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Background: Smoking addiction is a major public health issue which causes a series of

chronic diseases and mortalities worldwide. We aimed to explore the most discriminative

gray matter regions between heavy smokers and healthy controls with a data-driven

multivoxel pattern analysis technique, and to explore the methodological differences

between multivoxel pattern analysis and voxel-based morphometry.

Methods: Traditional voxel-based morphometry has continuously contributed to finding

smoking addiction-related regions on structural magnetic resonance imaging. However,

voxel-based morphometry has its inherent limitations. In this study, a multivoxel pattern

analysis using a searchlight algorithm and support vector machine was applied on

structural magnetic resonance imaging to identify the spatial pattern of gray matter

volume in heavy smokers.

Results: Our proposed method yielded a voxel-wise accuracy of at least 81% for

classifying heavy smokers from healthy controls. The identified regions were primarily

located at the temporal cortex and prefrontal cortex, occipital cortex, thalamus (bilateral),

insula (left), anterior and median cingulate gyri, and precuneus (left).

Conclusions: Our results suggested that several regions, which were seldomly

reported in voxel-based morphometry analysis, might be latently correlated with smoking

addiction. Such findings might provide insights for understanding the mechanism of

chronic smoking and the creation of effective cessation treatment. Multivoxel pattern

analysis can be efficient in locating brain discriminative regions which were neglected by

voxel-based morphometry.
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INTRODUCTION

Tobacco smoking in the form of cigarettes continues to be
the leading cause of preventable illness and mortality in the
world (1). China, the largest producer of tobacco, is estimated
to contain 311 million individuals who are current smokers,
with 295 million men and 16 million women, respectively
(2). Chronic smoking is known to correlate with a series of
diseases including stroke, lung cancer, hepatocellular carcinoma,
and vascular dysfunctions (3–7). Related neuroimaging studies
also suggested that the numerous toxic chemicals contained in
a cigarette, especially nicotine, could promote potential brain
afflictions in chronic cigarette smokers (8, 9).

Apart from these serious public health problems, 78% of
smokers who expressed willingness to quit smoking reported
a relapse situation in China, and the percentage in America is
currently 80% (10, 11), indicating the ineffectiveness of existing
cessation treatments. Poor treatment outcome for smoking
cessation may result from a lack of awareness of the mechanism
behind smoking addiction and the available biomarkers that
characterize heavy smokers (12, 13).

Structural magnetic resonance imaging (sMRI), which
visualizes the central neural system with high-resolution in a
non-invasive way, provides indispensable spatial information in
the procedure of identifying such biomarkers (i.e., discriminative
brain regions). For the past decade, univariate approaches such
as voxel-based morphometry (VBM) have continuously been
applied on sMRI studies (14, 15). In these studies, morphological
abnormalities are consistently discovered in heavy smokers in
some brain regions, including the prefrontal cortex, anterior
cingulate cortex, thalamus, and the insula (9, 14–18).

Despite the accumulative results reported, VBM, as a
traditional univariate approach, has its inherent limitations in
identifying spatial patterns that exist in a certain population
(e.g., a group of heavy smokers). Generally, VBM has the
multiple comparisons problem (19), which causes a loss of
sensitivity and overlooks the dependency of the focal set of
voxels in localizing informative regions relevant to specific brain
abnormalities (20). Multi-voxel pattern analysis (MVPA), which
utilizes a multi-variate technique and is driven by machine
learning algorithms, provides a sensitive and different approach
in identifying group-wise differences. MVPA takes multiple
voxels into account and considers patterns across a group of
voxels that may respond weakly but consistently differently
between conditions (21, 22). Therefore, MVPA can be sensitive
in distinguishing different experimental conditions. MVPA has
become favorable in neuroimaging research for its ability to
detect subtle anatomical differences (23–25).

The field of utilizing MVPA to discover structural
abnormalities in heavy smokers remains less active. Notably,
in an sMRI study based on support vector machine (SVM),
the authors (26) used the mean gray matter volumes (GMVs)
of 1,024 self-defined brain regions as input features to the
SVM to identify the most discriminative regions by finding
the most informative features in the SVM. Using average brain
region GMVs as features may be an over simplistic way to
characterize the anatomical structure of the neural system. The

subtle difference within the same self-defined region may be
overlooked. In this study, in order to discover smaller regions
that reflect the experimental conditions of interest, we used a
searchlight algorithm by moving a searchlight window through
the volume of the brain, to sample the gray matter values of
voxels as the input features to our linear classifier (SVM). A
searchlight algorithm is able to preserve subtle differences
between a group of voxels while a linear SVM can detect
such subtle differences by efficiently defining a boundary that
maximally separates two classes (e.g.,: heavy smokers and healthy
non-smokers) of samples.

