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HIV-1 targets L-selectin for adhesion and induces
its shedding for viral release
Joseph Kononchik 1, Joanna Ireland1, Zhongcheng Zou1, Jason Segura1, Genevieve Holzapfel1,

Ashley Chastain 1, Ruipeng Wang1, Matthew Spencer1, Biao He1, Nicole Stutzman1, Daiji Kano1, James Arthos2,

Elizabeth Fischer3, Tae-Wook Chun2, Susan Moir 2 & Peter Sun1

CD4 and chemokine receptors mediate HIV-1 attachment and entry. They are, however,

insufficient to explain the preferential viral infection of central memory T cells. Here, we

identify L-selectin (CD62L) as a viral adhesion receptor on CD4+ T cells. The binding of viral

envelope glycans to L-selectin facilitates HIV entry and infection, and L-selectin expression

on central memory CD4+ T cells supports their preferential infection by HIV. Upon infection,

the virus downregulates L-selectin expression through shedding, resulting in an apparent loss

of central memory CD4+ T cells. Infected effector memory CD4+ T cells, however, remain

competent in cytokine production. Surprisingly, inhibition of L-selectin shedding markedly

reduces HIV-1 infection and suppresses viral release, suggesting that L-selectin shedding is

required for HIV-1 release. These findings highlight a critical role for cell surface sheddase in

HIV-1 pathogenesis and reveal new antiretroviral strategies based on small molecular inhi-

bitors targeted at metalloproteinases for viral release.
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Human immunodeficiency virus type 1 (HIV-1) infection
remains a major public health issue. In the absence of an
effective vaccine, viral infection can only be managed by

highly active antiretroviral treatment (HAART)1. To date, much
of our understanding of HIV-1 entry is based on viral envelope
proteins (gp120 and gp41) interacting with CD4 and chemokine
receptors2,3. However, the role of gp120-associated glycans in
HIV infection and pathogenesis is less clear. While glycosylations
on gp120 shields the virus from humoral immune recognition4,5,
the viral glycans are often recognized by host lectin receptors,
such as mannose receptor (MR), DEC-205, and DC-SIGN on
macrophage and dendritic cells leading to viral capture and
antigen presentation6–9. Some of the lectin receptors, such as
Siglec receptors on macrophages, are also used by the virus to
facilitate its adhesion and infection10,11. As these lectin receptors
are not expressed on CD4+ T cells, it is not clear if HIV envelope
glycans contribute to the viral infection of T cells despite earlier
studies showing mutations in gp120 glycans resulted in replica-
tion deficient viruses4.

While HIV-1 infects all CD4+ T cells, it exhibits a preference
for central memory CD4+ T cells (TCM)12–14, and may target
them for viral reservoirs15–18. L-selectin, also known as CD62L, is
a marker for central memory T cells (TCM). It facilitates lym-
phocyte rolling adhesion and homing on high endothelial venules
(HEV)19,20. In HIV-1-infected individuals, the number of
CD62L+ central memory T cells declines as the disease pro-
gresses, resulting in dysfunctional immune responses21,22. Despite
the apparent clinical association, the molecular mechanism
involving L-selectin in HIV biology is not clear.

Here, we investigated the potential role of L-selectin in HIV-1
infection of T cells. We found that L-selectin, despite its pre-
ferential binding to sulfated glycoproteins with sialyl-Lewis x
moiety23,24, recognized gp120-associated glycans, and the binding
facilitated the viral adhesion and infection. Unexpectedly, we also
found that L-selectin shedding is required for HIV-1 release from
infected cells. Current anti-HIV therapies target primarily viral
protease, reverse transcriptase, and integrase25,26. No compounds
target viral release. Our findings reveal new pathways for devel-
oping antiretroviral treatments targeted at metalloproteinases
critical for HIV release.

Results
L-selectin binds to HIV-1 gp120 in solution and on cells. HIV-
1 envelope gp120 is highly decorated with N-linked glycans27,28.
While L-selectin is known to recognize HEV-associated O-linked
glycans to facilitate lymphocyte rolling adhesion and homing29,30,
it can also bind to certain N-linked glycans in the absence of O-
linked glycosylation23,24. To determine if L-selectin recognized
glycosylated gp120, we performed surface plasmon resonance
(SPR) binding experiments using recombinant gp120 and soluble
human L-selectin (CD62L-Fc). Surprisingly, recombinant gp120
from both R5- (HIV-1BAL) and X4- (HIV-1SF33) strains bound to
the soluble L-selectin with 50–300 nM affinities (Fig. 1a, Sup-
plementary Figures 1A, 1B). Removal of the N-linked glycans
with peptide N-glycosidase F (PNGase F) reduced the binding of
both gp120 to DC-SIGN, a C-type lectin receptor known to
recognize N-linked gp120 glycans (Fig. 1b). Likewise, the degly-
cosylation also abolished gp120 binding to L-selectin (Fig. 1b,
Supplementary Figure 1C), suggesting the involvement of N-
linked gp120 glycans in L-selectin binding. The carbohydrate
specificity of the L-selectin and gp120 binding was further
examined using an enzyme-linked immunosorbent assay (ELISA)
in the presence of EDTA and various competing carbohydrates
(Fig. 1c). EDTA and other known L-selectin ligands, such as
heparin, fucoidan and sialyl-Lewis x significantly inhibited gp120

