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Abstract: The TS/A cell line was established in 1983 from a spontaneous mammary tumor arisen in an
inbred BALB/c female mouse. Its features (heterogeneity, low immunogenicity and metastatic ability)
rendered the TS/A cell line suitable as a preclinical model for studies on tumor–host interactions
and for gene therapy approaches. The integrated biological profile of TS/A resulting from the
review of the literature could be a path towards the description of a precision experimental model of
mammary cancer.
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1. Introduction

Precision medicine in clinics is an evolving concept which goes beyond mere genomic medicine
and means matching individual patients with medicine [1]. According to these premises, in an
experimental environment a precision cancer model should mean matching the appropriate preclinical
model with target biology study [2]. Preclinical models of mammary cancer of increasing complexity
have been proposed, including transplantable murine tumors, gene-driven mammary carcinogenic
models, human cell lines grown in vitro or in vivo as xenografts and patient-derived xenografts and
organoids (see Section 6 for a comparative discussion) [3,4]. Each model remains an approximation [2],
with advantages and disadvantages depending on the specific aim of the study. The main advantage
of transplantable murine mammary tumors consists of allowing mechanistic studies on tumor–host
interactions, like those focusing on the role of microenvironment, the metastatic process and the
immune response. A deep knowledge of a preclinical model, where literature studies are collected and
retrospectively examined as a whole, like an individual patient’s medical record, can help in a better
design of experimental approaches. The aim of this review is the biological profiling of a popular
model of murine mammary cancer (TS/A) for a better understanding and modeling of a complex
pathology like human breast cancer [5].

2. The Dawn of Murine Models for Tumor–Host Interactions

At the beginning of the 1980s, metastases and tumor–host interaction studies mostly took
advantage of a few tumor cell lines, established and subcultured for many years, such as 3LL Lewis
lung carcinoma and B16 murine spontaneous melanoma [6]. Through the intravenous injection
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of B16 cells, metastatic deposits to lungs and other organs could be easily obtained, allowing for
important advancements in understanding post-intravasation late phases of the metastatic process.
However, the B16 parental cell line was almost incapable of disseminating from a locally-growing
tumor, and therefore it did not adequately model the invasion and intravasation phases. Moreover, the
non-epithelial origin of B16 melanoma impeded inferences about the behavior of epithelial tumors.
At the same time, some rodent cell lines were already being used as models for mammary cancer,
but most of them were either carcinogen- or virus-induced [7,8]. These models did not undergo a
long natural history in the host, in which they arose, and generally had a high immunogenicity due
to the expression of strong tumor-associated antigens. Likely due to these features, they generally
gave too optimistic results when used to study antitumor immune responses or immunotherapeutic
approaches [9].

In this landscape, in 1983 we described a new cell line, TS/A, derived from a mammary tumor
spontaneously arisen in a 20 month-old BALB/c inbred mouse strain [10]. The TS/A cell line exhibited
some features typical of human breast cancer, which prompted its use as a preclinical model, such as the
low immunogenicity, the ability of local tumors to give rise to distant metastases and the heterogeneity,
well evident both of morphology and metastatic ability. The TS/A cell line (also referred to as TSA or
TS/A-pc, see [11,12] and below) and its clones were distributed to many laboratories worldwide and
were employed for different applications, such as studies on malignant phenotype, pharmacologic
therapeutic approaches, antitumor immune response and as a gene therapy model.

A list of research studies exploiting the TS/A cell line or its cell variants is reported in the
Supplementary Table S1. It includes (up to 2018) 276 research papers where TS/A was used as model
system and 19 papers where it was a control model. Reviews reporting results obtained with TS/A and
citations of the TS/A paper are also listed in the Supplementary Table S1.

This review aims at profiling the main biological features of the TS/A model system resulting
from literature research papers (Table 1). The two research areas where TS/A-based models yielded
important results will be discussed in depth: tumor–host interactions and experimental gene therapy.