With regard to the peer studies on smoking addiction and
the limitations of the current univariate approach, in this study,
we aimed to: (1) explore the most discriminative gray matter
regions between heavy smokers and otherwise healthy controls
(HCs) with a data-driven MVPA technique and sMRI data; and
(2) explore the methodological difference between MVPA and
VBM. We hypothesized that MVPA would be a more sensitive
method in locating group-wise brain differences than VBM.

METHODS

Participants
The study adhered to the Declaration of Helsinki and was
approved by the Medical Ethics Review Board of Zhongnan
Hospital of Wuhan University. After a complete description
of the study, written informed consent was obtained from
the subjects.

Sixty-eight right-handed subjects (39 heavy smokers and
29 healthy non-smoker control subjects) were recruited via
advertisement flyers and referrals for MRI studies. All subjects
were screened for psychiatric and non-psychiatric medical
disorders using the Mini International Neuropsychiatric
Interview (27). All participants underwent an interview session
followed by an inclusion procedure. The inclusion criteria
for both groups were: the absence of any history of medical
(e.g., cardiac disease) or neurological (e.g., stroke) disorders,
intellectual disability, drug abuse or dependence (other than
nicotine dependence for heavy smokers), or psychiatric disease;
none of the subjects reported the daily consumption of alcohol
or experienced social consequences secondary to alcohol intake.
Heavy smokers were defined as those who met the DSM-
IV criteria for nicotine dependence, had smoked at least 20
cigarettes daily in the past 5 years, and had no period of smoking
abstinence longer than 3 months. The severity of the heavy
smokers’ nicotine addiction was measured using the Fagerström
Test for Nicotine Dependence (28). The healthy control subjects
in this study were defined as those who had a history of smoking
no more than five cigarettes in a lifetime.

Data from two heavy smokers and one non-smoker were
excluded for not meeting the above criteria. As a result, 37
heavy smokers (male: 30; female: 7) and 28 healthy non-smoking
control subjects (male: 21; female: 7) were included in this study.
More detailed information on the subjects in each group is
presented in Table 1. Demographic data were compared between
the two groups by using two-sample t-tests or a Chi-square test
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TABLE 1 | Demographic and clinical characteristics of the heavy smokers

and HCs.

Measure HS HC P-value

Number 37 28

Age (SD)/years 47.18 (7.22) 43 (9.62) 0.96a

Gender (male/female) 29/8 20/8 0.77b

Years of education (SD) 9.24 (2.16) 11.67 (4.72) 0.36a

Lifetime cigarette usage (years) 25.34 (9.23) – –

Age at first cigarette use (years) 21.02 (5.38) – –

Average cigarette per day 35.13 (10.70) – –

FTND score 8.89 (0.68) – –

Data are presented as mean (standard deviation). HS, heavy smokers; HC, healthy

controls. FTND, Fagerström Test for Nicotine Dependence; a, two-sample two tailed

t-test; b, Chi-square test.

in the Statistical Package for Social Science, version 19 (SPSS Inc.,
USA). The threshold level of significance was set as p < 0.05.

MR Acquisition
All participants underwent a high-resolution 3dn-MTC T1-
weighted structural scan using a Siemens Trio 3.0-Tesla MR
scanner (Erlangen, Germany) with a standard birdcage head coil.
sMRI images were obtained using a MPRAGE pulse sequence
with the following parameters: repetition time= 25ms; echo time
= 4.51ms; flip angle = 25; acquisition matrix = 256 × 256; and
slice thickness= 1mm with a 1 mm gap.

