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Nano-sized carriers in gene therapy for renal fibrosis in vivo
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ABSTRACT
Renal fibrosis is the final common pathway leading to end-stage renal failure regardless of
underlying initial nephropathies. No specific therapy has been established for renal fibrosis.
Gene therapy is a promising strategy for the treatment of renal fibrosis. Nano-sized carriers
including viral vectors and non-viral vectors have been shown to enhance the delivery and
treatment effects of gene therapy for renal fibrosis in vivo. This review focuses on the
mechanisms of renal fibrosis and the in vivo technologies and methodologies of nano-sized
carriers in gene therapy for renal fibrosis.
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1. Introduction

Chronic kidney disease (CKD), defined as a decreasing
glomerular filtration rate and/or the presence of his-
tological or biochemical markers of kidney damage
over 3 months, is a worldwide public health problem
[1]. A recent meta-analysis reported that the global
prevalence of CKD is estimated as 13.4% in general
populations [2]. In the pathology of CKD, tubulointer-
stitial fibrosis, called renal fibrosis, is the final common
pathway leading to end-stage renal disease regardless
of initial nephropathies [3,4]. As no specific therapy
has been established for renal fibrosis, the develop-
ment of treatment options is crucial to improve the
prognosis for CKD patients. Understanding the
mechanisms of renal fibrosis enables targeting of the
processes that take place to prevent them from
occurring. Many different kinds of cells, such as
immune, vascular endothelial, tubular epithelial, and
fibroblast cells, have been considered to contribute to
renal fibrosis in vivo [5–10]. Studying therapeutic
approaches for the treatment of renal fibrosis in vivo
is important. Gene therapy is a potentially promising
strategy for the treatment of renal fibrosis in vivo
because it can target molecules that were previously
difficult to set as therapeutic targets using small mole-
cules or antibodies. The development of nano-sized
carriers including viral vectors and non-viral vectors
has been shown to enhance the delivery and treat-
ment effects of gene therapy for various diseases,
including renal fibrosis in vivo [11–14].

This review focuses on the mechanisms of renal
fibrosis and the in vivo technologies andmethodologies
of nano-sized carriers in gene therapy for renal fibrosis.

2. Mechanisms of renal fibrosis

Renal fibrosis is pathologically characterized by the pro-
liferation of myofibroblasts and the excessive accumula-
tion of extracellular matrix components such as fibrotic
collagen in the tubulointerstitial space [15]. Although
the precise mechanisms of renal fibrosis have not been
completely determined, activation of pro-fibrotic signal-
ing pathways and chronic inflammation are thought to
play central roles in renal fibrosis (Figure 1) [16–25].

2.1. Pro-fibrotic signaling

Numerous studies have demonstrated that transform-
ing growth factor (TGF)-β1 and downstream intracellular
proteins, known as small mothers against decapenta-
plegic (Smad), play a central role as a pro-fibrotic path-
way in renal fibrosis (Figure 1) [16–22]. TGF-β1 receptor-
activated Smad3 combines with a common Smad,
called Smad4, and this complex is translocated into
the nucleus where it binds to DNA elements to promote
the transcription of various pro-fibrotic genes (Figure 1)
[16–19]. Therapeutic agents that inhibit TGF-β1–Smad
signaling have been shown to reduce extracellular
matrix accumulation in the tubulointerstitial space,
resulting in the inhibition of renal fibrosis [16,26,27].
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2.2. Chronic inflammation

Unresolved inflammation characterized by leuko-
cyte infiltration is considered to be a main factor
contributing to renal fibrosis (Figure 1) [23–
25,28,29]. Infiltrated leukocytes excrete various
pro-fibrotic growth factors and cytokines such as
tumor necrosis factor-alpha (TNF-α), interleukin (IL)-
1β, and IL-6, which promote the proliferation of
myofibroblasts (Figure 1) [29,30]. Levels of these
cytokines in plasma have been shown to increase
in patients with CKD [31,32]. These cytokines acti-
vate nuclear factor-kappa B (NF-κB), which is a
major signaling pathway that activates and pro-
motes macrophage infiltration, further increasing
the inflammatory pathway (Figure 1) [33,34].
Inhibition of the NF-κB signaling pathway was
shown to inhibit renal injury, whereas activation
of this pathway was shown to promote renal injury,
including renal fibrosis [33,34].