Table 1. TS/A model: main features.

Topics Cell Variants Features Refs

Cytoskeletal markers E1 CK8-positive [13]
Cytokine production TS/A, clones and variants CSF [14–17]

TS/A TGF-β1 production (about 4 ng/mL) [18]
Cytokine receptors TS/A IFN-γ receptor (1000/cell) [19]
Gene alterations TS/A Karyotype [20]

TS/A and E1 p53 mutated (codon 270 Arg to His) [13,21]
Gene expression TS/A TERT (11,000 RNA copies) [22]
Hormone sensitivity TS/A and E1 Estrogen receptor positive [10,13]
Immunity TS/A Low immunogenicity [10,23,24]

TS/A and engineered
variants Tumor associated antigen gp70env [25]

TS/A Suppressor activity [26,27]

TS/A Myeloid-derived suppressor cells
(MDSC) [28–35]

TS/A NK resistance [36]
TS/A mD52 antigen [37]

Membrane molecules TS/A Core 1 O-glycans [38]
TS/A Muc-1 [39]
TS/A Tag72 [39]
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Table 1. Cont.

Topics Cell Variants Features Refs

Phenotype TS/A, clones and variants Heterogeneity (morphology, metastasis) [10,40,41]
Stem cell markers TS/A Sca-1 (Ly6A/E) [42,43]
Tyrosine Kinase
membrane receptors TS/A p185erbB2 [39,44]

Others TS/A Endoglin-negative [45]

TS/A Fragile X mental retardation protein
(FMRP), low expression [46]

TS/A High Mobility Group Box1
(HMGB1)-positive [47]

TS/A Lats2 [48]
TS/A ST6Gal activity (present, low) [49]
TS/A TLR9-negative [50]

3. Bioprofiling TS/A Cell Line

The mammary tumor originating the TS/A cell line was isolated in a 20 months-old BALB/c female
retired breeder and was described as a moderately differentiated adenocarcinoma [10]. Its first in vivo
passage into a healthy BALB/c female was adapted to in vitro culture and named TS/A (Figure 1).
Several clones and cell variants were derived from TS/A and distributed worldwide. In particular,
a TS/A subline was chosen by Guido Forni (University of Turin) for a large collaborative endeavor
as the recipient cell for the systematic transduction of a large series of genes coding for immune
modulators; such subline was referred to as TS/A-pc (from “parental cells”). TS/A and TS/A-pc share
most features reviewed here, and some kind of drift occurred during the extensive amplification of
TS/A-pc. Throughout this review, we will refer to the TS/A model system on the whole, and therefore
incorrect terminology (such as TSA, TS/a, and so on) has been systematically corrected to “TS/A”.
However, the Supplementary Table reports exactly the TS/A cell variant used in each referenced paper.
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Figure 1. Origin of the TS/A cell line and variants. For pictures see [51].

The tumor from which the TS/A cell line was derived likely had a long natural history in its host
of origin. When tested in a growth-excision test, TS/A cells did not confer protection against a second
challenge, thus showing a low immunogenicity [10], thereafter confirmed in other studies (see, for
example, [23]). Such a low immunogenicity was the basis for a huge number of immunopotentiation
studies, most of which exploiting gene therapy approaches (see next section).

TS/A cells express the gp70env product of an endogenous retrovirus whose AH1 immunodominant
class I epitope could be recognized by cytotoxic T lymphocytes through presentation by H-2Ld [25].
Gp70env antigen is shared by other murine cell lines, such as the colorectal cancer cell line CT26.
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The down-regulation of the Ld observed in TS/A cells [52] is likely due to the immunoediting process
leading to evasion from the host immune response.

TS/A exerts a suppressive effect on the host immune response through several mechanisms, such
as a selective loss of STAT5a/b expression in T and B lymphocytes [26], the production of transforming
growth factor β1 (TGF-β1) [18], the induction of regulatory T cells [27], natural killer resistance [36]
and the production of colony stimulating factors (CSFs) that deeply subvert hematopoiesis [14,15],
giving rise to splenomegaly, leucocytosis and to tumor-infiltrating myeloid-derived suppressor cells
(MDSC) [29,33,53].