Image Preprocessing
The raw DICOM images of sMRI were converted to the
NIFTI format using MRIcron (University of South Carolina,
Columbia, SC, USA, http://www.mricro.com). The following
preprocessing steps were then performed to obtain gray matter
(GM) maps using VBM8 toolbox (http://dbm.neuro.unijena.de/
vbm) in SPM8 (Version 6313, Wellcome Department of Imaging
Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk/spm) on
MATLAB R2013a. Firstly, the sMRI images were registered to
the Montreal Neurological Institute (MNI) stereotactic space
and resampled to a 1.5mm isotropic voxel spacing. Secondly,
the co-registered images were segmented into three types of
tissues, namely GM, white matter, and cerebrospinal fluid.
Thirdly, a study-specific template was created using the high-
dimensional Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra (DARTEL) algorithm and with the
predefined templates in the VBM8 toolbox. Next, in order to
preserve the total volume of each brain tissue, the segmented
images were modulated using non-linear deformation which can
compensate for the effect of spatial normalization. This step
multiplied the spatially normalized gray matter by its relative
volume before and after spatial normalization (29). At last, the
images were smoothed with an 8-mm full-width-half-maximum
Gaussian kernel.

MVPA
An MVPA technique combining a searchlight algorithm and
a linear SVM was used to classify prominent regions that

distinguished heavy smokers from HCs. Generally, by moving
a searchlight region through the brain volume, one can
continuously map the information content regarding the
experimental conditions of interest in the brain (30). The
procedure of our MVPAmethod is as follows. The smoothed GM
maps computed from the data preprocessing step were used as
inputs in the MVPA. Firstly, at each voxel (Vi) of the GM images
in the normalized space, a three-dimensional cubical region size
of 3 × 3 × 3 centering at Vi was identified. For each subject,
the gray matter volume values of all 27 voxels (at a specific voxel
position) were extracted and converted into a high-dimensional
vector and used to construct the feature matrix. To train and test
the SVM, a leave-one-out (LOO) cross-validation (CV) strategy
was adopted, which excludes one subject as a testing set each
time and trains the classifier using the remaining subjects. As
a result, two feature matrices MF1∗S and MF2∗S were retrieved
as the training set and testing set (F1 = 64, F2 = 1, S = 27),
respectively. F1 and F2 indicate the number of subjects in the
two sets respectively, and S indicates the number of voxels of
the feature matrix. Next, the training set was fed into the SVM
implemented in the LIBSVM toolbox (http://www.csie.ntu.edu.
tw/~cjlin/Libsvm). In each training set, a nested 5-fold CV was
applied to determine the optimized parameter C (regularization)
and g (gamma for radius basis function) for testing. That is, each
time one-fifth of the training set was selected as a testing sample
and the classifier was built upon the remaining data. Parameters
that produced the highest accuracy across these 5-folds was
identified as the optimized C and g. The identified C and g
were then used in the corresponding testing procedure. Finally,
the accuracy of the trained classifier was assigned to the chosen
voxel Vi. After repeating this procedure on every voxel, a three-
dimensional accuracy map denoting the classification ability
between heavy smokers and HCs for all voxels was obtained.

To evaluate the statistical significance of the experimental
results, we converted the accuracymap to a p-valuemap under an
assumption of binomial distribution. Detailed information about
the conversion procedure can be found in another publication
(25). A connected domain algorithm was conducted on the p-
value map to produce clusters with significant predictive power,
whose threshold was set at p < 0.001 with more than 50 adjacent
voxels (24).

Post hoc Analysis of MVPA Analysis
Results
To further explore the difference of GMVs between heavy
smokers and HCs, a post hoc analysis was carried out, with
which a further VBM analysis was conducted within the brain
clusters detected by MVPA. The analysis was corrected for
multiple comparisons using family wise error (FWE) at the
cluster level (p < 0.05). To do this, firstly the GMVs of the
brain regions detected by the MVPA were extracted using
the MarsBar toolbox (http://www.mrc-cbu.cam.ac.uk/Imaging/
marsbar.html). Then, with age and gender as co-variates, voxel-
wise two independent samples t-tests were further performed in
these regions to determine the significant differences between
heavy smokers and HCs (p < 0.05, FWE-corrected, two-tailed).
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FIGURE 1 | Brain regions with high classification accuracy identified by MVPA. The color bar indicates the classification accuracy values of the whole brain GM voxels.

The image is displayed in the neurologic convention, with the left side corresponding to the left brain.

Whole Brain VBM Analysis
In order to compare the methodological differences between
MVPA and VBM, a whole brain VBM analysis was conducted.
With age and gender as co-variates, the whole brain GMmaps of
heavy smokers and HCs were fed to VBM. The same threshold
values of post hoc analysis were applied in order to conduct
a comparison between whole brain VBM analysis and MVPA.
Discriminative regions discovered by the whole brain VBM
were defined as clusters with a cluster size > 50 voxels and a
p-value < 0.001.

