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Abstract

Objective

To predict preterm birth in nulliparous women using logistic regression and machine

learning.

Design

Population-based retrospective cohort.

Participants

Nulliparous women (N = 112,963) with a singleton gestation who gave birth between 20–42

weeks gestation in Ontario hospitals from April 1, 2012 to March 31, 2014.

Methods

We used data during the first and second trimesters to build logistic regression and machine

learning models in a “training” sample to predict overall and spontaneous preterm birth. We

assessed model performance using various measures of accuracy including sensitivity,

specificity, positive predictive value, negative predictive value, and area under the receiver

operating characteristic curve (AUC) in an independent “validation” sample.

Results

During the first trimester, logistic regression identified 13 variables associated with preterm

birth, of which the strongest predictors were diabetes (Type I: adjusted odds ratio (AOR):

4.21; 95% confidence interval (CI): 3.23–5.42; Type II: AOR: 2.68; 95% CI: 2.05–3.46) and

abnormal pregnancy-associated plasma protein A concentration (AOR: 2.04; 95% CI: 1.80–

2.30). During the first trimester, the maximum AUC was 60% (95% CI: 58–62%) with artifi-

cial neural networks in the validation sample. During the second trimester, 17 variables
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were significantly associated with preterm birth, among which complications during preg-

nancy had the highest AOR (13.03; 95% CI: 12.21–13.90). During the second trimester, the

AUC increased to 65% (95% CI: 63–66%) with artificial neural networks in the validation

sample. Including complications during the pregnancy yielded an AUC of 80% (95% CI: 79–

81%) with artificial neural networks. All models yielded 94–97% negative predictive values

for spontaneous PTB during the first and second trimesters.

Conclusion

Although artificial neural networks provided slightly higher AUC than logistic regression, pre-

diction of preterm birth in the first trimester remained elusive. However, including data from

the second trimester improved prediction to a moderate level by both logistic regression and

machine learning approaches.

Introduction

Preterm birth (PTB), birth before 37 weeks, is the leading cause of neonatal death and disabil-

ity [1]. Approximately, 50% of all perinatal deaths are caused by PTB [2]. In the U.S., almost

10% of babies are born preterm [3], costing the healthcare system at least $26 billion yearly [4].

In Canada, PTB comprises 8% of all births and results in direct costs of $580 million annually

[5]. Risk factors for PTB are heterogeneous and include previous PTB, race, age, nulliparity,

urinary tract infection, smoking, and bleeding during early pregnancy [6–8]. Prediction of

PTB would facilitate the use of therapeutic interventions to reduce infant morbidity and mor-

tality, thereby benefitting families, society, and the healthcare system.

Previous studies have found the prediction of PTB to be challenging, whether by logistic

regression or machine learning. The area under the receiver operating characteristic curve

(AUC) for prediction of PTB in previous studies ranged from 62% to 72% depending on the

number of predictors and study design [9–15]. The predictive power of the machine learning

model developed by Fergus et al. [16] was promising (AUC, 95%), but measuring uterine elec-

trical signals (electrohysterography) is not practical on a large scale. Another drawback was the

synthetic oversampling of the whole dataset, rather than just the training dataset, thereby call-

ing into question the 95% AUC of that work.

Machine learning is a computer programming approach whereby computers learn from

“big data” to make better predictions [17]. In 2019, machine learning was identified as one of

the most advanced tools for prenatal diagnosis [18]. Morover, machine learning has been

broadly applied in medicine, from cancer detection [19, 20] to prediction of cardiovascular

diseases [21], among others. In this study, we considered some of state-of-the-art machine

learning methods, including decision trees, random forests, and artificial neural networks, that

are frequently used in medicine to develop prediction models [21–28]. We also considered

logistic regression as a traditional statistical approach to develop prediction models [29].

Unlike logistic regression, machine learning approaches are free of statistical assumptions

(such as linearity and uncorrelated predictors) and can handle complex interactions between

predictive factors without these interactions being explicitly specified [27, 30].

We aimed to overcome the challenges of predicting PTB, especially for nulliparous women,

by evaluating logistic regression and multiple machine learning algorithms. To this end, we

considered variables available in clinical care, including some not previously assessed in other
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studies. Our study aimed to: 1) identify important predictors associated with PTB during the

first and second trimester in nulliparous women from a large population cohort; and 2) con-

struct models to predict PTB based on logistic regression and robust machine learning

algorithms.

Methods and materials

Data and population

Ontario comprises 40% of the Canadian population and has approximately 140,000 births

each year [31]. We performed a population-based retrospective cohort study using Ontario’s

Better Outcomes Registry and Network (BORN) database, which includes a wide range of

maternal, antenatal, and birth data [32]. We included all nulliparous women with singleton

births who gave birth between 20 and 42 weeks gestation in an Ontario hospital between April

1, 2012 and March 31, 2014.

Outcome. PTB was the primary outcome variable in this study, defined as gestational age

at birth (from ultrasound estimation or calculation from the first day of the last menstrual

period) <37 weeks. We also considered spontaneous PTB as a secondary outcome. Spontane-

ous PTB was identified using the definition of Maghsouldu et al. [33], i.e.: not “induced”, not

“caesarean section” and not “augmented labor”.

Predictors. We considered predictors based on our literature review of PTB risk factors

during the first and second trimesters [7, 34]. We considered socio-demographic variables

including maternal age, height, pre-pregnancy body mass index (BMI), gestational weight gain

during the first trimester, income, education, race, and immigration status. Further, we

included the number of previous abortions (which includes miscarriages), conception type,

smoking status, alcohol consumption, folic acid use, pre-existing medical health conditions,

diabetes, pre-existing mental health conditions (such as anxiety, depression, and addiction)

and antenatal health care provider type.

