the top three

modules and disease state were calculated, which revealed

98 genes with correlation coefficients >0.5. These included

30 genes (11 up-regulated and 19 down-regulated) in the

black module, 19 genes (9 up-regulated and 10 down-

regulated) in the pink module, and 49 genes (22 up-regulated

and 27 down-regulated) in the red module. The gene co-

expressed networks of the 98 genes were then constructed

(Figure 3). GO analysis showed the enrichment of 10 GO

terms among the genes in the black module (Table 2) and

15 GO terms among the genes in the red module (Table 2).

The GO terms enriched in the black module included negative

regulation of cell proliferation (p-value = 0.009704), regulation of
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cell proliferation (p-value = 0.014724), and positive regulation of

macromolecule metabolic process (p-value = 0.019608). The GO

terms closely related to the genes in the red module mainly

included positive regulation of I-kappaB kinase/NF-kappaB

cascade (p-value = 0.024598), regulation of I-kappaB kinase/

NF-kappaB cascade (p-value = 0.029497), and positive regulation

TABLE 1 List of top 10 significant differentially expressed genes from GSE61145 and GSE60993.

Symbol p FDR Q Qp tau2 logFC

GZMK 1.00E-20 2.47E-17 0.661264 0.416114 0 −4.38757

HLA-DQA1 1.22E-06 0.00028 0.067206 0.795449 0 −3.34521

EOMES 1.22E-06 0.00028 0.02484 0.874767 0 −3.27466

GZMA 8.51E-06 0.000625 0.599134 0.438909 0 −3.22898

GZMH 4.62E-05 0.001564 0.05081 0.82166 0 −2.76322

GZMM 5.67E-06 0.000478 0.164991 0.684602 0 −2.74506

KLRB1 4.05E-07 0.000133 0.336467 0.561876 0 −2.74359

NKG7 1.09E-05 0.00069 0.001251 0.971784 0 −2.718

IL2RB 1.38E-05 0.000778 0.644833 0.421966 0 −2.62686

aFDR, false discovery rate; FC, fold-change.

FIGURE 1
Tree diagrams for identifying the disease-associated modules based on the GSE61145 (A) and GSE60993 (B) datasets. The abscissa represents
modules in different colors. The ordinate represents the height of the system clustering tree based on the expression value.

FIGURE 2
The disease-associated modules identified from the GSE61145 (A) and GSE60993 (B) datasets. The abscissa represents modules in different
colors. The ordinate represents the overall correlation coefficient between the genes in each module and the disease state.
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of signal transduction (p-value = 0.037345). No GO terms were

significantly enriched among the genes in the pink module.

Construction and evaluation of the SVM
classification model

Based on the SVM classification model, we removed genes

that could not distinguish between the disease and control

samples. Finally, seven genes were obtained: ACOX1 (Acyl

CoA oxidase 1), ADCK2 (aarF domain containing kinase 2),

AFF3 (AF4/FMR2 family member 3), BCL6 (B-cell lymphoma 6),

CEACAM8 (Carcinoembryonic antigen-related cell adhesion

molecule 8), CUGBP2 (CUG triplet repeat-binding protein 2)

and GPX7 (glutathione peroxidase 7). The SVM classification

model of these seven genes could distinguish all samples in the

GSE61145 dataset. The scatterplot of the GSE61145 dataset is

shown in Figure 4A. The GSE60993 and GSE34198 datasets were

FIGURE 3
Gene co-expression network of the black, pink, and red modules. The inverted and positive triangles represent up- and down-regulated genes
in the disease group, respectively. The node colors reflects the colors of the disease modules.

FIGURE 4
Scatterplots of the GSE61145 (A), GSE60993 (B), and GSE34198 (C) datasets. The purple and red dots represent the normal and disease samples,
respectively. The X and Y axes represent the position vector coordinates of the samples.
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then used as validation datasets to confirm the SVM classification

model. As shown in Figure 4B, the SVM classification model

correctly distinguished 23 (17 disease and 6 normal samples) of

24 samples in the GSE60993 dataset. Additionally, the scatterplot

of the GSE34198 dataset indicated that the SVM classification

model correctly distinguished 90 (48 disease and 42 normal

samples) of the 97 samples (Figure 4C). The efficiency

receiver operating characteristic (ROC) curves of the SVM

classification model are shown in Figure 5 and the efficiency

parameters of each dataset are listed in Table 3.