ROC Analysis
To evaluate the ability of MVPA or VBM in distinguishing the
smokers from the healthy controls, we performed ROC analysis
based on the brain regions with significant differences. Firstly, we
used the average gray matter values of brain regions as features
to establish an SVM model using 5-fold cross validation. Then
the ROC analysis was performed with the predicted probability
of each participant in the procedure of cross validation. The area
under the ROC curve (AUC) denotes the ability of classifying
heavy smokers from healthy controls.

RESULTS

Demographic Characteristics
Heavy smokers did not differ significantly with HCs in terms of
age (p = 0.96), years of education (p = 0.36), or gender ratio (p
= 0.77). For heavy smokers, the average FTND score was 8.89 ±
0.68 (range, 8–10; median, 9) and the average number cigarettes
per day was 35.13 ± 10.70, which indicated a relatively high
dependence on cigarettes. Detailed demographic information for
both groups can be found in Table 1.

MVPA and post hoc Analysis
The discriminative regions recognized by our MVPA technique
without covariates regression before classifier training are shown
in Figure 1. Our proposed technique yielded a voxel-wise
accuracy of at least 81% for classifying heavy smokers from
HCs. Several cortical and subcortical regions demonstrated a
strong classification ability with GM differences between heavy
smokers and HCs. These regions were primarily located at the
temporal cortex and prefrontal cortex, occipital cortex, thalamus
(bilateral), insula (left), anterior and median cingulate gyri (ACG
and MCG), and precuneus (left).
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TABLE 2 | Brain regions with high predictive accuracy identified by MVPA and the

corresponding post-hoc (VBM) results, which was corrected for multiple

comparisons using family wise error (FWE) at the cluster level (p < 0.05).

Brain regions

(AAL)

Cluster size

(voxels)

Peak MNI coordinates Peak t-value

X Y Z

Temporal_Pole_Mid_R 78 42 7.5 −37.5 3.69

Occipital_Inf_L 64 −36 −73.5 −0.5 −3.87

Calcarine_L 525 1.5 −79.5 −3 −4.62

Frontal_Med_Orb_L 89 −13.5 63 −3 3.91

Postcentral_R 622 24 −37.5 81 4.17

Temporal_Inf_L 143 −54 −39 −19.5 −4.12

Lingual_L 197 1.5 −78 −1.5 −4.32

Cuneus_L 317 −1.5 −97.5 18 4.19

Angular_R 449 45 −75 40.5 3.89

Occipital_Sup_L 294 −13.5 −99 31.5 4.30

Frontal_Mid_R 217 31.5 42 9 4.50

Parietal_Sup_R 98 15 −72 70.5 3.95

AAL, anatomical automatic labeling; MNI, Montreal Neurological Institute; L, left

hemisphere; R, right hemisphere; acc, accuracy; HS, heavy smokers; HC, healthy

controls. Peak t-value, post-hoc (VBM) results, conducted on brain regions detected by

MVPA and corrected for multiple comparisons using family wise error (FWE) at the cluster

level (p < 0.05). Positive t-value indicates GM volume in HS is significantly smaller than

HC while negative value indicates the opposite.

Two-sample t-tests (post hoc analysis) of GMVs revealed that
16 out of the 18 brain regions identified by MVPA demonstrated
a significant GMV decrease in heavy smokers as compared to
healthy controls (p < 0.05, FWE-corrected, two-tailed). Notably,
the inferior temporal gyrus (left) and cerebellumwere found with
a significantly increased GMV in heavy smokers than inHCs. The
peak accuracy values of these clusters and the corresponding t-
values which were derived from the post hoc analysis are reported
in Table 2. The peak t-value was defined as the maximum t-value
found in the extracted cluster. A positive t-value indicated that
the GM volume in HS was significantly smaller than HC in a
specific region while a negative value indicated the opposite. The
brain regions recognized by VBM are shown in Figure 2.

The ROC analysis results are shown in Figure 3. The ROC
results indicate that MVPA outperformed VBM in differentiating
the heavy smokers from the HCs (AUC, 0.81 vs. 0.78; sensitivity,
0.82 vs. 0.79; specificity, 0.77 vs. 0.77; positive predictive value
(PPV), 0.72 vs. 0.71; negative predictive value (NPV), 0.85
vs. 0.82).