Pregnancy-associated plasma protein A and free beta-subunit of human chorionic gonado-

tropin were measured during the first trimester as part of the screen for Down syndrome [30],

but we considered them as potential markers of placental and preeclamptic diseases [35]. We

also included ultrasound measurement of nuchal translucency as another predictor [36]. For

the second-trimester models, we included all of the predictors from the first trimester plus

information that became available during the second trimester including dimeric inhibin A,

unconjugated estriol, human chorionic gonadotropin, alpha-fetoprotein concentration, hyper-

tensive disorders of pregnancy, gestational diabetes, infections, medication exposure, sex of

the fetus, and complications during pregnancy [37].

We grouped maternal height into four categories, including <150 cm, 150 cm—169 cm,

160 cm—169 cm, and�170 cm. We classified pre-pregnancy BMI as underweight (<18.5 kg/

m2), normal weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and obese (�30 kg/m2),

according to World Health Organization criteria [38, 39]. We used the Institute of Medicine

guidelines [40] to categorize gestational weight gain into three groups, including recom-

mended weight gain, less than recommended weight gain, and more than recommended

weight gain. For income, education, race, and immigration status, we used neighbourhood

income quartiles, neighbourhood education quartiles, neighbourhood immigrant concentra-

tion, and neighbourhood minority quartiles, respectively (see S1 Table for the definition of

these variables).

We categorized the number of previous abortions (including spontaneous and therapeutic

abortions) into four groups based on Oliver et al. [41], including 0, 1, 2, and 3+. We grouped

the pre-existing health conditions variable in the BORN database into “Yes” or “No” since that
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variable had more than 1000 possible entries (S2 Table). We treated pre-existing mental health

conditions (S3 Table) as a binary categorical variable. We classified the conception type into:

spontaneous, in vitro fertilization (IVF, or a combination of IVF and other methods), and

other methods (such as Surrogate, Intrauterine insemination alone, or unknown) [42].

We classified protein concentrations (pregnancy-associated plasma protein A, free beta-

subunit of human chorionic gonadotropin, dimeric inhibin A, unconjugated estriol, human

chorionic gonadotropin, and alpha-fetoprotein) and nuchal translucency as normal, abnormal,

and missing (cut-off values shown in S4 Table). The variable “complications during preg-

nancy” had more than 600 categories, and we therefore categorized data for this variable into

three groups based on maternal-fetal expertise (SDM) as follows: no complications, mild-mod-

erate complications, and severe complications [37].

Statistical analysis

We used the Chi-square test and univariate logistic regression to measure associations between

predictors and PTB. We assessed statistical significance using 2-sided p-values, with a p-value

<0.05 considered statistically significant. We then proceed with variable selection using step-

wise multivariable logistic regression based on the Akaike Information Criterion (AIC). We

also utilized the Boruta algorithm to select important variables for the machine learning mod-

els [43]. In short, Boruta is based on the random forest machine learning method, which

selects relevant variables that significantly impact the prediction power of the model [43].

We followed the guidelines for the Transparent Reporting of a Multivariable Prediction

Model for Individual Prognosis or Diagnosis [44] for establishing prediction models. Based on

these guidelines, we selected 2/3 of the data as the training set and the remaining 1/3 of the

data as the test (validation) set. We balanced the training samples using a random over-sam-

pling technique [45]. We then used ten-fold cross-validation to establish machine learning

models. Finally, we used the test data to evaluate the performance of the proposed prediction

models by comparing the sensitivity, specificity, positive predictive values, negative predictive

values, and AUC. We performed all machine learning computations in R software using the

caret package [46].

We applied multiple imputation with 10 imputations [47–49] to replace missing observa-

tions on the predictors. However, for plasma proteins and nuchal translucency, missing data

were treated as a new category since a large proportion of women chose not to enroll in screen-

ing for Down syndrome. We also treated gestational weight gain during the first trimester in a

similar manner, since the lack of recording of weight gain may reflect less than optimal care.

The Hamilton Integrated Research Ethics Board approved the study before study commence-

ment (approval #: 14-714-C).

Results

Study participants and univariate analysis

Of 112,963 nulliparous women with singleton pregnancies, PTB occurred in 6,955 (6.2%,

Table 1). Out of all PTBs, there were 3,695 (53%) spontaneous PTBs. Approximately 5% of

patients were younger than 20 years of age, while 13% were over age 35 years. Approximately

2% of patients had three or more previous abortions including miscarriages. More than 50% of

patients had a non-ideal pre-pregnancy BMI, of which 17.34% and 12.58% were overweight

and obese, respectively. Approximately 17% of the cohort had at least one pre-existing medical

condition. Only 78.67% of the patients had a documented first-trimester appointment.

During the first trimester, we examined 23 predictors (Table 2). Women who were under

25 years of age, shorter in stature (<160 cm), had pre-pregnancy obesity, conceived with IVF,
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Table 1. Distribution of maternal baseline characteristics, demographics, and clinical variables in nulliparous women.