3. Viral and non-viral vectors for renal
fibrosis in vivo

Viral vectors and non-viral vectors have been stu-
died as nano-sized carriers in gene therapy for renal
fibrosis in vivo (Figure 2). These vectors enhance
delivery and increase the efficiency of gene trans-
duction into the tubulointerstitial space and
enhance the anti-fibrotic effects of gene therapy in
vivo. The categories of vectors, genes, administra-
tion routes, and the effects of renal fibrosis in vivo
are summarized in Table 1.

3.1. Viral vectors

Adenovirus and adenovirus-associated virus (AAV) vec-
tors are themostwidely used viral vectors in gene therapy
for renal fibrosis in vivo, while only a few studies have
reported on the role of lentiviral vectors. Many studies
have targeted inhibition of the TGF-β1–Smad signaling
pathway for the treatment of renal fibrosis. Various
administration routes (intramuscle, intravenous, intra-
arterial, intraperitoneal, intrarenal, intraureter) have been
used for the delivery of genes to the tubulointerstitial
space of the kidney.

3.1.1. Adenoviral and AAV vectors
Adenoviral vectors can deliver and transfect genes into
both dividing and non-dividing cells [55]. Adenoviral vec-
tors are double-stranded, non-enveloped DNA viral vec-
tors, 70–90 nm in diameter, with a genome of 36–38 kb
[55,56]. Adenoviral vectors designed for expression of
TGF-β1 type II receptor, which is a competitive inhibitor
of TGF-β1, were injected into hindlimb muscles of a
mouse model of diabetic nephropathy [35]. Five weeks
after administration, this gene therapy appeared to
reduce fibrosis in both glomeruli and tubulointerstitial
spaces [35]. Another study reported that adenoviral vec-
tors designed for expression of runt-related transcription
factor 2 attenuated TGF-β1-induced Smad3 phosphoryla-
tion, and reduced expression levels of α-smooth muscle
actin (α-SMA) and collagen I in the kidney of unilateral
ureteral obstruction (UUO) mice produced by unilateral
ureteral ligation, which is a representative animal model
of renal fibrosis [36,57]. The administration of adenoviral
vectors designed for expression of decorin, which is an
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Figure 1. Mechanisms of renal fibrosis.
TGF: transforming growth factor; Smads: small mothers against decapentaplegic; P: phosphorylation.
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inhibitor of TGF-β1, was found to inhibit expression levels
of TGF-β1 mRNA and protein and reduce fibrosis in the
kidney of a rat model of diabetic nephropathy [37]. A
study has reported on gene therapy that combined ade-
noviral vectors delivery and in vivo electroporation to
deliver genes to the kidney [38]. In that study, adenoviral
vectors designed for expression of Smad7, which is an
antagonist of TGF-β1–Smad signaling, were injected into
the pelvic space of a ratmodel of renal fibrosis inducedby
UUO [38]. Then, electroporation was performed on the
kidneys. Ten electric pulses (50m/s duration at 100 V) at a
rate of 1 pulse/s were administrated to the kidney by a
pair of electrode disks rigged on the tips of tweezers [38].
That delivery system significantly over-expressed Smad7
in the kidney and inhibited renal fibrosis [38]. Delivery of
genes with adenoviral vectors to the kidney to modulate
inflammatory signals and cytokines has been reported to
inhibit renal fibrosis in vivo [39–42]. Adenoviral vectors
designed for expression of I-kappa-B-alpha (IκB-α), which
is an inhibitor of NF-κB, were found to inhibit NF-κB
activation by over-expression of IκB-α in the renal cortex
and ameliorate tubulointerstitial injury characterized by
fibrosis and infiltration ofmononuclear cells in a ratmodel
of renal fibrosis [39]. Although adenoviral vectors have
shown successful gene delivery to the kidney for the
treatment of renal fibrosis, there is room for improvement
as a carrier of gene therapy. The exogenous genes deliv-
ered using adenoviral vectors do not integrate into the
host genome and do not replicate during cell division,
resulting in short periods of gene expression of the