binding, consistent with the involvement of the receptor C-type
lectin domain in the viral glycan recognition. In addition, sia-
lyllactose but not N-acetylglucosamine or lactose blocked gp120
binding, supporting the involvement of sialyllated N-linked gly-
cans in L-selectin binding11. To investigate if gp120 binds to cell-
surface-expressed L-selectin, we conjugated gp120 to fluorescent
Qdots and detected their binding to L-selectin-transfected Hela
cells (Supplementary Figures 2A, 2C). The gp120-Qdots exhibited
specific binding to plate-immobilized recombinant CD4 and
L-selectin (Supplementary Figure 1D), and they bound sig-
nificantly better to L-selectin-transfected than untransfected HeLa
cells (Fig. 1d, Supplementary Figures 2B and 2D). As L-selectin is
expressed on CD4+ T cells and partially colocalized with CD4
(Supplementary Figures 2E–2H), we then incubated gp120-Qdots
with CD4+ human peripheral blood mononuclear cells (PBMC)
in the presence of CD4 or L-selectin blocking antibodies. As
expected, the gp120 binding was reduced by the CD4 blocking
antibody. Importantly, the gp120 binding was also reduced by the
L-selectin blocking antibody, DREG 56, and the binding was
further reduced by the combination of CD4 and L-selectin
blocking antibodies (Fig. 1e). To further address if L-selectin
binds to gp120 on HIV-1 virions, we performed virus capture
experiments using either plate-bound soluble L-selectin or
L-selectin-transfected 293T cells to capture replication-competent
HIV-1BAL virus. Both plate-bound L-selectin and CD4 captured
significantly more HIV-1BAL than the controls, as measured by p24
ELISA (Fig. 1f). Similarly, more viruses were captured by
L-selectin transfected than the untransfected 293T cells (Fig. 1g). As
L-selectin is expressed on both CD4+ and CD8+ T cells, we then
examined the binding of HIV-1BAL virus to CD62L-sorted CD8+ T
cells from PBMC to avoid the involvement of CD4 (Supplementary
Figure 3A). Consistently, the sorted CD62L+ CD8+ T cells cap-
tured significantly more virus than CD62L− CD8+ T cells (Fig. 1h).
Collectively, these results demonstrated L-selectin recognition of
HIV-1 gp120.

L-selectin facilitates HIV viral adhesion and infection. To
explore if L-selectin binding affected HIV-1 infection, we trans-
fected human L-selectin cDNA into REV-CEM, a CD4+ T-cell
line susceptible to X4-tropic HIV infections31. Stable transfectants
(CD62L-CEM # 2 and #25) expressed significantly more
L-selectin but similar levels of CD4, CCR5, and CXCR4 compared
to the parental cell line (Supplementary Figure 4). Importantly, the
infections of CD62L-CEM #2 and #25 by a replication-competent
X4-tropic HIVLAI were 3-to-4-fold higher than that of the parental
CEM cells as measured by intracellular viral capsid p24 staining
(Fig. 2a), suggesting that L-selectin facilitated HIV-1 infection.
Since the parental cells expressed low levels of L-selectin (Sup-
plementary Figure 4), we further knocked-down CD62L expres-
sion using CRISPR/Cas 9 method32. Two clones (CD62L KD #8
and #32) lost L-selectin expressions while the third one (CD62L
KD #3) retained the parental level of CD62L expression (Sup-
plementary Figure 4). Despite having comparable CD4 and che-
mokine receptor expressions, CD62L KD #8 and #32, but not
clone #3 were more resistant to HIVLAI infections than their
parental CEM cells (Fig. 2a). Finally, HIVLAI infection of CD62L
KD #8 was reverted back to that of the parental CEM cells by the
addition of polybrene (Fig. 2b), a compound known to increase
viral-host adhesion by reducing charge repulsion33, suggesting
L-selectin-facilitated viral adhesion.

To examine if L-selectin affected HIV-1 infection of primary
CD4+ T cells, we carried out HIV-1BAL infection of CD8-depleted
PBMC in the presence of EDTA, a calcium chelator that inhibited
L-selectin binding to gp120 (Fig. 1c). While EDTA did not inhibit
HIV-1BAL infection of human macrophages11, it significantly
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reduced HIV-1BAL infection of the PBMC (Fig. 2c, Supplemen-
tary Figure 3B). Further, DREG-56 significantly inhibited HIV-
1BAL infection of PBMC, particularly at lower viral doses (Fig. 2d),
suggesting that L-selectin also facilitated HIV-1 infection of
PBMC. To distinguish the contribution of L-selectin to viral entry
and replication, we examined viral entry using JRFL- (R5-tropic)
and SF33- (X4-tropic) pseudotyped replication deficient viruses.
Both JRFL and SF33 infections of PBMC were diminished by the
L-selectin blocking antibody (Fig. 3a), and the inhibition was
evident over a broad range of viral doses (Fig. 3b, c), supporting
the involvement of L-selectin in viral adhesion and entry. To
further address the contribution of viral glycans to HIV-1 entry,
we produced JRFL and SF33 viruses as well as recombinant SF33
gp120 in HEK 293T or 293S GnTI− cells, the latter is deficient in
mature complex N-glycan productions34. Both complex glycan-
deficient JRFL and SF33 viruses infected PBMC less than their
glycan sufficient counterparts (Fig. 3d), consistent with the

solution binding result showing a reduced L-selectin binding by
the complex glycan-deficient gp120SF33 (Supplementary Fig-
ure 1E). In addition, removal of the gp120 glycans with PNGase
F significantly reduced HIV-1BAL infection compared to the
mock-treatment (Fig. 3e). The importance of viral glycans in
HIV-1 infection is further supported by recent findings that cells
from glycosylation-deficient individuals had reduced suscept-
ibility to HIV-1 infection35.

HIV-1 infection results in L-selectin shedding. HIV-1 infection
is known to downregulate CD4 expression through
internalization36,37. Consistent with published data, HIV-1BAL
infection resulted in a significant loss of CD4 expression in
p24+ but not in p24− or uninfected T cells on day 6 post-
infection (p.i.) and the loss of CD4 was further extended to day 11
p.i. (Fig. 4a−c, Supplementary Figure 3B). Similarly, down-
regulation in L-selectin expression was also observed in infected,
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but not uninfected T cells, on days 6 and 11 p.i. (Fig. 4a−c).
Indeed, the most significant change in the cell populations
associated with HIV-1BAL infection was the loss of the CD4
+/CD62L+ cells and the gain of the CD4−/CD62L− cells
(Fig. 4d). These results are consistent with observed down-
regulation of L-selectin on T cells from HIV-1-infected indivi-
duals naïve to HAART38. Comparatively, CCR7 and CD27
expressions were minimally affected in the infected cells (Fig. 4c).
L-selectin is known to shed from activated T cells during differ-
entiation of central memory to effector memory T cells to facil-
itate their migration from lymph nodes to peripheral sites of
inflammation39. Crosslinking of CD4 with HIV-1 gp120 induced
L-selectin shedding on resting CD4+ T cells40. To assess if the
loss of L-selectin expression in the infected cells resulted from its
shedding, we measured the soluble L-selectin levels during HIV-
1BAL infection. The concentration of soluble L-selectin steadily
accumulated in the infected but not uninfected supernatants
(Fig. 4e, Supplementary Figures 5A−C), supporting the shedding
of L-selectin during HIV infection. The progressive loss of the
selectin expression in p24+ T cells correlated with an increase in

viral infection, suggesting that HIV infection-induced L-selectin
shedding (Fig. 4f, Supplementary Figure 5D).