Variables Levels N %

Age (years) <20 5782 5.12

20–24 17979 15.92

25–29 36309 32.14

30–34 34798 30.80

35+ 14817 13.12

Missing 3278 2.90

Height <150 cm 2663 2.36

150 cm-159 cm 21714 19.22

160 cm-169 cm 51090 45.23

�170 cm 22662 20.06

Missing 14834 13.13

Mean = 163.7, SD = 7.34

Pre-pregnancy body mass index (kg/m2) Normal 51225 45.35

Overweight 19584 17.34

Obese 14212 12.58

Underweight 5929 5.25

Missing 22013 19.49

Mean = 24.9, SD = 6.29

Neighbourhood income quartile First quartile (lowest) 29891 26.46

Second quartile 25117 22.23

Third quartile 26122 23.12

Fourth quartile (highest) 27466 24.31

Missing 4367 3.87

Neighbourhood education quartile First quartile (lowest) 27849 24.65

Second quartile 28552 25.28

Third quartile 28089 24.87

Fourth quartile (highest) 24980 22.11

Missing 3493 3.09

Neighbourhood minority quartile First quartile (lowest) 23762 21.04

Second quartile 18718 16.57

Third quartile 23705 20.98

Fourth quartile (highest) 43285 38.32

Missing 3493 3.09

Neighbourhood immigration quartile First quartile (lowest) 24129 21.36

Second quartile 20274 17.95

Third quartile 24785 21.94

Fourth quartile (highest) 39937 35.35

Missing 3838 3.40

Smoking status Non-smoker 97265 86.10

Smoker 10986 9.73

Missing 4712 4.17

Ex-smoker No 71466 63.26

Yes 16153 14.30

Missing 25344 22.44

Alcohol consumption No 101902 90.21

Yes 2185 1.93

Missing 8876 7.86

(Continued)
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Table 1. (Continued)

Variables Levels N %

Drug (substance) use No 102688 90.90

Yes 2555 2.26

Missing 7720 6.83

First-trimester visit Yes 88866 78.67

No 10983 9.72

Unknown 13114 11.61

Antenatal health care provider Obstetrician 98471 87.17

Midwife 13561 12.00

Missing 931 0.82

Folic acid use Yes 78617 69.60

No 21199 18.77

Missing 13147 11.64

Intention to breastfeed Yes 101057 89.46

No 4933 4.37

Missing 6973 6.17

Pre-existing health conditions No 88390 78.25

Yes 19608 17.36

Missing 4965 4.40

Pre-existing mental health conditions No 91666 81.15

Yes 14932 13.22

Missing 7720 6.83

Number of previous abortions (including miscarriages) 0 80615 71.36

1 19189 16.99

2 5334 4.72

3+ 2299 2.04

Missing 5526 4.89

Conception type Spontaneous 105061 93.00

IVF and combination 2176 1.93

Other 2662 2.36

Missing 3064 2.71

Gravidity Mean = 1.38, SD = 0.84

Diabetes No diabetes 102308 90.57

Type I 356 0.32

Type II 454 0.40

Missing 9845 8.72

Gestational weight gain during the first trimester Recommended 10034 8.88

<Recommended 20477 18.13

>Recommended 18842 16.68

Missing 63610 56.31

Pregnancy-associated plasma protein A Normal 60121 53.22

Abnormal 3126 2.77

Missing 49716 44.01

Free beta-subunit of human chorionic gonadotropin Normal 105928 93.77

Abnormal 6350 5.62

Missing 685 0.61

(Continued)
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had prior medical conditions including diabetes, and those with low pregnancy-associated

plasma protein A concentrations were more likely than women without these conditions to

Table 1. (Continued)

Variables Levels N %

Nuchal translucency Normal 50550 44.75

Abnormal 47 0.04

Missing 62366 55.21

Dimeric inhibin A Normal 7746 6.86

Abnormal 564 0.50

Missing 104653 92.64

Unconjugated estriol Normal 61445 54.39

Abnormal 290 0.26

Missing 51228 45.35

Human chorionic gonadotropin Normal 60733 53.76

Abnormal 899 0.80

Missing 51331 45.44

Alpha-fetoprotein Normal 60610 53.65

Abnormal 1616 1.44

Missing 50737 44.9

Diabetes during the second trimester No diabetes 97048 85.91

Gestational diabetes 5228 4.63

Type I 356 0.32

Type II 454 0.40

Type unknown 32 0.03

Missing 9845 8.72

Hypertensive disorder None 99619 88.19

Eclampsia 63 0.06

Gestational hypertension 5267 4.66

HELLP 179 0.16

Preeclampsia 914 0.81

Unknown 6921 6.13

Infection(s) No 80156 70.96

Yes 24697 21.86

Missing 8110 7.18

Medication exposure No 20743 18.36

Vitamin and herbals 50410 44.63

Other medication 30384 26.90

Missing 11426 10.11

Sex of fetus Female 54612 48.35

Male 58065 51.40

Missing 286 0.25

Complications during pregnancy No complications 90302 79.94

Mild-moderate complications 4676 4.14

Severe complications 14255 12.62

Missing 3730 3.30

Preterm birth: n = 6,955 (6.16%); Spontaneous PTB: n = 3695 (5.62%); Term birth: n = 106,008 (93.84%); SD: Standard deviation; IVF: In vitro fertilization; Pre-existing

maternal health conditions shown in S2 Table. Pre-existing mental health conditions shown in S3 Table.

https://doi.org/10.1371/journal.pone.0252025.t001
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Table 2. Univariate analyses of associations between each predictor and preterm birth during the first trimester in nulliparous women.

