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ABSTRACT: The nove l meta l−organ ic f r amework
[(CH3)2NH2]2[Ce2(bdc)4(DMF)2]·2H2O (Ce-MOF, H2bdc�
terephthalic acid, DMF�N,N-dimethylformamide) was synthe-
sized by a simple solvothermal method. Ce-MOF has 3D
connectivity of bcu type with a dinuclear fragment connected
with eight neighbors, while three types of guest species are residing
in its pores: water, DMF, and dimethylammonium cations.
Dimethylamine was demonstrated to have a decisive templating
effect on the formation of Ce-MOF, as its deliberate addition to
the solvothermal reaction allows the reproducible synthesis of the
new framework. Otherwise, the previously reported MOF
Ce5(bdc)7.5(DMF)4 (Ce5) or its composite with nano-CeO2
(CeO2@Ce5) was obtained. Various Ce carboxylate precursors
and synthetic conditions were explored to evidence the major stability of Ce-MOF and Ce5 within the Ce carboxylate-H2bdc-DMF
system. The choice of precursor impacts the surface area of Ce-MOF and thus its reactivity in an oxidative atmosphere. The in situ
PXRD and TG-DTA-MS study of Ce-MOF in a nonoxidative atmosphere demonstrates that it eliminates H2O and DMF along with
(CH3)2NH guest species in two distinct stages at 70 and 250 °C, respectively, yielding [Ce2(bdc)3(H2bdc)]. The H2bdc molecule is
removed at 350 °C with the formation of novel modification of Ce2(bdc)3, which is stable at least up to 450 °C. According to the
total X-ray scattering study with pair distribution function analysis, the most pronounced local structure transformation occurs upon
departure of DMF and (CH3)2NH guest species, which is in line with the in situ PXRD experiment. In an oxidative atmosphere, Ce-
MOF undergoes combustion to CeO2 at a temperature as low as 390 °C. MOF-derived CeO2 from Ce-MOF, Ce5, and CeO2@Ce5
exhibits catalytic activity in the CO oxidation reaction.

1. INTRODUCTION
Metal−organic frameworks (MOFs) draw substantial attention
from many scientific groups nowadays. The main features of
MOFs�high surface area and porosity�provide a wide range
of potential applications such as gas storage and separation,1−3

sensing,4−7 capture of toxic metals,8,9 drug delivery,10,11 or
catalysis12−18 including photo-19,20 and electrocatalysis.21,22

Terephthalic acid (1,4-benzenedicarboxylic acid, H2bdc) is a
simple rigid ditopic linker often employed for construction of
MOFs with several milestone examples such as Zn4O(bdc)3
(MOF - 5 ) , 2 3 C r ( OH ) ( b d c ) (M I L - 5 3 ) , 2 4 o r
Zr6O4(OH)4(bdc)6 (UiO-66).

25

Lanthanide (Ln) MOFs are attracting increasing attention
due to their specific geometrical features that provide wide
possibilities of topology design and interesting properties
related to magnetic and luminescent applications.26−28 Despite
the progress in the field and tens of thousands of MOFs
reported to date,29 even simple systems such as Ln-H2bdc have
yet to be fully explored. Very recent developments on new Ln-

based MOFs with terephthalic linkers still continue to
emerge.30−32

Cerium MOFs are of particular interest among the Ln-based
MOFs due to the unique electronic properties of the Ce ion
featuring two stable oxidation states (+3 and +4) and enabling
new possible applications as catalysts in various redox
processes due to Ce3+/Ce4+ switching.,33−37 e.g., for CO
conversion to CO2.