L-selectin shedding leads to central memory CD4+ T-cell loss.
HIV-1 preferentially infects central memory CD4+ T cells14,16,
and reduced infections of TCM are associated with HIV/SIV
non-progressors41,42. Further, the ability to maintain central
memory T cells correlates with spontaneous HIV-1 control,
and the ability to reconstitute TCM under HAART indicates a
successful response to antiviral treatments22,43. As a marker of
central memory CD4+ T cells, L-selectin’s role in promoting
HIV adhesion is consistent with TCM being the preferred
target for the viral infection. Indeed, approximately 50% of
HIV-1BAL-infected (p24+) T cells were central memory
CD45RO+/CD27+/CD62L+ T cells on day 6 post-infection
(p.i.), and 10–20% of infected cells were effector memory (TEM)
CD45RO+/ CD27−/CD62L+/− cells (Fig. 5a, Fig. Supplementary
Figure 5E). Interestingly, the infected p24+ T cells contained sig-
nificantly more transitional memory (TTM) cells (CD45RO+/
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CD27+/CD62L−) than the p24− or uninfected controls on day 6 p.i.
(Fig. 5a, b), and the TTM population increased further on day 11 p.i.
(Fig. 5a, b). This increase in infected TTM cells was mirrored by a
decrease in the TCM numbers compared to the uninfected controls,
suggesting that the viral infection resulted in the memory
CD4+ T cells transitioning from TCM to TTM. In comparison, a
smaller increase in the number of CD45RO+/CD27− TEM cells was
observed between the p24+ and p24− populations (Fig. 5b). Thus,
HIV-induced CD62L shedding likely results in the loss of central
memory CD4+ T cells in infected individuals.

Previous studies showed that effector memory CD4+ T cells
from HIV-1-infected individuals are dysfunctional in cytokine
productions44,45. To further investigate the link between HIV
infection and the loss of effector memory function, we stimulated
HIV-1BAL-infected PBMC to produce cytokines and measured their
production of IFN-γ, TNF-α, and MIP-1β by intracellular staining
using flow cytometry. As expected, TCM consistently produced less
cytokines than TEM cells (Fig. 5c)46. However, HIV-1BAL infection
did not result in reduced IFN-γ production compared to uninfected
cells (Fig. 5c), regardless of whether it was from central or effector
memory T cells. Further, p24+ TCM and TEM cells consistently
secreted more IFN-γ, TNF-α, and MIP-1β than their p24−

populations (Fig. 5d), suggesting that acutely infected cells are not
dysfunctional in cytokine productions. We speculate that the
previously reported TEM dysfunction may result from grouping
of infected TTM (i.e. the CD62L shed TCM) as TEM cells, based on
L-selectin expression. Since TCM produce less cytokines than TEM

cells, this would result in an apparent decrease in cytokine
production in TEM cells. This does not exclude the possibility of
dysfunction related to memory T cells exhaustion under persistent
chronic HIV infections.

L-selectin shedding is required for HIV-1 viral release. To
investigate if HIV-induced L-selectin shedding affects viral
pathogenesis, we explored the inhibition of L-selectin shedding.
While the proteases responsible for HIV-induced selectin shed-
ding on CD4+ T cells remain to be identified, ADAM17 is known
to shed L-selectin in response to neutrophil activation and the
selectin shedding can be inhibited by Batimastat (BB-94)47–49.
Indeed, BB-94 significantly inhibited L-selectin shedding on
CD62L-transfected, but not knockdown CEM cells (Fig. 6a). To
our surprise, the inhibition of L-selectin shedding, instead of
enhancing the viral infection, significantly reduced their sus-
ceptibility to HIVLAI infection (Fig. 6b). Similarly, BB-94 inhib-
ited both X4− and R5-type HIV infection of PBMC (Fig. 6c, d,
Supplementary Figure 6A). To confirm BB-94 inhibited L-selectin
shedding during the viral infection, we detected the change of cell
surface L-selectin expression, the presence of soluble L-selectin in
the media, and the presence of a cleaved C-terminal L-selectin
transmembrane fragment on cell surface during HIV-1BAL
infection. The results showed that BB-94 prevented HIV-1BAL-
induced downregulation of L-selectin on PBMC, inhibited the
accumulation of soluble L-selectin, and suppressed the L-selectin
cleavage fragment (Fig. 6e−g, Supplementary Figure 6B). The
specificity of BB-94 is demonstrated by contrasting with a related
matrix metalloproteinase (MMP) inhibitor, dichloromethylene-
diphosphonic acid (DMDP). While both BB-94 and DMDP
inhibit the enzymatic cleavage of MMP-1, DMDP did not block
the downregulation of L-selectin expression nor its cleavage, and
had no effect on HIV-1BAL infection of PBMC (Supplementary
Figures 6C–F). Consistent with the involvement of ADAM17 in
HIV-induced L-selectin shedding, the HIV-1BAL infection of
PBMC was significantly inhibited by ADAM17-specific inhibitors
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TAPI-1 (TNF-α protease inhibitor-1) and TAPI-2 50 (Fig. 6h).
Additionally, the viral infection-induced L-selectin cleavage
resulted in an identical sized C-terminal fragment as that induced
by PMA treatment, known to induce ADAM17 cleavage of
L-selectin (Fig. 6g)51.

To examine if L-selectin shedding affected HIV entry, we
infected PBMC with JRFL and SF33 pseudoviruses in the

presence of BB-94. In contrast to HIV-1BAL infection, BB-94
did not affect significantly the entry of JRFL and SF33 (Fig. 6i),
suggesting L-selectin shedding affects post entry of the viral
infection. Since L-selectin shedding likely occurred late in
infection (Fig. 4), we then assessed the effect of BB-94 to HIV
release using a trypsin-mediated viral release assay. HIV-1BAL-
infected cells were treated with trypsin on day 6 p.i. to release cell
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surface-associated viral particles. While BB-94 decreased the
amount of virus detected in the supernatant prior to and without
trypsin treatment, trypsin treatment resulted in the release of
significantly more viral particles in the presence of BB-94 (Fig. 6j),
suggesting BB-94 inhibited viral release. To visualize the effect of
BB-94 on the viral release, we examined HIV-1BAL-infected cells
using scanning and transmission electron microscopy (SEM/
TEM). In the absence of BB-94, the majority of budding viruses
from HIV-1BAL-infected PBMC exhibit typical size of ~100 nm
(Fig. 7a, b, e)52. In the presence of BB-94, however, more virus-
like particles were observed on infected cells, and many of them
appeared significantly smaller than the size of budding virions in
the absence of BB-94 (Fig. 7c, f, g), suggesting they may be
defective viral particles. The retention of budding viruses in the
presence of L-selectin shedding inhibitors suggests the selectin
shedding is required for viral release. As HIV-1 viruses can infect
target cells through cell−cell transfer, we then evaluated if the
selectin shedding also affects viral release in cell−cell transfer
infections53,54. When TZM-BL cells were incubated with HIV-
1BAL-infected PBMC, the cell−cell transfer-mediated infection of
TZM-BL cells was suppressed by BB-94 in all ratios of PBMC to
TZM-BL (Fig. 6k). It is worth noting that BB-94 did not
significantly affect VSV infections (Supplementary Figure 6G),
suggesting L-selectin shedding impacts some but not all viral
infections.