When injected subcutaneously into syngeneic BALB/c mice, TS/A cells gave rise to local tumors
rapidly disseminating to the lungs. Metastases could also be obtained after injection of TS/A cells by
the intravenous route, thus allowing a comparison between the dynamics of the early and late phases
of the metastatic process [10,41]. Metastases to lungs and liver have also been obtained by orthotopic
cell injection [54]. Like other mammary carcinoma cell lines, the growth of micrometastases at distant
organs was found to involve the formation of filopodium-like protrusions mediated by FAK/ERK and
Rif/mDia2 signaling [54].

Heterogeneity of TS/A cells was observed in adherent cultures, with areas of epithelial-like and
fibroblast-like morphology (Figure 2), and in anchorage-independent cultures [10,40]. Subcloning
from agar cultures allowed the isolation of two types of cell clones, both tumorigenic and metastatic,
but with markedly different metastatic power [40]. Unexpectedly high-metastatic clones had a
prevalent epithelial morphology, compared to the fibroblast-like pattern of low-metastatic clones. Gene
expression profiling of several murine mammary cancer cell lines showed clustering of TS/A-E1 (a
high-metastatic clone) with high-claudin expressors [13]. Our data on gene expression profiling of
TS/A clones showed that claudin-3 was the top overexpressed gene in high-metastatic clones (about
90-fold expression over low-metastatic clones), while low-metastatic clones overexpressed nme4 and
necdin, two putative metastasis suppressor genes (our unpublished results). These data suggest that
metastatic ability is not always a consequence of epithelial–mesenchymal transition but can also be
acquired in an epithelial-like differentiation context.
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Figure 2. Morphology of the TS/A cell line in adherent culture (phase contrast, ×100).

The TS/A cell line has a triploid karyotype [20] and carries a mutated p53 at codon 270 [21]. About
a third of the cells express the cancer stem cell marker Sca-1 [43]. In our laboratory, the expression
of Sca-1 (also known as Ly6A) was almost negative, but inducible by IFN-γ [12]. TS/A cells express
estrogen receptor [10] and endogenous murine p185-erbB2 product [39]. Its use as a negative HER2/neu
mammary cancer cell line in studies on HER2/neu transgenic models relies upon the negativity to the
reagent specifically recognizing rat HER2/neu.
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4. Tumor–Host Interaction Studies

TS/A-induced tumors have a rich and heterogeneous infiltrate comprising granulocyte
and monocyte/macrophage subpopulations, whose relative proportions change during tumor
progression [55], in agreement with the known plasticity of myeloid cells. Several subpopulations
contribute to maintainance of a tumor-promoting microenvironment in TS/A, as well as in many
other murine and human tumors [56], with a variety of mechanisms. Alternatively-activated M2
macrophages are strong producer of the immunosuppressive cytokine IL10 and of several chemokines
recruiting Treg, Th2, eosinophils and basophils [56]. MDSC are heterogeneous immature CD11b+/Gr-1+

populations [57], with immunosuppressive function. Both M2-polarized macrophages and MDSC have
been investigated in the TS/A model system, along with strategies to circumvent tumor promotion,
pushing infiltrate cells towards more differentiated, activated cells.

In the TS/A model, the induction of M2 tumor-associated macrophages was mediated by the
expression of the CD20 homolog MS4A8A gene [58]. In TS/A tumors, M2-polarized macrophages were
more abundant and more proangiogenic in hypoxic tumor areas [55]. The M2 immune suppressing
phenotype was switched to an anti-tumor M1 phenotype through the in vivo adenoviral gene transfer
of the chemokine CCL16 [59]. Alternatively-activated M2 macrophages expressed highly restricted,
individual-specific, combinatorial T cell receptor-αβ immunoreceptors, suggestive of an adaptive
response of macrophages to the tumor [60]. In TS/A, as well as in a variety of other murine and
human tumors, alternatively-activated M2 tumor-associated macrophages expressed a multifunctional
scavenger receptor named stabilin-1 involved in endocytic and phagocytic clearance of “unwanted-self”
components, including soluble component of extracellular matrix SPARC (a tumor-inhibiting agent).
Stabilin-1 was found to play a tumor promoting role in the TS/A model likely through enhanced
clearance of SPARC [61].