Term birth Preterm

birth

Chi-square test

85457

(93.8%)

5645 (6.2%)

Variables Levels N % N % P-Value Crude OR 95% CI

Age (years) <20 4149 4.86 223 3.95 <0.001 1.20 (1.05–1.39)

20–24 13874 16.24 791 14.01 1.24 (1.04–1.24)

25–29 29361 34.36 1908 33.80 Reference

30–34 27310 31.96 1897 33.60 0.93 (0.87–0.99)

35+ 10763 12.59 826 14.63 0.84 (0.77–0.92)

Height <150 cm 1963 2.30 172 3.05 <0.001 1.33 (1.13–1.55)

150 cm-159 cm 17588 20.58 1395 24.71 1.20 (1.12–1.29)

160 cm-169 cm 46763 54.72 3085 54.65 Reference

�170 cm 19143 22.40 993 17.59 0.79 (0.73–0.84)

Pre-pregnancy body mass index (kg/m2) Normal 52107 60.97 3245 57.48 <0.001 Reference

Overweight 16434 19.23 1103 19.54 1.07 (1.00–1.15)

Obese 12315 14.41 983 17.41 1.28 (1.18–1.38)

Underweight 4601 5.38 314 5.56 1.09 (0.97–1.23)

Neighbourhood income quartile First quartile (lowest) 22363 26.17 1481 26.24 0.87 0.98 (0.91–1.06)

Second quartile 19930 23.32 1341 23.76 Reference

Third quartile 21431 25.08 1401 24.82 0.97 (0.90–1.05)

Fourth quartile (highest) 21733 25.43 1422 25.19 0.97 (0.90–1.04)

Neighbourhood education quartile First quartile (lowest) 20734 24.26 1302 23.06 0.029 0.98 (0.90–1.05)

Second quartile 23152 27.09 1490 26.40 Reference

Third quartile 22149 25.92 1493 26.45 1.04 (0.97–1.12)

Fourth quartile (highest) 19422 22.73 1360 24.09 1.08 (1.01–1.17)

Neighbourhood minority quartile First quartile (lowest) 20505 23.99 1415 25.07 0.048 1.01 (0.93–1.09)

Second quartile 15694 18.36 1071 18.97 Reference

Third quartile 17916 20.96 1186 21.01 0.97 (0.89–1.05)

Fourth quartile (highest) 31342 36.68 1973 34.95 0.92 (0.85–0.99)

Neighbourhood immigration quartile First quartile (lowest) 21124 24.72 1518 26.89 0.001 1.11 (1.02–1.20)

Second quartile 16978 19.87 1098 19.45 Reference

Third quartile 18742 21.93 1253 22.20 1.03 (0.95–1.12)

Fourth quartile (highest) 28613 33.48 1776 31.46 0.95 (0.88–1.03)

Ex-smoker No 70981 83.06 4632 82.05 0.054 Reference

Yes 14476 16.94 1013 17.95 1.07 (0.99–1.14)

Smoking status Non-smoker 76892 89.98 5017 88.88 0.008 Reference

Smoker 8565 10.02 628 11.12 1.12 (1.03–1.22)

Folic acid use Yes 68486 80.14 4610 81.67 0.006 Reference

No 16971 19.86 1035 18.33 0.90 (0.84–0.97)

Conception type Spontaneous 81713 95.62 5276 93.46 <0.001 Reference

In vitro fertilization and combination 1536 1.80 204 3.61 2.07 (1.76–2.38)

Other 2208 2.58 165 2.92 1.15 (0.98–1.35)

Number of previous abortions 0 64133 75.05 4113 72.86 <0.001 Reference

1 15254 17.85 1048 18.57 1.07 (0.99–1.14)

2 4268 4.99 313 5.54 1.14 (1.01–1.28)

3+ 1802 2.11 171 3.03 1.48 (1.25–1.73)

Gravidity Mean = 1.39,

SD = 0.83

Mean =

1.45,

SD = 0.93

<0.001 1.07 (1.05–1.11)

(Continued)
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experience PTB. During the second trimester, we examined 35 predictors of PTB. Women

who were over 29 years of age, had abnormal concentrations of the assessed proteins, diabetes,

hypertensive disorders of pregnancy, women carrying male fetuses, and those with pregnancy

complications were more likely than women without these conditions to experience PTB

(Table 3).

Multivariable analysis. Stepwise logistic regression identified 13 significant predictors

during the first trimester (Fig 1). Diabetes (Type I: adjusted odds ratio (AOR): 4.21; 95% confi-

dence interval (CI): 3.23–5.42; Type II: AOR: 2.68; 95% CI: 2.05–3.46) and abnormal preg-

nancy-associated plasma protein A concentrations (AOR: 2.04; 95% CI: 1.80–2.30) were the

most significant predictors of PTB. The following factors were also associated with an

increased risk of PTB: pregnancies conceived through IVF, being obese or underweight,

maternal drug (substance) use, lower neighbourhood education level, lower neighbourhood

immigration level, low maternal height, diabetes, and other pre-existing medical or mental

health conditions.

Table 2. (Continued)

Term birth Preterm

birth

Chi-square test

85457

(93.8%)

5645 (6.2%)

Variables Levels N % N % P-Value Crude OR 95% CI

Gestational weight gain during the first trimester Recommended 7934 9.28 533 9.44 0.053 Reference

>Recommended 14535 17.01 1036 18.35 1.07 (0.95–1.18)

<Recommended 16107 18.85 1059 18.76 0.98 (0.87–1.09)

Missing 46881 54.86 3017 53.45 0.96 (0.87–1.05)

Antenatal health care provider Obstetrician 73694 86.24 5104 90.42 <0.001 Reference

Midwife 11763 13.76 541 9.58 0.66 (0.60–0.72)

Alcohol consumption No 83881 98.16 5539 98.12 0.896 Reference

Yes 1576 1.84 106 1.88 1.02 (0.83–1.25)

Drug (substance) use No 83660 97.90 5470 96.90 <0.001 Reference

Yes 1797 2.10 175 3.10 1.48 (1.26–1.74)

Pre-existing health conditions None 70541 82.55 4259 75.45 <0.001 Reference

Yes 14916 17.45 1386 24.55 1.53 (1.44–1.63)