To further investigate if L-selectin shedding is required for HIV
release in infected individuals, CD4+ T cells from HIV-1-infected
viremic and aviremic individuals were stimulated with anti-CD3
to induce viral release. The viremic individuals had viral loads
between 1200 and 100,000 copies of HIV-1 RNA/mL, while
aviremic individuals were on ART regiments and had undetect-
able plasma viremia (<40 copies HIV RNA/mL). Consequently,
anti-CD3 induced 10–100-fold more virion release from viremic
than aviremic CD4+ T cells (Fig. 7h). Importantly, the release
of HIV from both viremic and aviremic individuals were
profoundly inhibited by BB-94, but not by DMDP (Fig. 7h).
When the viral release was examined using CD4+ T cells from six
HIV-1-infected individuals, BB-94 inhibited 30−90% of all viral
releases (Fig. 7i). Together, these data suggest that L-selectin
shedding is also required for HIV-1 release in vivo. While the
mechanism regulating the selectin shedding and HIV-1 release
remains to be elucidated, it is possible that failure to shed the
selectin results in cell surface retention of budding virions
through L-selectin binding to gp120. To assess if a budding virion
interacts with L-selectin in the presence of BB-94, we performed
immuno-TEM on HIV-1LAI-infected Rev-CEM to observe
budding virions in the presence of immunogold-conjugated
anti-CD62L. While gold particles were readily found on infected
cells, they were generally not associated with budding virions
(Fig. 8a, b). In the presence of BB-94, however, a significant
number of gold particles were associated with budding virions at
the budding focal point (Fig. 8c, d), suggesting the presence of
selectin tethering (Fig. 9).

Discussion
L-selectin (CD62L) provides rolling adhesion for lymphocyte
extravasation to secondary lymph nodes and sites of inflamma-
tion20. The binding of HIV-1 glycans to L-selectin can be viewed
similarly as viral rolling adhesion on CD4+ T cells to facilitate the
binding to CD4 and other coreceptors, and thus to enhance viral
infections. Biochemically, the recognition of gp120 represents a
novel function for L-selectin in addition to the binding of
O-linked glycans. While L-selectin prefers sialyl-Lewis x type of
O-linked glycans, its binding to gp120 is likely the result
of engaging multiple low affinity N-linked glycans on heavily
glycosylated envelope proteins. The carbohydrate promiscuity of
L-selectin is supported by a recent crystal structure of L-selectin
binding to a mannose moiety on an N-linked glycosylation55.
Importantly, we demonstrated the involvement of L-selectin in
HIV-1 viral entry and infection. Thus, HIV viral envelope glycans
not only shield the virus from host immune detection, but also
provide necessary adhesion to macrophages and CD4+ T cells for
viral entry and infection10,11. It is worth noting that since the viral
glycan-mediated L-selectin binding depends primarily on viral
envelope glycosylations, other viruses with highly glycosylated
envelope proteins may also bind L-selectin to facilitate their
adhesion and entry.

Early experiments suggested the ability of HIV-1 envelope to
induce L-selectin shedding on resting CD4+ T cells40, we showed
here that HIV-1 infection resulted in a progressive loss in L-
selectin expression. Further, the downregulation of L-selectin
expression was significantly more in p24+ than p24− populations
suggesting that the selectin shedding was induced by productive
viral infection rather than gp120 binding. While shedding of
L-selectin on HIV-1-infected T cells may deter additional virions
from binding to an already infected cell, preventing so called
“super-infection”, the inhibition of shedding did not significantly
affect the viral entry. Instead, it resulted in the retention of virus-
like particles on infected cells. Strikingly, many of the budding
virus-like particles appeared smaller than fully formed viruses in
the presence of BB-94, suggesting they are defective virions.

In summary, we showed here a direct involvement of L-selectin
in HIV-1 attachment to CD4+ T cells to facilitate the viral entry.
The L-selectin-mediated viral adhesion explains the preferential
infection of central memory CD4+ T cells by HIV-1 virus. Upon
infection, however, HIV induces L-selectin shedding by ADAM17
family of metalloproteinases from infected T cells to facilitate the
viral release (Fig. 9). It remains unknown which viral genes
induce L-selectin shedding. While HIV-1 encoded nef was shown
important for CD4 downregulation56, it would be interesting to
see if nef, vpu, or other viral encoded proteins are responsible for
activating L-selectin shedding. We speculate that the involvement
of L-selectin in HIV-1 adhesion and release is not unique to HIV;
rather, the underline mechanism can be generalized to all lectin
receptors and their involvement in the adhesion and release of
any glycosylated envelope viruses. Despite the success of HAART
in reducing viral load in HIV-infected individuals, a cure remains