A major component of TS/A infiltrate consisted of MDSC [53], which correlated with the production
of CSFs by TS/A cells [14,29]. Immature myeloid progenitors can be released in the bloodstream,
giving rise to peripheral leukocytosis and splenomegaly [14,15]. MDSC suppressed antigen-activated
T lymphocytes through apoptosis induction [28,29], and suppressed NK cytotoxicity [62], with
mechanisms involving nitric oxide [30]. Impaired anti-tumor immune response in aging can take
advantage of an increased MDSC infiltrate [32]. MDSC expressed Fas–FasL and caspases, suggesting
that Fas–FasL apoptosis regulated MDSC survival [33,34] and proposing new potential therapeutic
options. MDSCs are key drivers of resistance to antiangiogenic therapy, but all-trans retinoic acid
was able to induce differentiation of MDSC into mature cells, thus increasing the efficacy of the
antiangiogenic therapy [63].

In the TS/A microenvironment, other non-tumoral cell types can play a tumor-promoting role,
such as tumor-associated fibroblasts and adipocytes. Through a tumor-stromal cell co-injection model,
novel candidate tumor-associated genes were identified in tumor-associated fibroblasts. The most
studied gene was tubulin tyrosine ligase: its downregulation in tumor-associated fibroblasts promoted
TS/A tumor growth [64]. Co-culture of TS/A cells with adipocytes caused an increased lipid content in
TS/A cells and an increased lung colonization ability [65]. The release of free fatty acids from lipid
droplets is mediated by an adipose triglyceride lipase-dependent lipolytic pathway, that was proposed
as a potential therapeutic target. The metabolic cross-talk between tumor cells and tumor-associated
adipocytes could favor epithelial-mesenchymal transition and increase tumor invasiveness.

TS/A cells, like other tumor cell lines, secrete membrane vesicles of endosomal origin called
“exosomes”, with contradictory roles in tumor biology. Exosomes could have some immunostimulatory
effect, since they carry tumor antigens which can be transferred to dendritic cells and cross-prime
cytotoxic T lymphocytes [66]. However, exosomes mainly exerted a potent immunosuppressive
anti-tumor immune response through suppression of NK cell function [67] and inhibition of
differentiation of bone marrow dendritic cells [68]. Tumor-derived exosomes released from irradiated
TS/A cells showed an altered molecular composition and were able to transfer dsDNA to dendritic cells
and stimulate upregulation of costimulatory molecules and STING-dependent activation of IFN-I [69].
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5. Gene Therapy Studies

TS/A cells were easily transduced both with naked DNA and viral systems, generating good and
stable transgene expression of secreted factors or membrane molecules. Most gene therapy approaches
were performed to directly increase TS/A immunogenicity with the purpose to use engineered cells as
anticancer vaccines (Table 2).

Table 2. TS/A in gene therapy studies aiming to increase tumor immunogenicity.