Discussion

MI is a major cause of death and disability worldwide and has

imposed burdens and impacted the health of the population

(ErikssonP., 2014)While studies have focused on the mechanism

and management of MI at the molecular level (Hak et al., 2000;

Erikson et al., 2017; Wongsurawat, 2018; Yang et al., 2022),

effective therapy is lacking. The present study screened

1,231 DEGs based on three microarray datasets. Based on

WGCNA, the top three modules related to disease (black,

TABLE 2 Gene ontology functions enriched in the black (A) and red (B) modules.

Term Count p-value Genes

(A)

GO:0008285~negative regulation of cell proliferation 4 0.009704 BCL11B, RXRA, PEMT, BCL6

GO:0042127~regulation of cell proliferation 5 0.014724 BCL11B, RXRA, PEMT, BCL6, PURA

GO:0010604~positive regulation of macromolecule metabolic process 5 0.019608 SLC11A1, PSMA5, BCL11B, RXRA, PEMT

GO:0046649~lymphocyte activation 3 0.025327 SLC11A1, BCL11B, BCL6

GO:0019637~organophosphate metabolic process 3 0.025564 GPD1L, PEMT, ALG9

GO:0015807~L-amino acid transport 2 0.02853 SLC36A1, SLC11A1

GO:0045321~leukocyte activation 3 0.036326 SLC11A1, BCL11B, BCL6

GO:0000060~protein import into nucleus, translocation 2 0.041902 SLC11A1, BCL6

GO:0001818~negative regulation of cytokine production 2 0.046722 SLC11A1, BCL6

GO:0001775~cell activation 3 0.049469 SLC11A1, BCL11B, BCL6

(B)

GO:0043123~positive regulation of I-kappaB kinase/NF-kappaB cascade 3 0.024598 CFLAR, TNFRSF10B, RHOC

GO:0043122~regulation of I-kappaB kinase/NF-kappaB cascade 3 0.029497 CFLAR, TNFRSF10B, RHOC

GO:0009967~positive regulation of signal transduction 4 0.037345 CFLAR, TNFRSF10B, ZAP70, RHOC

GO:0010647~positive regulation of cell communication 4 0.04897 CFLAR, TNFRSF10B, ZAP70, RHOC

GO:0006915~apoptosis 5 0.062711 CFLAR, TNFRSF10B, RAF1, MTP18, SOD1

GO:0006575~cellular amino acid derivative metabolic process 3 0.065021 SLC22A4, ICMT, SOD1

GO:0012501~programmed cell death 5 0.065518 CFLAR, TNFRSF10B, RAF1, MTP18, SOD1

GO:0010740~positive regulation of protein kinase cascade 3 0.065708 CFLAR, TNFRSF10B, RHOC

GO:0006879~cellular iron ion homeostasis 2 0.075126 HP, SOD1

GO:0055072~iron ion homeostasis 2 0.086718 HP, SOD1

GO:0007242~intracellular signaling cascade 7 0.090132 PDZD8, TNFRSF10B, ZAP70, RAF1, RHOC, SOD1, RAB27A

GO:0043065~positive regulation of apoptosis 4 0.092511 CFLAR, TNFRSF10B, SOD1, RAB27A

GO:0043068~positive regulation of programmed cell death 4 0.093994 CFLAR, TNFRSF10B, SOD1, RAB27A

GO:0010942~positive regulation of cell death 4 0.094988 CFLAR, TNFRSF10B, SOD1, RAB27A

GO:0007010~cytoskeleton organization 4 0.095487 SVIL, SSH2, RAF1, SOD1

TABLE 3 Parameters for classifier performance.

Datasets Num.Samples Correct
sample

Correct
rate

Sensitivity Specificity PPV NPV Auroc

GSE61145 24 24 1.000 1.000 1.000 1.000 1.000 1.000

GSE60993 24 23 0.958 1.000 0.857 0.944 1.000 0.983

GSE34198 97 90 0.928 0.979 0.875 0.889 0.977 0.956

PPV, positive predictive value; NPV, net present value; AUROC, area under the receiver operating characteristic.
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pink, and red) were screened. Afterward, a total of 98 DEGs were

screened from the top three modules to construct the gene co-

expression network. The SVM classification model was also

constructed and identified seven genes (including ACOX1,

BCL6, CEACAM8, CUGBP2, and GPX7) that were closely

associated with MI.