VBM Analysis
As summarized in Table 3, whole brain VBM analysis revealed
that six brain regions demonstrated a significant decrease or
increase of GMV in heavy smokers than in HC. These regions

FIGURE 2 | Brain regions identified by whole brain VBM analysis. The color bar indicates the peak t-values of the maximum voxel found in the extracted cluster. A

positive t-value indicates that the GM volume in HS is significantly smaller than HC in a specific region while a negative value indicates the opposite. The image is

displayed in the neurologic convention, with the left side corresponding to the left brain.
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FIGURE 3 | The ROC analysis results of MVPA (left) and VBM (right). The results (AUC, 0.81 vs. 0.78; sensitivity, 0.82 vs. 0.79; specificity, 0.77 vs. 0.77; PPV, 0.72 vs.

0.71; NPV, 0.85 vs. 0.82) indicate that MVPA outperformed VBM in differentiating the smokers from healthy controls by using the GMVs of the detected brain regions

as the features.

TABLE 3 | Brain regions detected by VBM with a significant decrease or increase

GMV in heavy smokers than HC.

Brain regions

(AAL)

Cluster size

(voxels)

Peak MNI coordinates Peak t-value

X Y Z

HS < HC

Right cerebrum 129 31.5 40.5 9 5.313

Left cerebrum 73 −13.5 −99 31.5 3.63

Occipital_Sup_R 100 21 −93 46.5 3.88

Precuneus_L 50 −12 −49.5 51 3.93

HS>HC

Occipital_Inf_L 58 −40.5 −70.5 −9 −3.64

Lingual_L 355 −1.5 −79.5 −1.5 −4.39

AAL, anatomical automatic labeling; MNI, montreal neurological institute; L, left

hemisphere; R, right hemisphere; HS, heavy smokers; HC, healthy controls. t-value,

positive t-value indicates GM volume in HS is significantly smaller than HC while negative

value indicates the opposite. The cluster size is more than 50 voxels and the threshold is

set as p < 0.001, uncorrected.

were located in the occipital, precuneus lingual, and cerebrum.
The peak t-value was defined as the maximum t-value found in
the extracted cluster. A positive t-value indicated that the GM
volume in HS was significantly smaller than HC in a specific
region while a negative value indicated the opposite.

DISCUSSION

Traditional univariate studies prior to this research have
constantly discovered that heavy smokers shared similar GM
alterations in the cingulum, thalamus, cerebellum, prefrontal
gyrus, and precuneus (9, 15–18, 31). In this study, these
regions were identified by MVPA as discriminative regions

between heavy smokers and HCs. In a following post hoc
analysis on these particular regions, our analysis results also
demonstrated significant GM decrease in several areas including
the temporal cortex, prefrontal cortex, thalamus, ACG and
MCG, and precuneus in heavy smokers, indicating a strong
correlation between GM alteration in regional GMdeficiency and
chronic smoking. In addition, our MVPA result also revealed
that regions (insula, cerebellum) which were seldomly reported
in traditional VBM analysis, may participate in the chronic
smoking mechanism. The resulting contrast between MVPA and
VBMmay indicate the methodological differences between these
two methods.

In our study, the bilateral thalamus were identified by
MVPA with high accuracy. Particularly, in the post hoc analysis,
the right thalamus was found to have significant GMV loss
in heavy smokers. The observation of GMV deficiency in
heavy smokers may primely result in the cognitive impairment
reported in several studies (8, 17), as the thalamus relays
information between the cerebral and different subcortical
cortexes (32). In addition to cognitive impairment, the thalamus
has been identified as a brain region with a relatively high
density of nicotine acetycholine receptors (α4β2∗ nAChRs)
(23, 33, 34). Frequent nicotine binding activities could be
the leading reason for the GMV decrease in the thalamus.
Such a finding also provides insight for formulating more
effective withdrawal treatment. In a related Positron Emission
Computed Tomography (PET) study (33), the author suggested
that maintaining α4β2∗ nAChRs in the desensitization state may
be a possible way to alleviate withdrawal symptoms.

The cingulum, bidirectionally connected with the medial
temporal lobes, was another region widely reported to be
associated with smoking addiction in univariate studies. In this
study, the bilateral cingulum could discriminate heavy smokers
from HCs with at least an accuracy of 75%. In the corresponding
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post hoc analysis, both the ACG and MCG demonstrated
significant GM loss in heavy smokers. As a region connected
to sites repeatedly implicated in cognitive control, the ACG
is involved in executive function behaviors, such as inhibitory
control and conflict resolution (35), whichmay play an important
part in the process of quitting smoking.