Immune Categories Transgenes Vector/Transfer Methods Refs

Chemokines h-CCL16/LEC Naked DNA + lipofection [70,71]
Adenoviral, in vivo [59,72]

Cytokines m-IL2 Naked DNA + electroporation [11,23,73–77]
m-IL4 Retroviral [73,74,78–85]
m-IL5 Retroviral [86,87]
m-IL6 Retroviral [74,80,87]
m-IL7 Naked DNA + electroporation [73,74,80,81,88,89]
m-IL7 Adenoviral [90]
m-IL10 Naked DNA + electroporation [74,91]
m-IL12 p35 and p40 Naked DNA, in vivo [92,93]

Naked DNA + gene gun [94]
Naked DNA + lipofection [95]
Retroviral [96,97]
Canarypox [98]
Naked DNA + gene gun, in vivo [24]

h-IL13 Naked DNA + calcium phosphate [99]
m-IL15 Adenoviral [100]
IL15 Naked DNA + lipofection [95,101]
Pro-IL18 and ICE Naked DNA + gene gun [94]
m-IL21 Naked DNA + lipofection [102]
m-IFNα1 Naked DNA + electroporation [80,82,103–106]
m-IFNα1 Naked DNA + gene gun [107]
m-IFNα4 Naked DNA + polymer [108]
m-IFNβ Naked DNA + calcium phosphate [109]
m-IFNγ Naked DNA + lipofection [12,74,80,99,110–113]
m-GMCSF Retroviral [74]
m-TNFα Retroviral [74,80]

Membrane molecules B7-1/CD80 Naked DNA [114]
Naked DNA + electroporation [115,116]
Retroviral [81,89]

B7-2/CD86 Naked DNA + electroporation [115,116]
Allogeneic MHC Naked DNA + calcium phosphate [111,117]
CD70 (CD27L) Retroviral [118,119]
CD153 (CD30L) Retroviral [118]
CD154 (CD40L) Retroviral [118,120]
TRAIL/APO2L Naked DNA + lipofection [121]
LAG-3 and LAG5 Naked DNA + electroporation [122,123]
CCR7 Naked DNA + calcium phosphate [124]

Suicide genes Cytosine deaminase Retroviral [112,125]
Naked DNA [126]
VSV (oncolytic) [127,128]

HSV-Thymidine kinase Naked DNA [104]
Retroviral [129]
Naked DNA + lipofection [130]

Others CIITA Naked DNA + lipofection [131–133]
GBP1 Retroviral (conditional) + naked DNA [134]
m-IRF1 Adenoviral [135]
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Genes for a variety of cytokines, costimulatory molecules and major histocompatibility complex
(MHC) antigens were inserted and stably expressed in TS/A cells. Cytokine transduction in TS/A cells
was often performed isolating clones with different levels of cytokine production, and this allowed
to study the dose-related effects, such as the minimal cytokine release level required to significantly
impact on tumor growth and immunogenicity and the potential side effects of highly-releasing cells.
As an example, IFN-γ transduction led to isolate clones with cytokine production ranging from a
few IU/ml up to a very high expressor clone (releasing 6000 IU/mL), likely the highest transduced
expression ever obtained. Such a panel of IFN-γ releasing clones showed a dose-related growth
inhibition and immunogenicity, but also showed potentially important side effects, such as increased
lung colonizing ability and other systemic effects [12,136].

The wide portfolio of TS/A cells transduced with different cytokine genes allowed to understand the
role played by each cytokine in the modulation of tumor infiltrate composition and its impact on tumor
growth [137]. A major role for granulocytes in cytokine-induced tumor debulking was unexpectedly
found, along with a continuous cross-talk between leukocytes and lymphocytes. The transduced
cytokine drove the composition of the reactive cells elicited, the efficacy of the anti-tumor reaction
and the immune memory against the non-transduced tumor. The increased memory reaction is the
basis for the use of gene-engineered cells as anticancer vaccines. On the whole, data obtained with
engineered TS/A vaccines (Table 2) showed that the most effective cytokines were IFN-γ and IL-12.

TS/A transduction with GM-CSF was performed only once [74], with almost no effect on tumor
growth or immunogenicity. On the contrary, GM-CSF engineering of another murine model (B16
melanoma) gave good results [138] and prompted clinical studies. B16 melanoma did not produce
spontaneously GM-CSF whereas TS/A abundantly secreted CSFs [16]. The spontaneous CSF production
in TS/A did not hamper tumor growth but likely contributed to the tumor-promoting environment,
showing that similar cytokines could play opposite roles in tumors of different origin.