Pre-existing mental health conditions No 73626 86.16 4720 83.61 <0.001 Reference

Yes 11831 13.84 925 16.39 1.21 (1.13–1.31)

Diabetes during the first trimester No diabetes 84938 99.39 5480 97.08 <0.001 Reference

Type I 226 0.26 86 1.52 5.90 (4.27–7.53)

Type II 293 0.34 79 1.40 4.17 (3.23–5.33)

Pregnancy-associated plasma protein A Normal 46161 54.02 3049 54.01 <0.001 Reference

Abnormal 2215 2.59 324 5.74 2.21 (1.96–2.50)

Missing 37081 43.39 2272 40.25 0.93 (0.87–0.98)

Nuchal translucency Normal 47496 55.58 3323 58.87 <0.001 Reference

Abnormal 124 0.15 8 0.14 0.92 (0.41–1.76)

Missing 37837 44.28 2314 40.99 0.87 (0.92–0.92)

Free beta-subunit of human chorionic gonadotropin Normal 3665 4.29 254 4.50 0.249 Reference

Abnormal 396 0.46 34 0.60 1.23 (0.83–1.77)

Missing 81396 95.25 5357 94.90 0.94 (0.85–1.08)

SD: Standard deviation; IVF: In vitro fertilization; Pre-existing maternal health conditions shown in S2 Table. Pre-existing mental health conditions shown in S3 Table.

https://doi.org/10.1371/journal.pone.0252025.t002

PLOS ONE Prediction of preterm birth in nulliparous women

PLOS ONE | https://doi.org/10.1371/journal.pone.0252025 June 30, 2021 9 / 22

https://doi.org/10.1371/journal.pone.0252025.t002
https://doi.org/10.1371/journal.pone.0252025


Table 3. Univariate analyses of associations between each predictor and preterm birth during the second trimester in nulliparous women.

Term birth Preterm birth Chi-square test

108905 (93.4%) 7754 (6.6%)

Variables Levels N % N % P-values OR 95% CI

Age (years) <20 5696 5.23 322 4.15 <0.001 0.81 (0.72–0.91)

20–24 17681 16.24 1115 14.38 0.90 (0.84–0.97)

25–29 36048 33.10 2505 32.31 Reference

30–34 34813 31.97 2598 33.51 1.07 (1.01–1.13)

35+ 14667 13.47 1214 15.66 1.19 (1.10–1.28)

Height <150 cm 2557 2.35 232 2.99 <0.001 1.28 (1.10–1.46)

150 cm—159 cm 22590 20.74 1907 24.59 1.18 (1.12–1.26)

160 cm—169 cm 60107 55.19 4270 55.07 Reference

�170 cm 23651 21.72 1345 17.35 0.78 (0.73–0.84)

Pre- pregnancy BMI (kg/m2) Normal 68198 62.62 4646 59.92 <0.001 Reference

Overweight 20226 18.57 1475 19.02 1.07 (1.00–1.14)

Obese 14648 13.45 1218 15.71 1.22 (1.14–1.30)

Underweight 5833 5.36 415 5.35 1.04 (0.94–1.15)

Neighbourhood income quartile First quartile (lowest) 30047 27.59 2182 28.14 0.350 1.01 (0.92–1.06)

Second quartile 25068 23.02 1806 23.29 Reference

Third quartile 26142 24.00 1866 24.06 0.99 (0.90–1.05)

Fourth quartile (highest) 27648 25.39 1900 24.50 0.95 (0.89–1.01)

Neighbourhood education quartile First quartile (lowest) 27948 25.66 1878 24.22 0.020 0.94 (0.88–1.01)

Second quartile 28630 26.29 2027 26.14 Reference

Third quartile 27684 25.42 2012 25.95 1.02 (0.96–1.12)

Fourth quartile (highest) 24643 22.63 1837 23.69 1.05 (0.98–1.12)

Neighbourhood minority quartile First quartile (lowest) 23348 21.44 1709 22.04 0.500 1.01 (0.94–1.09)

Second quartile 18283 16.79 1317 16.98 Reference

Third quartile 23105 21.22 1608 20.74 0.96 (0.91–1.04)

Fourth quartile (highest) 44169 40.56 3120 40.24 0.98 (0.91–1.04)

Neighbourhood immigration quartile First quartile (lowest) 24099 22.13 1822 23.50 0.040 1.09 (1.01–1.17)

Second quartile 19780 18.16 1366 17.62 Reference

Third quartile 24219 22.24 1683 21.70 1.01 (0.93–1.09)

Fourth quartile (highest) 40807 37.47 2883 37.18 1.02 (0.95–1.02)

Smoking status Non-smoker 98461 90.41 6906 89.06 <0.001 Reference

Smoker 10444 9.59 848 10.94 1.15 (1.07–1.24)

Ex-smoker No 91890 84.38 6479 83.56 0.060 Reference

Yes 17015 15.62 1275 16.44 1.06 (0.99–1.13)

Alcohol consumption No 106830 98.09 7590 97.88 0.210 Reference

Yes 2075 1.91 164 2.12 1.02 (0.93–1.30)

Drug (substance) use No 106518 97.81 7490 96.60 <0.001 Reference

Yes 2387 2.19 264 3.40 1.48 (1.37–1.78)

Number of previous abortions 0 82064 75.35 5601 72.23 <0.001 Reference

1 18748 17.22 1409 18.17 1.10 (1.03–1.16)

2 5573 5.12 455 5.87 1.19 (1.08–1.31)

3+ 2520 2.31 289 3.73 1.68 (1.48–1.90)

Gravidity Mean = 1.42, Mean = 1.52, <0.000 1.11 (1.0591.14)