Fig. 4 HIV-1 infection resulted in L-selectin shedding. a PBMC were infected with HIV-1BAL and CD4 and CD62L expression was measured on days 6 and 11
p.i. for p24+, p24−, and uninfected cells. The results are the representative of three individual experiments. b Histograms showing the expression of CD4,
CD62L on days 6 and 11 p.i. for p24+ (solid blue), p24− (dotted), and uninfected (shaded) cells. c CCR7 and CD27 expression as defined in b. d
Downregulation of CD4 and CD62L in infected PBMC is evident from the decrease in % of CD4+/CD62L+ cells and the increase in CD4-/CD62L− cells on
day 6 and further on day 11 in p24+ compared to p24− and uninfected populations. e The accumulation of soluble L-selectin in the supernatant of infected
and uninfected samples was measured by ELISA on days 3, 6, and 7 post HIV-1BAL infection of PBMC (Supplementary Figure 5A−C). f HIV-1 infection of
PBMC induced downregulation of L-selectin expression. The loss of CD62L+ CD4 T cells during HIV-1BAL infection (upper panel) is accompanied by the
increase in the viral infection (lower panel) at days 6 and 11 p.i. The results are from at least two independent experiments with all data included in the
analysis
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elusive in the absence of an effective vaccine. The success of
HAART in suppressing plasma HIV-1 viremia has brought
renewed focus on finding and eliminating latently infected viral
reservoirs through their reactivation followed by elimination with
HAART therapy57–62. Our finding that L-selectin shedding is
required for HIV release either in experimental infections or from
patient-derived CD4+ T cells reveals a novel pathway to suppress
both active and latent viral release. While the active sheddase on

infected CD4+ T cells remain to be identified, small molecular
inhibitors of metalloproteinases can be explored as a new class of
antiviral compounds targeted at HIV release.

Methods
Reagents. Unless otherwise specified, all reagents and chemicals were purchased
from Sigma-Aldrich Co. (St. Louis, MO). Recombinant protein was purchased
from R&D Systems, Inc. (Minneapolis, MN). Blocking antibody against CD62L
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(DREG-56) was harvested from hybridoma cells in serum-free media from Invi-
trogen (Carlsbad, CA) and purified using a Protein A column or purchased from
eBioscience (San Diego, CA). Unlabeled mouse antihuman CD4 monoclonal
antibody (RPA-T4), CD28 were obtained from eBioscience (San Diego, CA).
Antihuman CD3 antibody (OKT3) was kindly provided by Dr. Gilliland of
Johnson & Johnson. Fluorescently labeled antibodies for flow cytometry against
CD14, CXCR4, CCR5, CD8, CD4, CD3, CD62L, CD27, CD45RO, CCR7, IFNγ and
their isotype controls (IgG1, IgG2A, IgG2B) were obtained from BD Biosciences
(San Jose, CA), BioLegend (San Diego, CA) or eBioscience (San Diego, CA). Alexa-
647-labeled antibodies used for confocal microscopy were obtained from BioLe-
gend (San Diego, CA). HIV-1 core antigen antibody (KC57-FITC) for intracellular
p24 staining was purchased from Beckman Coulter, Inc. (Miami, FL). Interleukin 2
(IL-2) was obtained from Peprotech Inc. (Rocky Hill, NJ). Polyacrylamide (PAA)-
conjugated model carbohydrates were obtained from Glycotech, Inc. (Rockville,
MD). All other carbohydrates were purchased from Carbosynth Ltd. (Compton,
Berkshire, UK). Recombinant gp120 proteins were expressed either using stably

transfected CHO cells or transiently transfected 293T and 293S GnTI− cells in
monomeric forms63. The Luciferase Assay System was purchased from Promega
Corporation (Madison, WI). HIV-1 p24 ELISA kit was obtained from PerkinElmer
Life Sciences, Inc. (Waltham, MA). Ficoll-Paque was purchased from GE Health-
care Life Sciences (Pittsburgh, PA). For FACS analysis, recombinant gp120 proteins
were labeled with biotin using a biotinylation kit from Pierce Biotechnology
(Rockford, IL). RPMI, penicillin/streptomycin, fetal bovine serum (FBS), HEPES,
and Versene were purchased from Invitrogen Corporation (Carlsbad, CA). The
metalloproteinase inhibitor, BB94 (Batimastat), TAPI-1 (TNFα protease inhibitor-
1), and TAPI-2 were purchased from Santa Cruz Biotechnology.

Activation of peripheral blood mononuclear cells. Peripheral blood mono-
nuclear cells were isolated by Ficoll-Paque gradient from randomly selected non-
identified healthy donors. The use of human PBMC is approved by the Department
of Transfusion Medicine at the Clinical Center of National Institutes of Health. The
isolated PBMC were distributed at 3×106/mL in 12-well plates with RPMI
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Fig. 9 Schematic diagrams showing the involvement of L-selectin in HIV-1 infection of CD4+ T cells. a L-selectin mediated viral adhesion. b The viral
release requires the seletin shedding

Fig. 8 Immunogold-labeled budding HIV viruses. Examples of TEM images of HIV-1LAI-infected Rev-CEM cells labeled with 10 nm gold particle conjugated
anti-CD62L (FMC46) in the absence (a, b) and presence (c, d) of BB-94. Arrows point to the gold-labeled CD62L. Gold particles were generally visible on
infected T cells near but not associated with HIV budding virions (a, b) in the absence of BB-94. In the presence of BB-94, however, a significant number of
budding virions are observed directly associated with gold particles, suggesting the tethering of the budding virions by L-selectin (c, d). The images are
representatives of at least five similar images in each category. Scale bars are 200 nm
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supplemented with 10% FBS, 1% penicillin/streptomycin and 20 U/mL IL-2, acti-
vated with 1–2 µg/mL anti-CD3 antibody Okt3 for 48 h. CD8+ cell depletion was
completed using the StemCell (Vancouver, BC, Canada) EasySep™ Human CD8
Positive Selection Kit prior to infection. Total cell count and viability determina-
tions were assessed with the Guava Personal Cell Analysis System (Millipore) or
the Luna FL Dual Fluorescence Cell Counter (Logos Biosystems); all assays were
performed with a cellular viability greater than 90%. All data presented in this
manuscript were results of individual typical experiments derived from at least two
independent experiments.

Stable CD62L-transfected HeLa, 293T, and Rev-CEM cells. HeLa cells were
cultured in DMEM/F12 medium supplemented with 5% FBS. Neomycin-resistant
pEX02-CD62L vector (Genecopeia Inc., Rockville MD) containing coding regions
for human CD62L were transfected into HeLa cells using Lipofectamine 2000 from
Invitrogen (Carlsbad, CA), and cultured at 37 °C and 5% CO2 in DMEM/
F12 supplemented with 5% FBS, 1% penicillin/streptomycin, and 300 µg/mL G418.
G418-resistant cells were sorted on an FACS Aria II (BD Biosciences) for CD62L
expression. The sorted populations were expanded in the same growth media. To
reduce cleavage of selectins from the cell surface, sorted and unsorted transfected
cells were grown in Nunc™ UpCell® six-well plates from Thermo Fisher Scientific
(Waltham, MA) and released after incubating at room temperature in Versene and
gentle pipetting. Rev-CEM cells31, obtained from the NIH AIDS Research and
Reference Reagent Program (https://www.aidsreagent.org/), were transfected with
2 µg of full-length human L-selectin cDNA in pEX02 vector using Nucleofector®

Kit V (Lonza, Walkersville, MD). Two days later, cells were selected with 400 µg/
mL of G418 and continue to culture for 2 weeks, and then sorted for CD62L
expression. Individual clones were screened for CD62L expressions and high
expression clones were expanded for infection experiments. CD62L knockout CEM
cell lines were established similarly, except SELL CRISPR guide RNA 6 vector was
transfected into the parental Rev-CEM cells and cells were selected with 1 µg/mL of
puromycin (GeneScript, Piscataway, NJ)32. Resistant cells were sorted for the lack
of CD62L expression and maintained in RPMI-1640 media supplemented with
10% FBS, 1% penicillin/streptomycin, and 1 µg/ml puromycin.