Transduction of genes coding for activating pro-drug enzymes (suicide genes) was performed
with the main aim to obtain more immunogenic cancer cell vaccines. It was reported that replicating
cells were more immunogenic than dead cells [74], so prodrug activation by suicide gene products
could switch off partially replicating cell vaccines after the start of the immune response. However,
prodrug-induced cancer cell death itself was found to increase the specific immune response [125].
Suicide genes were also included in oncolytic viruses, to enhance their safety profile [128].

Gene therapy approaches to obtain increased TS/A cancer cell immunogenicity gave interesting but,
at the same time, unsatisfactory results. Most approaches actually showed increased immunogenicity,
but when challenged in therapeutic set up, a minority of mice could be cured, and only when therapy
started at the very early phases of metastatic growth [106,112]. Similar conclusions could be drawn for
the variety of gene therapy trials conducted in the last three decades with the purpose of increasing
tumor immunogenicity through cytokine or costimulatory gene transduction. Therefore, results
obtained with TS/A as well as with other experimental gene therapy models predicted the low efficacy
found in trials. Combined gene therapy approaches showed better therapeutic activity and prompted
new combination immune-gene therapy approaches [99,111].

Gene transduction was applied to the TS/A model to study cancer biology and cancer gene therapy
(Table 3). Transduction of the wild-type p53 gene (p53wt), aiming to restore a correct p53 signaling,
was performed in vitro and in vivo with a Canarypox vector carrying p53wt, leading to downstream
p21 expression with a proapoptotic effect that caused tumor growth inhibition [21]. Tumor rejection
was associated with the generation of a specific antitumor immune response in a sarcoma model but
not in TS/A, thus confirming the low immunogenicity of the TS/A model system.



Cancers 2019, 11, 1889 8 of 20

Table 3. TS/A in transduction studies of cancer biology.

Gene Categories Transgenes Vector/Transfer Methods Refs

Oncosuppressors m-p53wt Canarypox [21]
m-p53wt/mut VSV (oncolytic) [139]

Reporter genes Luciferase Naked DNA [140,141]
β-galactosidase Naked DNA + polyfection [142]
GFP Adenoviral [143]
GFP Lentiviral [46]
EGFP Lentiviral [54]
EGFP Naked DNA + electroporation [50]
EGFP (driven by p21 or CMV promoter) Naked DNA + electroporation [144,145]

Silencing antisense m-TGF-β1 Retroviral [18]
Rab27a Lentiviral [146]
Mlh1 CRISPR-Cas9 [147]
FoxP3 Lentiviral siRNA [44]
fragile X mental retardation protein
(FMRP) Lentiviral shRNA [46]

Surrogate antigens β-galactosidase Retroviral [81,148–150]
Hemagglutinin Naked DNA + lipofection [151,152]
Leishmania receptor for activated C
kinase (LACK) Naked DNA [153–155]

Mycobacterial cell wall-associated 19-kDa
lipoprotein [156]

Ovalbumin Naked DNA [157,158]

Others Chromogranin A (Vasostatin-1 fragment) Naked DNA + electroporation [159–161]
Extracellular domain of receptor tyrosine
kinase Tie2/TEK (ex-TEK)

Naked DNA + calcium
phosphate precipitation [162]

Apelin Naked DNA + polyfection [163]
Interferon-regulatory factor-1 (IRF-1) Adenoviral [43]
α1,2fucosyltransferase Naked DNA + lipofection [164]
P27VP22 Naked DNA + polyfection [165]

TS/A cells were transduced with luciferase gene and green fluorescent protein (GFP) variants and
used in studies on imaging techniques (Table 3). TS/A cells were used as recipient for genes coding
exogenous antigens as a surrogate to study features of the corresponding immune response (Table 3).