SD = 0.84 SD = 0.96

(Continued)
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Table 3. (Continued)

Term birth Preterm birth Chi-square test

108905 (93.4%) 7754 (6.6%)

Variables Levels N % N % P-values OR 95% CI

Gestational weight gain during the first trimester Recommended 9604 8.82 686 8.85 0.070 Reference

>Recommended 17942 16.47 1344 17.33 1.05 (0.95–1.15)

<Recommended 19556 17.96 1317 16.98 0.94 (0.85–1.04)

Missing 61803 56.75 4407 56.84 0.99 (0.91–1.08)

Antenatal health care provider Obstetrician 95470 87.66 7122 91.85 <0.001

Midwife 13435 12.34 632 8.15 0.63 (0.58–0.68)

Diabetes No diabetes 108260 99.41 7523 97.02 <0.001 Reference

Type I 269 0.25 123 1.59 6.58 (5.29–8.13)

Type II 376 0.35 108 1.39 4.13 (3.31–5.10)

Pre-existing health conditions No 94116 86.42 6473 83.48 <0.001 Reference

Yes 14789 13.58 1281 16.52 1.26 (1.18–1.34)

Pre-existing mental health conditions None 90395 83.00 5879 75.82 <0.001 Reference

Yes 18510 17.00 1875 24.18 1.56 (1.47–1.64)

Folic acid use Yes 85553 78.56 6118 78.90 0.490 Reference

No 23352 21.44 1636 21.10 0.98 (0.92–1.03)

Conception type Spontaneous 104362 95.83 7293 94.05 <0.001 Reference

IVF or combination 2008 1.84 264 3.40 1.88 (1.64–2.13)

Other 2535 2.33 197 2.54 1.11 (0.95–1.28)

Pregnancy-associated plasma protein-A Normal 58076 53.33 4122 53.16 <0.001 Reference

Abnormal 2792 2.56 472 6.09 2.38 (2.14–2.63)

Missing 48037 44.11 3160 40.75 0.92 (0.88–0.97)

Nuchal translucency Normal 59980 55.08 4539 58.54 <0.001 Reference

Abnormal 158 0.15 18 0.23 1.50 (0.89–2.38)

Missing 48767 44.78 3197 41.23 0.86 (0.82–0.90)

Free beta-subunit of human chorionic gonadotropin Normal 6195 5.69 468 6.04 0.300 Reference

Abnormal 670 0.62 54 0.70 1.07 (0.78–1.41)

Missing 102040 93.70 7232 93.27 0.93 (0.88–1.03)

First trimester visit Yes 85457 78.47 5645 72.80 <0.001 Reference

No 10433 9.58 742 9.57 1.07 (0.99–1.16)

Unknown 13015 11.95 1367 17.63 1.59 (1.50–1.69)

Intention to breastfeed Yes 4514 4.14 549 7.08 <0.001

No 104391 95.86 7205 92.92 1.76 (1.60–1.92)

Dimeric inhibin A Normal 7415 6.81 535 6.90 <0.001 Reference

Abnormal 516 0.47 63 0.81 1.69 (1.27–2.21)

Missing 100974 92.72 7156 92.29 0.98 (0.89–1.07)

Unconjugated estriol Normal 59024 54.20 4440 57.26 <0.001 Reference

Abnormal 256 0.24 40 0.52 2.07 (1.46–2.86)

Missing 49625 45.57 3274 42.22 0.87 (0.83–0.91)

Human chorionic gonadotropin Normal 58384 53.61 4328 55.82 <0.001 Reference

Abnormal 820 0.75 122 1.57 2.01 (1.64–2.42)

Missing 49701 45.64 3304 42.61 0.89 (0.85–0.93)

Alpha-fetoprotein Normal 58406 53.63 4190 54.04 <0.001 Reference

Abnormal 1365 1.25 318 4.10 3.42 (2.85–3.67)

Missing 49134 45.12 3246 41.86 0.92 (0.87–0.96)

(Continued)
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During the second trimester, we identified 17 significant predictors related to PTB (Fig 2)

using stepwise logistic regression. Many of the selected variables were the same as those

selected for the first-trimester model, with slight changes in the odds ratios. Furthermore,

severe complications of pregnancy were strongly associated with PTB (AOR: 13.03; 95% CI:

12.21–13.90). Women with abnormal alpha-fetoprotein, those carrying a male fetus, and those

who did not attend prenatal classes were at increased odds of PTB. Exposure to medication

during pregnancy, including vitamins and herbal supplements, was associated with a

decreased risk of PTB.

Machine learning (Boruta) identified 17 and 27 important predictors of PTB during the first

and second trimesters, respectively (S5 and S6 Tables). Unlike with logistic regression, machine

learning models selected previous abortions (including miscarriages) as the most important

predictor of PTB during the first trimester (importance: 28.23 for previous abortions (including

miscarriages) vs. 7.79 for diabetes). During the second trimester, complications during preg-

nancy and hypertensive disorders were the most important predictors of PTB.

Prediction models and performance measures in the training and validation samples.

