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Enzymes of the aldehyde dehydrogenase (ALDH) superfamily cat-
alyze the nicotinamide adenine dinucleotide-dependent oxidation
of aldehydes to carboxylic acids. ALDHs are important in detox-
ification of aldehydes, amino acid metabolism, embryogenesis and
development, neurotransmission, oxidative stress, and cancer.
Mutations in genes encoding ALDHs cause metabolic disorders,
including alcohol flush reaction (ALDH2), Sjögren–Larsson syn-
drome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-
hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria
(ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and
hyperammonemia (ALDH18A1). We previously reported crystal
structures and small-angle X-ray scattering (SAXS) analyses of
ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric
states (Luo et al., Biochemistry 54 (2015) 5513–5522; Luo et al., J.
Mol. Biol. 425 (2013) 3106–3120). Herein I provide the SAXS
curves, radii of gyration, and distance distribution functions for the
three types of ALDH oligomer. The SAXS curves and associated
analysis provide diagnostic fingerprints that allow rapid identifi-
cation of the type of ALDH oligomer that is present in solution. The
data sets provided here serve as a benchmark for characterizing
oligomerization of ALDHs.
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access article under the CC BY license
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ore specific sub-
ject area
Biochemistry, Structural Biology
ype of data
 SAXS data files (.dat) and protein structure coordinate files (.pdb)

ow data was
acquired
Small-angle X-ray scattering (SAXS) data collected at Advanced Light Source
Beamline 12.3.1
ata format
 Buffer-subtracted, merged experimental scattering curves (.dat)

xperimental
factors
Purified protein samples were subjected to size exclusion chromatography and
shipped at 4 °C in 96-well trays to beamline 12.3.1.
xperimental
features
Data were collected by the beamline staff as part of the mail-in SAXS program at
the SIBYLS beamline. The beamline staff provides the user with buffer-subtracted
SAXS curves. The user then performs subsequent data analysis and
interpretation.
ata source
location
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
ata accessibility
 SAXS curves and coordinates of crystal structures are provided as supplementary
content
1. Value of the data [describe in 3–5 bulleted points why this data is of value to the scientific
community]
� SAXS is a robust method for determining the oligomeric states of proteins in solution.
� When combined with crystal structures, SAXS can also be used to determine quaternary structure.
� The dimeric, tetrameric, and hexameric forms of ALDH have distinctive SAXS curves and SAXS-

derived structural parameters.
� SAXS provides a diagnostic fingerprint of ALDH oligomeric state and quaternary structure.
� The data sets provided here serve as a benchmark for characterizing ALDH oligomerization.
2. Data, experimental design, materials and methods

2.1. Representative examples of ALDH oligomers

SAXS fingerprints are provided for prototypical dimeric, tetrameric, and hexameric ALDHs. No
other oligomeric forms of ALDH have been described to date.

Bacillus halodurans Δ1-pyrroline-5-carboxylate dehydrogenase (BhP5CDH) is presented here as an
example of a dimeric ALDH. P5CDHs are part of proline catabolism and catalyze the oxidation of L-
glutamate-γ-semialdehyde to L-glutamate [1]. P5CDHs belong to ALDH family 4 (member A1) and are
also known as ALDH4A1. The ALDH dimer consists of two domain-swapped protomers and is the
fundamental building block of higher order ALDH oligomers (Fig. 1A). The BhP5CDH dimer corre-
sponds to chains A and B of the C2 asymmetric unit of PDB entry 3QAN; the coordinates of this dimer
are provided in Supplementary material. Other examples of dimeric ALDHs include human and
mouse ALDH4A1 [2,3].