Silencing approaches were performed with retro- and lenti-viral vectors and recently with
CRISPR-Cas9 technology. Through silencing, TGF-β1 released by TS/A cells was found to play a
suppressive role on graft-versus-tumor reaction [18].

In search of new genes potentially involved in metastasis of mammary cancer, along with data
from human histopathological samples, some studies used TS/A cells for a mechanistic demonstration
through silencing approaches. These studies were sometimes performed in parallel with another
popular model of murine mammary cancer (4T1), which is more metastatic than TS/A cells (see
Section 6). The overexpression of Fragile X mental retardation protein (FMRP) was concordantly
related to lung metastases in both models [46]. On the contrary, some disagreement between TS/A
and 4T1 was reported concerning the role of the small GTPase Rab27a [146]. Rab27a was involved in
exosome secretion. Its silencing inhibited tumor growth and lung metastases in the 4T1 model, but not
in TS/A. It should be noted that the authors described TS/A as a non-metastatic tumor model. Since
TS/A is actually able to metastasize to lungs, two explanations are possible for such discrepancy: a)
Rab27a is not an on/off determinant of metastatic power, but rather a quantitative modulator; b) 4T1 is
a clone while TS/A is a polyclonal and heterogeneous cell line. TS/A extensive subculture can have led
to drift phenomena with oligoclonal dominance of less metastatic cells, which are well represented in
the cell line of origin.

Genetic inactivation through CRISPR/CAS9 technology of the DNA mismatched repair gene
MutL homologue 1 (MLH1) in TS/A cells, as well as in other non-mammary murine cancer models,
led to increased immunogenicity due to accumulation of neoantigens [147]. MLH1-inactivated cells
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acquired sensitivity to antibodies against checkpoint inhibitors, which now represent the forefront of
cancer immunotherapy.

The expression of murine ErbB2 in TS/A cells was exploited to provide experimental evidence of
the oncosuppressor role of FoxP3 in mammary cancers, that downmodulated the expression of the
ErbB2 oncogene [44]. TS/A cells was also used as a model to study optimization of parameters of gene
electrotransfer [50].

6. Comparison with Other Mammary Cancer Models

Modeling mammary cancer in mouse to study tumor–host interactions took advantage of several
model systems [3,4,166]. Reordering models according to their intrinsic complexity, we can mention
transplantable murine tumors, gene-driven mammary carcinogenic models, human cell lines grown
in vitro or in vivo as xenografts and patient-derived xenografts and organoids.

Concerning transplantable murine mammary cancer, the most popular cell line is 4T1, derived
from a spontaneous mammary cancer arisen in a BALB/cfC3H female [167–169]. 4T1 share several
features with TS/A and with human mammary cancers, such as low immunogenicity and tumor–host
interactions. In fact, several studies were performed using in parallel 4T1 and TS/A (see for example
Supplementary Table S1, column N), which were considered as biological replicates and generally
gave concordant results. We can focus here on the main differences between the two models. 4T1
is a thioguanine-resistant clone derived from a heterogeneous mammary cancer cell line [167,168].
TS/A is a cell line with heterogeneity spanning from morphology to metastatic ability and to CSF
production (and therefore tumor–host interactions), as proven by the in vitro isolation of clones with
markedly different features [14,40]. Populations with different abilities to metastasize were also
isolated from TS/A through in vivo selection procedures [41]. Heterogeneity is a hallmark of mammary
cancer, which comprises morphology, differentiation and metastatic ability, but cloned populations
at least partially lose such heterogeneity. 4T1 is a highly aggressive clone, with the ability to give
rise to a high number of lung metastases following subcutaneous, intravenous or orthotopic cell
injections (see for example [146]). Moreover, 4T1 can metastasize to other organs (such as liver and
bone) [170]. TS/A is a cell line provided with metastatic ability but giving rise to moderate number
of lung metastases following local growth, subcutaneous and intravenous injections or orthotopic
administration [10,54]. The lower metastatic ability of the TS/A model can allow to study a wider
range of metastasis modulators.