In the training sample, we found that random forests had a higher AUC than other models

(99%), including logistic regression, which had the third highest AUC (S7 Table). We evaluated

the proposed prediction models in the testing sample and found that during the first trimester

the AUCs ranged from 53% (random forests) to 60% (artificial neural networks, Fig 3 and

Table 4). However, all models had very high negative predictive values of ~95%. During the

Table 3. (Continued)

Term birth Preterm birth Chi-square test

108905 (93.4%) 7754 (6.6%)

Variables Levels N % N % P-values OR 95% CI

Diabetes during the second trimester No diabetes 103303 94.86 6992 90.17 <0.001 Reference

Gestational diabetes 4932 4.53 524 6.76 1.57 (1.42–1.72)

Type I 269 0.25 123 1.59 6.75 (5.43–8.35)

Type II 376 0.35 108 1.39 4.24 (3.40–5.24)

Type Unknown 25 0.02 7 0.09 4.13 (1.65–9.13)

Hypertensive disorder None 95411 87.61 6080 78.41 <0.001 Reference

Gestational hypertension 4812 4.42 562 7.25 1.83 (1.67–2.01)

Eclampsia 42 0.04 24 0.31 8.96 (5.35–14.68)

HELLP 81 0.07 112 1.44 21.69 (16.31–28.99)

Preeclampsia 654 0.60 288 3.71 6.91 (5.99–7.94)

Unknown 7905 7.26 688 8.87 1.39 (1.25–1.48)

Infection(s) No 79027 72.57 6055 78.09 <0.001 Reference

Yes 29878 27.43 1699 21.91 1.34 (1.27–1.42)

Medication exposure No 20814 19.11 1444 18.62 <0.001 Reference

Vitamins and herbals 56399 51.79 3311 42.70 0.84 (0.79–0.90)

Other medication 31692 29.10 2999 38.68 1.36 (1.27–1.45)

Sex of baby Female 53141 48.80 3365 43.40 <0.001 Reference

Male 55764 51.20 4389 56.60 1.24 (1.18–1.30)

Complications during pregnancy No complications 93777 86.11 2974 38.35 <0.001 Reference

Mild-moderate complications 4538 4.17 283 3.65 1.96 (1.73–2.22)

Severe complications 10590 9.72 4497 58.00 13.39 (12.73–17.08)

IVF: In vitro fertilization; SD: standard deviation; Pre-existing maternal health conditions shown in S2 Table. Pre-existing mental health conditions shown in S3 Table.

https://doi.org/10.1371/journal.pone.0252025.t003
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second trimester, artificial neural networks had the highest sensitivity of 63% (95% CI: 61–65%,

Fig 3 and Table 4), but slightly lower specificity and positive predictive value than logistic regres-

sion. Random forests exhibited the lowest sensitivity among the models; however, the positive

predictive value of the random forests model was the highest, but still relatively low at 36%.

Overall, there was an increase in the AUC from the first trimester to the second trimester in

logistic regression and artificial neural networks (60% vs. 80%). The notable improvement of

Fig 1. Selected variables and adjusted odds ratios during the first trimester for prediction of preterm birth in nulliparous women.

BMI: Body mass index; IVF: In vitro fertilization; Ref: Reference group; Pre-existing maternal health conditions shown in S2 Table. Pre-

existing mental health conditions shown in S3 Table. Number of previous abortions: includes the number of miscarriages.

https://doi.org/10.1371/journal.pone.0252025.g001
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Fig 2. Selected variables and odds ratios during the second trimester for prediction of preterm birth in nulliparous women. BMI: Body mass index; IVF: In
vitro fertilization; Ref: Reference group; Pre-existing maternal health conditions shown in S2 Table. Pre-existing mental health conditions shown in S3 Table.

Number of previous abortions: includes the number of miscarriages.

https://doi.org/10.1371/journal.pone.0252025.g002
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Fig 3. Comparison of prediction models during the first and second trimester for preterm birth in nulliparous women.

https://doi.org/10.1371/journal.pone.0252025.g003

Table 4. Predictive power of preterm birth models during the first and second trimesters in nulliparous women.

First trimester Second trimester

Metric Logistic

regression

Random

forests

Artificial neural

networks

Decision

trees

Logistic

regression

Random

forests

Artificial neural

networks

Decision

trees

Sensitivity 50.2

(47.8–52.4)

29.4

(26.1–31.6)

36.0

(34.5–42.3)

29.2

(27.1–30.8)

62.2

(60.0–63.4)

45.2

(44.5–48.5)

62.7

(61.2–65.4)

58.1

(55.6–60.2)

Specificity 64.5

(63.1–65.4)

84.5

(83.0–86.4)

71.2

(68.2–73.1)

80.2

(79.5–81.4)

87.0

(85.5–88.4)

94.1

(93.8–95.2)

84.6

(83.1–86.5)

90.1

(89.2–91.4)

Positive predictive

value

8.5

(8.1–9.3)

11.4

(9.1–12.2)

11.3

(8.3–13.4)

9.2

(8.5–10.4)

25.2

(24.5–26.3)

36.0

(35.3–38.4)

23.2

(21.3–23).3

29.1

(27.1–29.2)

Negative predictive

value

95.5

(94.4–95.3)

95.2

(94.9–96.1)

95.0

(94.1–95.3)

94.2

(93.9–95.2)

97.3

(96.3–98.3)

96.2

(95.6–97.2)

97.0

(96.5–98.2)

97.2

(96.1–98.4)

All values of percentages; 95% confidence intervals are given in parentheses.

https://doi.org/10.1371/journal.pone.0252025.t004
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the AUC to 80% with artificial neural networks and logistic regression was due to the addition

of complications during pregnancy (S1 and S3 Figs). All models provided negative predictive

value of ~97% during the second trimester. In a sensitivity analysis, we compared the predic-

tive power of all models without complications during pregnancy, and found that the AUC

ranged from 58% (decision trees) to 65% (artificial neural networks, S1 Fig).