ACOX1 is the first enzyme in peroxisomal fatty acid β-
oxidation. It is rate-limiting and plays a key role in fatty acid

metabolism and fat deposition (Foraker et al., 2013). Both lipid

abnormalities and chronic inflammation have crucial involvement

in atherosclerosis initiation and progression (Bhagavan et al., 2003).

Lutein plays a regulator role in gene expression and is involved in

oxidative stress and the lipid metabolism of ACOX1, thereby

mitigating atherosclerosis progression (Bruyninckx et al., 2008).

In addition, BCL6 is a transcriptional repressor required for mature

B-cell germinal center (GC) formation and is also implicated in

lymphomagenesis (Jiao et al., 2011; Vik et al., 2015). Increasing Bcl6

expression reduces inflammatory responses and limits

atherosclerosis (Han et al., 2015). Meanwhile, CEACAM8 is a

glycosylphosphatidylinositol-anchored membrane glycoprotein

with a molecular weight of around 95 kDa (Basso et al., 2010).

CEACAM8 is also known as Cluster of Differentiation 66b (CD66b)

and is expressed by neutrophils (Lasa et al., 2008; Kulbacki et al.,

2010; Singer, 2013;Wei et al., 2015). Leucocyte activation is a crucial

step in atherogenesis (Chudasama et al., 2011). The expression of

leucocyte integrins, such as neutrophil and neutrophil CD66b, has

been linked to atherosclerosis (Alipour et al., 2013). Furthermore,

coronary artery disease (CAD) reflects generalized inflammation

(Oostrom et al., 2004). Additionally, CUG triplet repeat-binding

protein 2 (CUGBP2) plays a critical role in the apoptosis of breast

cancer cells in response to genotoxic injury (Mukhopadhyay et al.,

2004). The over-expression ofmiR-144 can decrease cardiomyocyte

cell death by targeting CUGBP2 (Alipour et al., 2013). miR-451 is

also largely responsible for ischemic preconditioning-mediated

cardioprotection, which also showed protective effects against

simulated ischemia/reperfusion-induced cardiomyocyte death by

CUGBP2 regulation (Weiss et al., 2012; Chen et al., 2014; Feng et al.,

2016). Subsequently, GPX7 is an endoplasmic reticulum (ER)-

mitochondria protein that plays important and emerging

functional roles in T-cell development (Higashi et al., 2013).

Numerous clinical studies have found that

hyperhomocysteinemia (HHcy) is an independent risk factor for

cardiovascular diseases in humans (Chen et al., 2016). HHcy

accelerates atherosclerosis by affecting the immuno-

inflammatory response and repressing regulatory T-cell

functions (Feng et al., 2016). Furthermore, the results of the

gene co-expression network analysis in this study showed the

co-expression of BCL6, CEACAM8, and CUGBP2. ADCK2 and

AFF3were also associated withMI in this study. However, evidence

regarding their roles in MI is scarce. Thus, ACOX1, BCL6,

CEACAM8, CUGBP2 and GPX7 may play key roles in MI

pathogenesis.

Conclusion

Myocardial infarction is one of the most dangerous

diseases worldwide. This study screened for genes

associated with such diseases. We obtained gene expression

datasets (GSE61145, GSE60993, and GSE34198) related to

human MI. We searched microarray datasets involving

human MI and then investigated the DEGs between MI

and normal samples. The genes associated with MI were

further screened by identifying the disease-associated

modules to construct a gene co-expression network.

ACOX1, BCL6, CEACAM8, CUGBP2, and GPX7 might be

key genes implicated in MI development. The MI-

associated genes may provide targets for novel therapy for

MI. As our findings were partially drawn by prediction, they

require additional validation. However, this study has several

limitations that should be addressed in future work. The SVM

algorithm can be treated as a typical classification model in the

field of bioinformatics and computational biology. Therefore,

several classification algorithms, including random forest,

neural network, and some deep learning algorithms, can be

used to correct this issue. This study used the

GSE61145 dataset to train the classification mode.

Considering the generality of the classification model, more

datasets should be trained. Future work should also utilize

cross-validation methods.

FIGURE 5
Receiver operating characteristic (ROC) curves showing
classifier efficiency. The black, red, and green curves show the
ROC curves of the GSE61145, GSE60993, and GSE34198 datasets,
respectively.
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