Preparation of the pseudotyped HIV viruses. The HIV viral vector, pNL4-3.Luc.
R-E-, which contains the firefly luciferase gene inserted into the NL4-3 HIV nef
gene and frameshift mutations to render it E-, was used to generate all pseudotyped
viruses64. In brief, the expression vectors for pNL4-3.Luc.R-E-, the amphotropic
envelope pHEF-VSVG, and the R5-tropic HIV JRFL envelope were obtained
through the NIH AIDS Research and Reference Reagent Program. Expression
vectors for the X4-tropic SF33 HIV-1 envelope was obtained from M. Martin65.
Recombinant HIV luciferase viruses were generated by cotransfecting 293T cells
with 5 µg of the NL4-3 backbone and either 5 µg of the HIV envelopes or 1.5 µg of
the VSV envelope, as previously described66. Virus collected in the culture
supernatant were quantified by HIV p24 ELISA and adjusted to 1 mg/mL p24.
Pseudotyped virus deficient for complex carbohydrates were generated similarly
except with a transfected HEK 293S GNTI− cells, obtained from American Type
Culture Collection (Manassas, VA). Activated CD8-depleted PBMC (CD8−

PBMC) were infected with equal amounts of pseudotyped HIV-1 viruses, as
measured by their p24 concentration.

Replication competent virus. The R5-tropic BAL strain of HIV-1 (HIV-1BAL),
propagated using primary human macrophages, was purchased from Advanced
Biotechnologies Inc. (Columbia, MD). The X4-tropic HIV-1 LAI was obtained
from the NIH AIDS Research and Reference Reagent Program (https://www.
aidsreagent.org/). Both viruses were propagated by infecting CD8− PBMC. Day
6 supernatant was harvested and 200 µL aliquots were frozen. Viral titers in TCID50

were determined by titrating viral infection in CD8− PBMC and measuring p24
ELISA using PerkinElmer ALLIANCE HIV-I p24 ELISA kit (PerkinElmer Life
Sciences, Inc., Waltham, MA).

BIAcore, ELISA binding, and viral capture experiments. Surface plasmon
resonance measurements were performed using a BIAcore 3000 instrument (GE
Healthcare Life Sciences). Recombinant CD62L−Fc, DC-SIGN Fc fusion proteins
(R&D Systems, Inc.), or anti-gp120 antibody 2G12 were immobilized onto either
CM5 or C1-sensor chips by N-hydrosuccinimide/1-ethyl-3(-3-dimethylamino-
propyl) carbodiimide hydrochloride(NHS/EDC) crosslinking in sodium acetate
buffer at pH5.0. Human IgG1 was immobilized as control to Fc fusion proteins.
Binding assays were performed in HBS-P buffer (10 mM HEPES pH 7.2, 150 mM
NaCl, 0.005% P20) (GE Healthcare Life Sciences), supplemented with 0.5–2 mM
CaCl2, and 0.5 mg/mL bovine serum albumin (BSA) to reduce nonspecific binding.
Recombinant gp120 proteins with varying concentrations between 0.003 and 2 µM,
in the HBS-P+Ca buffer, were injected over immobilized receptors. To deglyco-
sylate gp120, 50 µg of gp120 was treated with 100 units PNGaseF (New England
Biolabs) under nondenaturing conditions for 3 h at 37 °C following the manu-
facturer’s guide, and then dialyzed overnight in HBS-P binding buffer. The dis-
sociation constants (KD) were determined from kinetic curve fitting using the
BIAevaluation software on blank subtracted sensorgrams (GE Healthcare Life
Sciences). To detect gp120 and CD62L binding by ELISA, 50 ng of gp120 proteins

were immobilized in individual wells of a 96-well plate for 1 h at room temperature
in coating buffer (10 mM Tris [pH7.5] and 2 mM CaCl2), blocked for 1 h using
blocking buffer (10 mM Tris [pH7.5], 0.1% Tween20), and washed three times with
the same buffer. CD62L-Fc (25 ng) was added to each well in the presence or
absence of various inhibitors (10 mM EDTA or 10 mg/mL carbohydrates) together
with a goat antihuman IgG-HRP secondary antibody for 1 h at room temperature.
The plate was washed five times and readout was colorimetric using a TMB sub-
strate and analyzed on a SpectraMax Plus 384 spectrophotometer (Molecular
Devices). All statistics are calculated using unpaired Student’s t test.

To perform viral capture ELISA, 96-well plates were coated overnight at room
temperature with 10 µg protein per well of CD4, CD62L-Fc, BSA, IgG1 (R&D
Systems) or PBS. The wells were washed with ELISA wash buffer (PerkinElmer
ALLIANCE HIV-I P24 ELISA), and blocked for 1 h at room temperature with 1%
BSA in 1× PBS. HIV-1BAL was added to each well at a 1:1000 dilution of virus for 1
h at 37 °C in the presence or absence of 5 mM EDTA. The wells were gently washed
with PBS, and Triton X was added to denature the bound virus. The amount of
captured virus was determined using the PerkinElmer p24 ELISA kit. To capture
HIV-1BAL by CD62L-transfected 293T cells or CD62L-sorted CD8+ T cells, HIV-
1BAL virus (1:1000 dilution) were mixed with 106 CD62L-transfected or
untransfected 293T cells, sorted CD62L+ or CD62L− CD8+ T cells at m.o.i. of
~0.1, incubated for 1 h at 37 °C. The cells were gently washed with PBS, treated
with Triton X. The amount of cell-bound virus was determined as above.