Human ALDH7A1 (hALDH7A1) forms the classic ALDH tetramer. ALDH7A1 is part of lysine cata-
bolism and is also known as α-aminoadipate semialdehyde dehydrogenase [4–6]. The tetramer is a
dimer of dimers having 222 symmetry (Fig. 1B). The crystal structure of hALDH7A1 complexed with
α-aminoadipate (PDB entry 4ZUL [5]) has two equivalent tetramers in the C2 asymmetric unit; the
coordinates of one of these tetramers are provided in Supplementary material. Other examples of
tetrameric ALDHs include ALDH1 and ALDH2 [7].

Thermus thermophilus Δ1-pyrroline-5-carboxylate dehydrogenase (TtP5CDH) represents hex-
americ ALDHs [8]. The hexamer is a trimer of dimers (Fig. 1C). The crystal structure of TtP5CDH (PDB
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entry 2BHQ [9]) has a dimer in the H3 asymmetric unit. Application of the crystallographic 3-fold
rotation generates the hexamer; the coordinates of this hexamer are provided in Supplementary
material. Other hexameric ALDHs include the P5CDHs from yeast [10] and Deinococcus radiodurans
[8].

2.2. Preparation of protein samples for SAXS data collection

Expression and purification of BhP5CDH, hALDH7A1, and Thermus thermophilus P5CDH (TtP5CDH)
were described previously [5,8]. Prior to SAXS analysis, each protein was passed through a Superdex
200 size exclusion column to remove any aggregated protein. We note that aggregation must be
avoided as it greatly diminishes SAXS data quality, and in some cases, can cause the data to be
unusable [11,12]. Effluent from the size exclusion column was reserved for measurement of the
background scattering. The protein samples and corresponding buffer samples were pipetted into 96-
well PCR plates (Corning Axygen, VWR catalog number 10011-228). Each protein sample was inclu-
ded at three nominal concentrations in the range of 1–10 mg/mL. The total volume in each well was
30 μL. The trays were sealed with a silicone lid (Corning Axygen, VWR catalog number 10011-130).
Each sealed tray was sandwiched between two cold packs that had been incubated at 4 °C, and the
assembly was stabilized with rubber bands. The assembly was then placed in a Styrofoam box con-
taining additional cold packs (at 4 °C) and sent via overnight express courier to beamline 12.3.1 of the
Advanced Light Source.

2.3. SAXS data collection and analysis

SAXS data were collected by the beamline staff through the SIBYLS beamline mail-in program
(bl1231.als.lbl.gov/htsaxs) [13,14]. For each protein concentration, exposure times of 0.5, 1.0, 3.0, and
6.0 s were used. Scattering curves collected from the protein samples were corrected for background
scattering using intensity data collected from the SEC effluent. Composite scattering curves for each
protein concentration were generated with PRIMUS [15] by scaling and merging the background-
corrected high q region from the 3 s exposure with the low q region from the 0.5 s or 1.0 s exposure.
PRIMUS was also used for Guinier analysis. GNOM was used to calculate distance distribution func-
tions [16]. Composite scattering curves for BhP5CDH, ALDH7A1, and TtP5CDH are provided in
Supplementary materials.

2.4. SAXS fingerprints of ALDH oligomers

SAXS curves for BhP5CDH (dimer), hALDH7A1 (tetramer), and TtP5CDH (hexamer) are shown in
Fig. 2. The dimer curve is distinct from the others in that it is relatively featureless and monotonically
decreasing with q in the region of qo0.15 Å�1. In contrast, the tetramer and hexamer curves show
peak and valley features in the region q¼0.075–0.15 Å�1. These features are more pronounced in the
hexamer curve.