targeted cells [55]. To overcome this drawback of the
adenoviral vector, AAV vectors have been developed
[58]. AAV vectors are single-stranded, non-enveloped
DNA viral vectors, 18–26 nm in diameter, with a genome
of 4–5 kb [56,58,59]. AAV vectors can also transfect genes
into both dividing and non-dividing cells, and may incor-
porate genes into the host genome. Therefore, the dura-
tion of gene expression delivered using AAV vectors is
considered to be longer compared with that delivered by
adenoviral vectors [58]. AAV vectors were shown to have
a low immunogenicity compared with adenoviral vec-
tors [58]. AAV vectors serotype 9, designed for expres-
sion of hepatocyte growth factor (HGF), which is an
anti-fibrotic cytokine, showed remarkable attenuation
of tubulointerstitial fibrosis in a mouse model of renal
fibrosis [40]. The administration of an AAV vector
designed for expression of IL-10, which is an anti-
inflammatory cytokine, was shown to over-express IL-
10 in plasma and inhibit renal fibrosis by inhibiting
infiltration of T lymphocytes and macrophages in a rat
model of renal fibrosis [41]. AAV vectors designed for
expression of suppressor of cytokine signaling (SOCS)2
over-expressed SOCS2 in the kidney and inhibited renal
fibrosis and inflammation in a rat model of diabetic
nephropathy [42]. The inhibitory effects on renal fibro-
sis by modulation of expression of the following genes
by exogenous genes delivered with AAV vectors have
been reported: adrenomedullin [43]; endothelial nitric
oxide synthase [44]; Klotho [45]; cytochrome P450 2J2
[46]; and angiotensin II receptor 1 [47].

Viral vectors non-viral vectors
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Figure 2. Viral and non-viral vectors for renal fibrosis in vivo.
TNF: tumor necrosis factor; IL: interleukin; NF-κB: nuclear factor-kappa B.
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3.1.2. Lentiviral vectors
Lentiviral vectors can transfect genes into both divid-
ing cells and non-dividing cells and may incorporate
genes into the host genome [60]. The lentiviral vec-
tors are enveloped, single-stranded RNA viral vectors,
80–130 nm in diameter, with a genome of 8–9 kb [60].
Since lentiviral vectors are a recent development fol-
lowing on from adenoviral and AAV vectors, few stu-
dies have reported on lentiviral vectors as carriers of
gene therapy for renal fibrosis in vivo. However,
increasing interest in lentiviral vectors indicates the
rise of a new field of research in lentiviral vectors for
gene therapy of renal fibrosis [48,61]. Lentiviral vec-
tors designed for expression of prohibitin, which is a
pleiotropic protein for cellular proliferation, apoptosis,
transcription, and mitochondria protein folding, were
shown to ameliorate renal fibrosis in a mouse model
of renal fibrosis induced by UUO [48]. HIV-derived
lentiviral vectors designed for expression of type II
TGF-β receptor (TBRII) were reported to attenuate
renal fibrosis better, as estimated by expression levels
of extracellular matrix synthesis, such as fibronectin
and collagen III, and expression of α-SMA in both
cultured renal epithelial cells and renal fibroblasts
compared with non-lentiviral constructs [61].
However, the treatment effects on renal fibrosis
using that lentiviral vector designed for the expres-
sion of type TBRII have not been investigated in vivo.

3.2. Non-viral vectors

There are several non-viral vectors that can deliver
genes to the kidney (Figure 2). Polyethylenimine
(PEI) nanoparticles, liposome nanoparticles, and catio-
nic gelatin nanoparticles have been demonstrated to
show effective delivery of genes to the kidney and
have promising treatment effects in animal models of
renal fibrosis [49–54].

3.2.1. PEI nanoparticles
PEI is a polymer, 50–100 nm in diameter, that is
considered the preferable material for the preparation
of non-viral vectors in terms of long-term safety and
biocompatibility [62,63]. Small interfering RNA (siRNA)
targeted paired box2 (PAX2) was reported to be deliv-
ered to the kidney with PEI nanoparticles via an intrar-
enal capsule injection in a mouse model of renal
fibrosis induced by UUO [49]. PAX2–siRNA–PEI nano-
particles inhibited PAX2 mRNA and PAX2 protein in
the kidney, and ameliorated renal fibrosis [49].
Delivery of microRNA-146a mimic with PEI nanoparti-
cles was reported to over-express microRNA-146a in
the fibrotic kidney induced by UUO, and inhibited
renal fibrosis by inhibiting TGF-β1 and NF-κB signaling
pathways in vivo [49–54].