Single-round infection assay. Stimulated CD8− PBMC were resuspended at
2×106/mL in culture media. Aliquots of 200 µL (4×105 cells) were transferred to 96-
well plates for incubation in triplicate with anti-CD4 (10 µg/mL), anti-CD62L (30
µg/mL), or isotype (30 µg/mL) antibody at 37 °C for 60 min prior to the addition of
virus. Luciferase viruses pseudotyped with envelopes from JRFL (R5-tropic) and
SF33 (X4-tropic) HIV-1 and VSV were added to the cells at a concentration of 100
ng/mL HIV p24. The infected CD8− PBMC were then incubated for 72 h, lysed,
and assayed for luciferase activity according to the manufacturer’s recommenda-
tions (Promega Corporation, Madison, WI). Pseudotyped virus from GNTI− cells
were added at 100 ng/mL to cells as above.

Infection with replication-competent viruses. Rev-CEM cells expressing differ-
ing levels of CD62L were infected with 1:100 v/v dilution of HIV-1LAI at 2×105

cells/mL in a 48-well plate along with uninfected controls at 37 °C with 5.5% CO2.
Media was replaced every 3 days post-infection. For infection of PBMC, CD8-
depleted PBMC were resuspended at 2×106/mL in culture media. Cells (1 mL)
were incubated with antibodies or inhibitors at 37 °C for 60 min prior to infection.
The concentrations used were: 10 µg/mL anti-CD4, 30 µg/mL anti-CD62L, 10 or
30 µg/mL isotype antibody in matching concentration, 1 µg/mL polybrene, 5 mM
EDTA and 25–100 µM BB-94. Cells were exposed to HIV-1BAL (~4×105 TCID50) at
1:5000 dilution for 1 h at 37 °C followed by washing with 10 mL culture media.
Culture supernatants were sampled and wells were replenished with fresh media on
days 6 or 7, or otherwise indicated days p.i. Infections were detected by either
intracellular p24 at indicated time points or real-time PCR for viral DNA copy
number at day 3 post infections. Intracellular p24 levels were measured on viable
CD3+ populations using FITC-conjugated KC57 antibody using the Cytofix/
Cytoperm kit from BD Biosciences (San Jose, CA). Samples were collected on an
FACSCanto II (BD Biosciences). Real-time PCR was assayed as described pre-
viously67. All statistical analyses were carried out using the software Prism 7
(GraphPad Software, Inc.). The inhibitors were added 30 min before infection and
were replenished after the postinfection wash and subsequent media exchanges.
The concentrations of soluble L-selectin in supernatants of infected and uninfected
samples were quantified using the human L-selectin DuoSet ELISA kit (R&D
Systems) and normalized to per day accumulation. To detect the protease cleaved 6
kD C-terminal membrane-bound fragment of CD62L, western blot analyses were
performed similar to previously reported51. In brief, equal amount of cell lysates
from 107 HIV-infected or uninfected PBMC in the presence of BB-94, DMDP, or
control DMSO were incubated with 1 μg Dynabeads-conjugated anti-CD62L
cytoplasmic domain antibody (RayBiotech, cat. no. 119-17273) for 20 min. After
three washes, the protein is eluted for SDS-PAGE, and blotted onto a PVDF
membrane. The membrane is blocked with 5% nonfat milk for 2 h and then
incubated with the anti-CD62L cytoplasmic domain antibody for overnight. After
washes, the membrane is probed with HRP-conjugated goat anti-rabbit antibody
for 1 h, and visualized with chemiluminescent reagents. As positive controls for the
cleaved 6 kD CD62L fragment, uninfected PBMC were activated with Phaseolus
vulgaris agglutinin (PHA) for 5 days and treated with phorbol 12-myristate 13-
acetate (PMA) for 30 min to induce L-selectin shedding. For trypsin-treated viral
release, PBMC were infected with HIV-1BAL in the presence and absence of BB-94.
On day 6 of the viral infection, supernatants were collected, and the infected cells
were washed with PBS and treated with 1× cell culture trypsin-EDTA solution or
media for 15 min. The amount of virus released was determined by p24 ELISA.

PNGase treatment of activated CD8-depleted PBMC. HIV-1BAL virus was
diluted to 1:5000 in RPMI 1640 containing 0.5% FBS. The virus was treated with
20,000 U PNGase/mL or mock for 1 h at 37 °C. Activated CD8-depleted PBMC
were resuspended at 2×106/mL and infected with either the PNGase-treated, or
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mock-treated virus for 1 h at 37 °C as described above. The CD8− PBMC were then
washed with RPMI 1640 containing 10% FBS and resuspended at 2×106 cells/mL
and plated in a 48-well plate. Infection and analysis as described above.

Central memory CD4 T-cell staining. On day 6 or 11 p.i., cells were harvested
and stained with T-cell memory surface markers including CD3, CD4, CD27,
CD45RO, CD62L, CCR7, or the appropriate isotype controls. Cells were washed,
permeabilized using the BD Cytofix/Cytoperm kit (BD Biosciences) according to
the manufacturer’s instructions and stained for intracellular p24. Samples were
acquired on an FACSCanto II and analyzed using FlowJo software (FlowJo, LLC;
Ashland, OR). The covariance between TCM and TTM was calculated using two-way
ANOVA for p24+ and p24− populations.

Stimulation for IFNγ, TNF-α, and MIP-1β production. On day 6 p.i., CD8-
depleted PBMC were stimulated for 6 h with Leukocyte Activation Cocktail (BD
Biosciences) at 37 °C. Cells were stained for memory cell markers as above, per-
meabilized with the BD Cytofix/Cytoperm Kit, then washed and stained for
intracellular p24, IFNγ, TNF-α, and MIP-1β. Samples were acquired on an
FACSCanto II and analyzed using FlowJo software.

Cell−cell transfer infections. For the cell−cell transfer-mediated infection, TZM-
BL cells were seeded in a 96-well, flat-bottom plate at 3000 cells/well 3 days before
the assay. PBMC infected with HIV-1BAL for 3 days with and without the presence
of BB-94 were added to the wells at the concentration of 80×103, 40×103, 20 × 103,
10 × 103, and 5 × 103 cells/well in equal volume. Fresh BB-94 was added to cells
that received BB-94 treatment for the cell−cell transfer assay. All conditions were
prepared in triplicate. The cell mixtures were incubated at 37 °C for 3 days, fol-
lowed by lysis and measurement of the subsequent luciferase expression as per the
manufacturer’s instructions.