The prefrontal area was another discriminative region
identified by MVPA with high accuracy. Especially, in the
post hoc analysis, the inferior and middle areas were found
with significant GMV loss in heavy smokers as compared to
HCs. As the prefrontal cortex is associated with concentration,
emotion, and other higher brain functions, our findings with
the prefrontal cortex may partially explain the decreased
attention and impairment of working memory reported in heavy
smokers (36–39).

Among other regions detected by MVPA, the insula
presented relatively high predictive accuracy and stood out as
a discriminative region. Acting as a critical neural substrate for
addiction including nicotine dependence (40), the insula plays
a potential role in the decision-making task that is associated
with relapse to drug use (41) and cue-induced drug urges (14,
42, 43). However, the insula was not reported in our whole
brain VBM analysis nor in other univariate sMRI studies. In
contrast, our finding of the insula was in accordance with
another multi-variate sMRI study deploying SVM (26). The fact
that the insula along with the ACG are part of the salience
network (SN) (44), a network that mediates one’s subjective
feelings, is thought to be one of the solutions to developing
effective treatment plans. A previous fMRI study discovered
that damage to the insula could disrupt addiction to cigarette
smoking which in turn may help improve smoking cessation
outcomes (40). Besides, evidence of the insula’s role in mediating
addiction urgesmay partially justify why the insula stands out as a
discriminative region.

Notably, nicotine binding activity in the cerebellum, a region
that was identified by our MVPA method with high accuracy
(82%) has also been reported in several biochemical studies (45,
46). Heavy smokers showed a greater density of nicotine binding
in the cerebellum as compared to non-smoking individuals (47),
and brain blood flow in the cerebellum was increased by cigarette
smoking (45, 46). This evidence lends support to the fact that
decreased cerebellar GMV is associated with smoking addiction.
However, like the insula and other regions, significantly lower
GMV was not found in the cerebellum in heavy smokers more
than in healthy controls in the whole brain VBM analysis.
Moreover, as indicated by sMRI studies deployingML techniques
(26, 48), the insula and cerebellum were found to participate
in the mechanism of chronic smoking. Such differences may be
attributed to the fundamental difference between MVPA and
traditional univariate analysis.

To be specific, MVPA fixes what was considered a
disadvantage in traditional univariate methods. Conventional
univariate analysis methods try to separately find voxels
that show a statistically significant response to the
experimental/physical conditions by deriving the average
of the chosen voxels in all subjects, which assumes that the

covariance across neighboring voxels is not informative about
the experimental conditions under examination (49). Such
assumption leads to the following inadequacies. Firstly, low
response voxels that still carry important information could
therefore be dismissed. Secondly, a consistent spatial pattern is
neglected by simply averaging all voxels. MVPA uses a different
solution to boost accuracy. Instead of uniformly averaging all
voxels in VBM, MVPA assigns a weighted average in different
conditions. This operation allows MVPA to discover spatial
patterns neglected by VBM. Further, MVPA tries to optimize
these weights by involving data-driven machine learning
techniques. The evidence that the regions showing correlation
to chronic smoking also implied that MVPA could be more
sensitive than conventional univariate methods. In this view,
MVPA can be better than VBM in discovering specific patterns
in the chronic smoking population.

The study still presents the following limitations. Firstly, the
sample size in the current study is relatively small. In a future
study, more data should be collected in order to construct
a more robust classifier and to verify our findings. Secondly,
a more comprehensive dataset combining different modalities,
such as fMRI and diffusion tensor imaging, would be helpful in
exploring themechanism of discriminative ability of such regions
in heavy smokers.

In this study, MVPA was applied to structural MRI to
identify the brain regions in discriminating heavy smokers
from healthy individuals. The anatomical deficiency in heavy
smokers was mainly discovered in the insula, ACG, MCG,
prefrontal cortex, precuneus, and cerebellum, which are
highly involved in the addiction of chronic smoking. These
findings in accordance with previous results (45, 47, 48, 50)
might provide insights for understanding the mechanism
of chronic smoking and effective cessation treatment. Such
insights also indicate the potential of using MVPA in future
neuroimaging research. Moreover, the comparison between
VBM and MVPA revealed that MVPA can be efficient in
locating brain discriminative regions which were neglected
by VBM.
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