3.2.2. Liposome nanoparticles
Liposome nanoparticles, 100–150 nm in diameter,
comprise phospholipids and cholesterol, which are
the main components of the cell membrane, and
therefore show high biocompatibility [64]. Despite
these advantages of liposome nanoparticles, few stu-
dies have reported on the validity of using liposome
nanoparticles for gene delivery in the treatment of
renal fibrosis in vivo. One study has reported that
artificial viral envelope-type hemagglutinating virus
of Japan (HVJ) liposome nanoparticles could deliver
fluorescein isothiocyanate-labeled phosphorothioate
non-targeted oligodeoxynucleotides to the nuclei of
renal interstitial cells 10 min after transfection by
retrograde injection through the ureter [51].
However, treatment effects of genes delivered with
HVJ liposome nanoparticles for renal fibrosis have not
been investigated. These results suggest that lipo-
some nanoparticles may quickly deliver genes to the
kidney, and may be promising in gene therapy for
renal fibrosis.

3.2.3. Gelatin nanoparticles
Gelatin is a protein derived from collagen [65].
Cationic gelatin nanoparticles, 100–300 nm in dia-
meter, which are produced by chemically introducing
cations such as thylenediamine, putrescine, spermi-
dine, or spermine to the carboxyl group of gelatin
[66], have been used in gene therapy for renal fibrosis
in vivo [52–54]. Plasmid DNA designed for the expres-
sion of TGF-β receptor (TBR) siRNA with cationized
gelatin nanoparticles was administrated in the fibrotic
kidney induced by UUO [52]. These nanoparticles
were shown to inhibit TBR expression and amelio-
rated fibrotic changes in the fibrotic kidney compared
with naked plasmid DNA designed for the expression
of TBR siRNA injection [52]. Heat shock protein 47
(HSP47) siRNA with cationized gelatin nanoparticles
was shown to knock down HSP47 expression and
diminish renal fibrosis in a mouse model of renal
fibrosis induced by UUO [53]. Cationic gelatin nano-
particles incorporating plasmid DNA expressing
matrix metalloprotease was shown to prevent renal
fibrosis in a mouse model of diabetic nephropathy
produced by intraperitoneal injection of streptozoto-
cin, which causes damage to the pancreas and results
in diabetic nephropathy [54,67].

4. Other methods of gene therapy for renal
fibrosis in vivo

Electroporation and ultrasound methods are reported
to deliver genes effectively to the kidney, and treat-
ment effects have been demonstrated in renal fibrosis
in vivo [68,69].
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4.1. Electroporation

Electroporation is a transfection technique in which
electric pulse waves are applied to target cells, creat-
ing micro-holes in the cell membrane to allow for the
passage of exogenous genes into the cell. Plasmid
DNA expressing HGF was injected into the tibialis
anterior muscles and six electric pulses at 100 V
were delivered by a stainless steel tweezer electrode
placed in a transverse orientation relative to the mus-
cle fiber. After transfection, plasma HGF levels
increased and renal fibrosis was inhibited in a rat
model of the fibrotic kidney induced by 5/6 nephrect-
omy [68].

4.2. Ultrasound

Plasmid DNA expressing short hairpin RNA (shRNA) of
connective tissue growth factor (CTGF) was loaded on
to the surface of a cationic microbubble [69]. The
plasmid-carrying microbubbles were then admini-
strated intravenously to mice and ultrasound was
applied locally to the kidney treated with ureteral
obstruction. This method exhibited reduced mRNA
and protein levels of CTGF and inhibited fibrotic
changes in the fibrotic kidney induced by UUO [69].
Another study reported that delivery of plasmid DNA
expressing shRNA of microRNA-433 to the kidney by
ultrasound microbubble-mediated gene transfer sup-
pressed the induction and progression of renal fibro-
sis in the fibrotic kidney induced by UUO [15].

5. Summary

Nano-sized carriers such as viral and non-viral vectors in
gene therapy for renal fibrosis in vivo have been devel-
oped. However, their long-term efficacy, side effects
including toxicity and unexpected genomic DNA alter-
nations, and their effects on other organs have not
been fully investigated and require further study.
Studies are also needed to develop nano-sized carriers
that can exclusively deliver genes to the kidney.
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