In the last three decades the research on mammary tumor development and malignancy
took advantage of transgenic models. One of the most studied models of gene-driven mammary
carcinogenesis was that based on the rat HER2/neu oncogene under the transcriptional control of
the Mouse Mammary Tumor Virus (MMTV) promoter [171,172]. Transgenic models recapitulated all
the transitions from the normal mammary gland to mammary cancer, both from morphological and
molecular points of view, and led to essential advancement in comprehension of the carcinogenic
process and development of new therapeutic approaches. The reproducible carcinogenic process
observed in transgenic models was exploited to study the prevention of tumor progression, including
approaches based on immune strategies [173]. Transgene expression is somewhat artificial, concerning
both the xenogeneic origin of the oncogene (rat HER2/neu) and the expression driven by a viral promoter.
From an immunological point of view, the fast carcinogenesis and the altered immunoreactivity of mice
being tolerant to transgene can be significant differences from the human pathogenetic development of
mammary cancer. However, the main problems of transgenic models are time-consuming procedures
and costs. Cell lines from spontaneous mammary cancer such as TS/A therefore are still widely
employed in studies on biological features and new therapeutic approaches.

Human models for mammary cancer comprise cell lines and xenografts [4,166]. Human breast
cancer is a heterogeneous disease that, thanks to biomarkers, can be subdivided in different subtypes
with prognostic significance [174,175] and subjected to appropriate treatments. The main advantage
of human models is that they can reproduce the heterogeneity among tumors, giving researchers
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the possibility to choose the correct subtype depending on the aim of the research, while the main
constraint of human cell lines and xenografts is the lack of immune tumor–host interactions. To identify
which subtypes can be modeled by the different murine mammary cancers, a comparison among gene
expression profiles of a panel of murine mammary cancer cell lines including a TS/A variant (clone E1)
and profiles of the different human subtypes was performed [13]. E1 showed a non-basal profile, with
prevalent features of luminal A and HER2 subtypes (about 50% and 20%–30% probability, respectively).
Therefore, a single murine model can mimic a peculiar human subtype, but obviously is limited to
the fixed genetic setting of the cell line and does not reflect diverse spectrum of personalized genetic
and/or epigenetic alterations of human breast cancers.

To better depict individual mammary cancers, patient-derived xenografts (PDX) [176] and
patient-derived organoids (PDO) were proposed [177–179]. Such approaches are more compatible
with the need of precision oncology and without concern of species difference. PDX do not allow
to study immune interactions (since they are grown in immunodeficient mice), and also present
other disadvantages such as the low frequency of tumor take, with a bias toward more aggressive
subtypes [180], the cost and the time-consuming procedure. PDO are 3D cultures obtained by dissociated
tumor tissue which can be co-cultured with human lymphocytes, thus allowing to investigate tumor
microenvironment, anticancer immunotherapy, and other aspects including development of novel
therapeutics [181,182].

In conclusion, preclinical models of murine mammary cancer cell lines are still widely used thanks
to their possibility to focus on tumor–host interactions comprising the role of stroma, the metastatic
process and immune responses. The recent burst of immune-based anti-cancer therapies (see for
example checkpoint inhibitors [133,147] and CAR-T [183]) likely will take advantage of murine models
comprising mammary cancer cell lines. Other advantages are the low cost and time to obtain results.
The possibility to study in parallel several cancer cell lines mimicking different breast cancer subtypes
could remain a first-line means to study innovative molecular and therapeutic approaches, which will
be then tested in individually precise, more complex human models.

7. Conclusions

The analysis of the main studies exploiting TS/A as a pre-clinical model of mammary cancer
allows to draft a profile spanning from molecular alterations to malignant phenotype and immune
interactions. This profile should be considered when designing experiments based on TS/A model.
Knowledge of this profile can allow inference about the complexity of human breast cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/12/1889/s1,
Table S1: Comprehensive list of papers using TS/A cell variants.
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