The radius of gyration (Rg) is a fundamental solution structural parameter that is quickly deter-
mined from SAXS data. Rg can be estimated from Guinier analysis or calculation of the distance
distribution function [12,17]. Using either method, one finds that Rg increases with increasing degree
of oligomerization (Table 1). The Guinier Rg values estimated with Primus using the supplied data files
are 31.270.1 Å for the dimer (using qRg range of 0.35–1.30), 37.970.5 Å for the tetramer (qRg¼0.36–
1.30), and 43.470.3 Å for the tetramer (qRg¼0.49–1.28). The Rg values from calculations of the
distance distribution function (real space Rg) are in good agreement with those from Guinier analysis
ig. 1. The three oligomers of the ALDH superfamily. (A) BhP5CDH is an example of a dimeric ALDH (PDB code 3QAN).
B) Human ALDH7A1 is a dimer-of-dimers tetramer (PDB code 4ZUL). Two orthogonal views are shown. The filled oval and
rrows represent the three molecular 2-fold axes of the tetramer. (C) TtP5CDH forms a trimer-of-dimers hexamer (PDB code
BHQ). Two orthogonal views are shown. The triangle represents the molecular three-fold axis, while the arrows represent
he three molecular 2-fold axes. In all three panels, each chain has a different color.

http://www.bl1231.als.lbl.gov/htsaxs


Fig. 2. SAXS data for dimeric (BhP5CDH, black circles), tetrameric (hALDH7A1, red circles), and hexameric (TtP5CDH, blue
circles) ALDHs. The smooth curves are theoretical SAXS data calculated from the atomic models provided in the Supplement
using FoXS [21]. The fit quality parameters (χ) are 2.2 for the dimer, 1.5 for the tetramer, and 5.5 for the hexamer. Arbitrary scale
factors have been applied so that the data sets are offset for ease of comparison.

Table 1
Radii of gyration of ALDH oligomers.

Representative
ALDH

Oligomeric
state

Guinier
RG (Å)

Real
space
RG (Å)

Crystal
structure
RG (Å)a

M (kDa)b

BhP5CDH Dimer 31 32 31 91 (115)
hALDH7A1 Tetramer 38 37 36 175 (222)
TtP5CDH Hexamer 43 43 43 309 (343)

a Calculated from the coordinates provided in Supplementary materials using MOLEMAN [19].
b Molecular mass of the oligomer in solution calculated from the SAXS data using the volume of correlation method as

implemented in Scatter 1.0 [20]. The theoretical mass calculated from the amino acid sequence is listed in parentheses.
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(Table 1). Furthermore, the SAXS Rg values agree well with those calculated from the crystal struc-
tures (Table 1).

The molecular mass of proteins in solution can be calculated from SAXS data using the volume of
correlation method of Rambo and Tainer [18]. The molecular masses calculated from the ALDH data
sets are in good agreement with the theoretical values (Table 1).

Theoretical SAXS data can be calculated from atomic coordinates obtained from crystal structures
or homology models. Comparison of the experimental and calculated data allows determination of
the quaternary structure of the oligomer in solution. The theoretical SAXS data calculated from the
supplied oligomer crystal structure models agree well with the experimental SAXS data (Fig. 2).

The distance distribution function is another aspect of the SAXS fingerprints of ALDH oligomers (Fig. 3).
In each case, the distribution function exhibits a single maximum; however, the oligomers can be dis-
tinguished by the position of the maximum, the width of the distribution, and the maximum particle
dimension (Dmax). The position of the maximum increases with increasing degree of oligomerization, from
r¼36 Å for the dimer, to r¼49 Å for the tetramer, and r¼58 Å for the hexamer. Also, the distribution
widens with increasing degree of oligomerization. The peak width at half-maximum is 45 Å for the dimer,



Fig. 3. Distance distribution functions for dimeric (BhP5CDH, black), tetrameric (hALDH7A1, red), and hexameric (TtP5CDH,
blue) ALDHs.
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53 Å for the tetramer, and 58 Å for the hexamer. Dmax is the distance at which the distribution function
decays to zero. This value is smallest for the dimer (95–105 Å), intermediate for the tetramer (105–120 Å),
and largest for the hexamer (120–125 Å).

In summary, the three oligomeric forms of ALDH are readily distinguishable from SAXS. The data
supplied here serves as a benchmark for characterizing ALDH oligomerization.
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