Prediction of spontaneous PTB

For models predicting spontaneous PTB, during the first trimester the AUC ranged from 55%

(random forests) to 59% (logistic regression, S2 Fig). During the second trimester, AUC ran-

ged from 58% (decision trees) to 64% (logistic regression, S3 Fig). Both machine learning and

logistic regression generated negative predictive values of approximately 94% for spontaneous

PTB during the first and second trimesters (S8 Table). We emphasize that pregnancy compli-

cations, hypertensive disorder, and other medically induced PTB were not included in these

analyses.

Discussion

We used population-based data to predict PTB in nulliparous women using logistic regression

and machine learning approaches during the first and second trimesters. We found that diabe-

tes mellitus, a history of spontaneous or therapeutic abortions, and abnormal pregnancy-asso-

ciated plasma protein A concentrations were the strongest predictors for PTB during the first

trimester. Thirteen selected predictors yielded a maximum AUC of 60% with artificial neural

networks, thus providing poor prediction of PTB during the first trimester, even using

machine learning approaches. During the second trimester, 17 variables were significantly

associated with PTB, among which complications during pregnancy had the highest AOR

(13.03; 95% CI: 12.21–13.9). During the second trimester, the AUC increased from 65% (95%

CI: 63–66%) to 80% (95% CI: 79–81%) with the inclusion of complications during pregnancy,

which is a moderate predictor [50] of PTB.

Machine learning identified more variables associated with PTB than logistic regression in

our data set. During the first trimester, machine learning identified previous abortions (which

includes miscarriages) as the strongest predictor of PTB, while logistic regression identified

diabetes as the strongest predictor. A history of prior abortions (including miscarriages) may

be a more important predictor of PTB because the incidence of prior abortions was substan-

tially higher than that of diabetes.

We found that conventional logistic regression and machine learning had comparable per-

formance for prediction of PTB. Other studies comparing machine learning methods to con-

ventional logistic regression for the prediction of a variety of clinical conditions showed that in

general, no single method consistently provided the best prediction [51–58]. Although logistic

regression is a frequently used method, it requires linearity and independence between the

predictors. Conversely, machine learning is a non-parametric approach that can handle com-

plex and non-linear models.

There was a significant decrease in the AUC between the training and the testing data, pos-

sibly due to the overfitting problem of machine learning methods [54]. Specifically, random

forests are “greedy”, and thus, try to minimize the error in the training sample, which may

cause overfitting (high performance in training but lower performance in the validation sam-

ple, as we observed in our models) [30].

Accurate prediction of PTB in nulliparous women has been lacking. Woolery and Grzymala

[55] found machine learning had 53–88% accuracy in predicting PTB. Using data mining

methods, Goodwin et al. found that seven demographic variables produced an AUC of 72%
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[10]. In contrast, Grobman et al. [12] found that logistic regression provided poor perfor-

mance (AUC, 63%) for prediction of PTB in nulliparous women with a short cervix. Catley

et al. [15] explored artificial neural networks for the prediction of PTB in high-risk pregnant

women and found model sensitivity of 20% before 22 weeks of gestation. Weber et al. [13]

recently applied machine learning to predict early (<32 weeks) spontaneous PTB among nul-

liparous women and found an AUC of only 63–65%, similar to Courtney et al. [56] (AUC,

60%) using logistic regression and a support vector machine approach.

Strengths of the study

Our study had several strengths. Firstly, our models generated high negative predictive values,

higher than fetal fibronectin for spontaneous PTB [57], and thus may lead to reduction in

unnecessary resource use [58]. Secondly, we considered a wide range of variables available in

standard clinical care databases (e.g., proteins for screening for Down syndrome or placental

diseases, gestational weight gain) that were not considered in previous studies. Another

strength of the current work is the consideration of different time points (first and second tri-

mesters) for the prediction of PTB. In addition, we evaluated a relatively large cohort, particu-

larly compared to many of the previous studies [8–14]. We considered multiple methods for

variable selection and prediction to maximize accuracy. We addressed several limitations of

previous studies in this area: Courtney et al. [56] found that logistic regression and machine

learning models based on demographic data were not able to predict PTB adequately (AUC,

60%). Those authors suggested that prenatal demographic factors such as maternal health

behaviors and medical history could be used to construct accurate models, and thus, we

included such factors in our study. By performing a large cohort study, we also addressed the

“lack of data” problem identified in the work of Lee et al. [11]. We applied multiple imputation

(repeated ten times), which is a robust technique for handling missing data [48]. Unlike Fergue

et al. [16], we used random oversampling in the training set only, thus the AUC from our

models was generated from clinical data and not artificial samples.

Limitations

Our study also has several limitations, including the low predictive power of the proposed

models, particularly during the first trimester. The predictive ability of all models strongly

depends on the predictor variables [30]. Although we had a large number of variables and a

relatively large number of subjects, one of the limitations of our prediction models was the

lack of information on the interventions used for pregnancies at high risk of PTB. However,

data suggest relatively low rates of use of such preventive measures in our study population

[59]. We categorized PTB as<37 or�37 weeks of gestation, which may lead to loss of statisti-

cal power [60]. Further, binary categorization collapses all types of PTB in one group despite

different rates of neonatal mortality and morbidity for each category of PTB [61] and despite

potentially different predictors of extremely PTB compared to PTB overall. Although low preg-

nancy-associated plasma protein A concentraion is associated with trisomies which themselves

are associated with preterm birth, the majority of such cases are in euploid pregnancies [62–

66]. Finally, we were unable to examine ultrasonographic measurement of the uterine cervix,

which is a strong predictor of PTB [67] as it is not available in the BORN database.

Conclusion

Including data from the second trimester improved prediction power to a moderate level of

80% AUC by both logistic regression and machine learning. However, developing an accurate
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prediction model during the first trimester will require further investigation. Inclusion of data

from additional biomarkers may increase prediction accuracy.
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