HIV-1 release assay. PBMC were obtained by leukapheresis and ficoll-hypaque
centrifugation. CD4+ T cells were isolated using a cell separation system (StemCell
Technologies). Cells were cultured with medium alone or with plate-bound anti-
CD3 and soluble anti-CD28 antibody in the absence (DMSO) or presence of BB-94
in duplicate for 48 h. The copy number of virion-associated HIV RNA in the above
cell culture supernatants was determined using the Cobas Ampliprep/Cobas
Taqman HIV-1 Test, Version 2.0 (Roche Diagnostics). The limit of detection for
this system is 20 copies/mL.

Confocal microscopy. CD4+ T cells were prepared from isolated PBMC using the
StemCell EasySep™ Human CD4+T Cell Enrichment Kit. Isolated CD4+ cells were
then spun onto Superfrost glass slides using a CytoSpin 3 and CytoSep funnels
(Thermo Fisher Scientific, Waltham, MA) at 1000 rpm for 3 min followed by
fixation in 90% methanol and stained in 1× PBS with 10% FBS and 0.03% NaN3.
Alexa-647-labeled CD62L antibody and FITC-, PE- or biotin-labeled CD4 antibody
were used in a 1:250 dilution for 15 min followed by two washes. For biotin-labeled
slides streptavidin-conjugated Alexa-405 was added to the staining mix. Labeled
slides were mounted with ProLong® Gold Antifade Reagent (Life Technologies,
Grand Island, NY) and sealed after 24 h of curing with nail polish. Images were
captured on a Zeiss LSM 780 AxioObserver confocal microscope. A 405 nm diode
laser and 633 nm diode laser were used to excite Alexa-405-conjugated CD4
antibody and Alexa-647-conjugated CD62L antibody, respectively.

gp120-Qdot binding assay. gp120-QDots were prepared by mixing 12-fold molar
excess of monomeric gp120 to Qdot® 625 ITK™ carboxyl quantum dots (Thermo
Fisher Scientific) with EDC and NHS in 1× PBS with 10 mM HEPES. The gp120 to
Qdot ratio is chosen to be similar to the number of envelop trimers observed on a
virion68. After 2 h at room temperature and overnight at 4 °C, the reaction is
quenched with 1M Tris (final concentration 300 mM) and stored at 4 °C until
used. The final concentration used in the assay was 27pM. Full conjugation of
gp120 to the Qdots was examined by SDS-PAGE using the Pierce Silver Stain Kit
from Thermo Fisher Scientific (Waltham, MA). Anti-CD4 (RPA-T4), anti-CD62L
(DREG-56), and isotype (IgG1) were used at 10, 30, and 10 µg/mL, respectively, as
in all other experiments. The prepared gp120-Qdots bound specifically to plate-
immobilized soluble L-selectin and CD4 (Fig S1D).

Mock or CD62L-transfected HeLa cells were transferred to ethanol-cleaned
eight-well glass coverslip chambers and allowed to adhere for 16−48 h before
used. Qdots were added to the HeLa cells and allowed to equilibrate before
imaging. Images were collected on an Olympus IX-81 microscope adapted for
Total Internal Reflection Fluorescence (TIRF) imaging. A 405 nm diode laser
was used to excite Qdots and emission was filtered with a 605/40 band-pass filter
before imaging on a Cascade IIB 1024EM CCD camera. Image stacks were
deconvoluted with a measured PSF in Huygens Essential software by Scientific
Volume Imaging (Hilversum, Netherlands) followed by Qdot recognition and
quantification using FIJI imaging software69 and its 3D object counter. For
immobilized protein binding, 100 ng of soluble CD4 or CD62L were adsorbed
overnight at room temperature to eight-well sterile glass coverslip chambers. The
wells were washed twice before the addition of QDots in 1× PBS containing 10%

FBS. After room temperature equilibration for at least 10 min, the QDots were
imaged as above.

Transmission and scanning electron microscopy. Specimens for TEM were fixed
with 2.5% glutaraldehyde in 0.1 M Sorenson’s buffer. Samples were post-fixed 1 h
with 0.5% osmium tetroxide/0.8% potassium ferricyanide, 1 h with 1% tannic acid
and overnight with 1% uranyl acetate at 4 °C. Samples were dehydrated with a
graded ethanol series, and embedded in Spurr’s resin. Thin sections were cut with a
Leica UCT ultramicrotome (Vienna, Austria) stained with 1% uranyl acetate and
Reynold’s lead citrate prior to viewing at 80 kV on a Hitachi 7500 transmission
electron microscope (Hitachi-High Technologies, Tokyo, Japan). Digital images
were acquired with an AMT digital camera system (AMT, Chazy, NY). For
immunogold labeling, ~106 cells were washed with 2 ml PBS, centrifuged at 250 × g
for 5 min, resuspended in 100 µL of labeling buffer (PBS with 1% BSA), and
incubated with 10 µg of mouse antihuman CD62L (clone FMC46, Thermo Fisher)
for 1 h on ice. After removal of the primary antibody through a cycle of wash, cells
were incubated with 10 µg of secondary goat anti-mouse IgG H&L conjugated to
10 nm gold (Electron Microscopy Sciences) for 1 h on ice, then washed and fixed in
2.5% glutaraldehyde with 0.1 M sodium cacodylate at pH 7.4. For SEM, cells were
adhered to silicon chips and fixed with 2.5% glutaraldehyde in 0.1 M Sorenson’s
buffer overnight at 4 °C. Specimens were post-fixed for 1 h with 1% osmium
tetroxide and dehydrated in a graded ethanol series. The samples were critical-
point dried under CO2 in a Bal-Tec model cpd 030 dryer (Balzers, Liechtenstein),
mounted on aluminum studs, and sputter-coated with 75 angstroms of iridium in a
model IBS/TM200S ion beam sputter coater (South Bay Technologies, San
Clemente, California). Specimens were viewed at 5 kV in a Hitachi SU-8000 field
emission SEM (Hitachi-High Technologies, Tokyo, Japan) using secondary ima-
ging mode. Virion-like particles were identified in SEM images as 50–150 nm size
cell surface-associated spherical particles, excluding nodules appearing at the tip of
filopodia. Virion-like particles in TEM were further characterized by the presence
of capsid. The uninfected samples showed less than ten virion-like particles per
image using this criteria.

Data availability. All data generated or analyzed during this study are available
upon request.
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