33,38,39 Like other lanthanides, Ce can adopt
various coordination environments. Therefore, the search for
new deliberate and reproducible synthetic methods for Ce
MOFs is a challenging task. A high number of Ce4+ MOFs
have been synthesized to date.40 The majority of them contain
in situ assembled {CeIV6O4(OH)4} cores and are the most
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extensively studied after the preparation of the Ce-UiO-66
isoreticular analog of the corresponding Zr-based UiO-66
MOF.41 MOFs based on Ce3+ usually contain mono-,42,43

di-,44,48,49 or 1D chain polynuclear30,31,45,47 building blocks
connected by organic linkers. A handful of Ce3+ MOFs with
nonsubstituted terephthalate linkers have been reported to
date (Table 1).
Anionic MOFs are of particular interest through the

possibility of sensing and separation of charged species,
protonic conduction,51−53 dye absorption,54 and capture of
toxic metals.55 A vast number of the reported anionic MOFs
contain dimethylammonium cations generated in situ via
degradation of dimethylformamide usually employed as the
s o l v e n t f o r M O F s y n t h e s i s , e . g . ,
{[((CH3)2NH2)3(SO4)]2[Zn2(ox)3]}n (ox = oxalate),52

[(CH3)2NH2]2[Cd3(L)]·2H2O (H4L = 2,5′-di(3′,5′-
dicarboxylphenyl)pyridine),53 and {[((CH3)2NH2)2]-
[Zn3(L)2]·9H2O} (L = 5,5′-(1,4-phenylenebis(methylene))-
bis(oxy)diisophthalic acid).55 This potentially decreases syn-
thesis reproducibility with uncontrollable generation of
dimethylammonium, as to the best of our knowledge none
of the reported synthetic methods employ deliberate addition
of dimethylamine to the synthetic mixture.
CO is a toxic gas that is generated by incomplete

combustion of fuel from various sources, such as power plants,
cement plants, vehicle exhaust emissions, and burning biomass.
During CO oxidation, catalysts based on noble metals showed
the highest catalytic activity and stability, even at low
temperatures.56 However, there are several disadvantages:
low abundance, high price, and stringent requirements for the
catalyst preparation process. Therefore, the development of
highly active and inexpensive CO oxidation catalysts to replace
precious metal catalysts is of great importance for large-scale
applications. It is known that the excellent catalytic activity of
cerium dioxide catalysts in the CO oxidation reaction can be
achieved due to oxygen vacancies on the catalyst surface
forming upon synthesis of nanoceria. Recently, MOF-derived
ceria-based catalysts in the CO oxidation reaction have become
a good substitute for precious metal catalysts due to their low
price, large reserves, and high catalytic activity.33 Therefore,
the exploration of new synthetic pathways to produce ceria for
catalytic purposes is an urgent matter.
In this article, we have developed a new approach for the

synthesis of anionic MOFs containing dimethylammonium
cations. We report on the synthesis of the Ce-based MOF
[(CH3)2NH2]2[Ce2(bdc)4(DMF)2]·2H2O (Ce-MOF) and
fine-tuning of synthetic conditions leading to this new target
compound in the Ln-H2bdc-DMF system. The crystal

structure of Ce-MOF was determined by means of single-
crystal X-ray diffraction and by PXRD with Rietveld refine-
ment, supported by pair distribution function (PDF) analysis.
TGA-DTA-MS, in situ PXRD, and BET add insight on the
porosity, specific surface area, and solvent content of the MOF.
The effect of the precursor selection on the surface area,
reactivity in oxidative conditions, and catalytic activity of
MOF-derived CeO2 in CO oxidation reaction is also reported.

2. EXPERIMENTAL SECTION
Cerium nitrate Ce(NO3)3·6H2O (99%, Sigma-Aldrich), cerium
acetate Ce(CH3COO)3·1.5H2O (analytical grade, Reakhim,
Russia), terephthalic acid (H2bdc, 98%, Sigma-Aldrich),
diethylenetriamine (deta, 99%, Sigma-Aldrich), dimethylamine
(33% aq solution, Reakhim, Russia), N,N-dimethylformamide
(DMF, 99.9%, Ekos-1, Russia), pivalic acid (Hpiv, 98%,
Merck), and NaOH (analytical grade, Reakhim, Russia) were
u s e d a s r e c e i v e d . C e ( I I I ) h y d r o x o p i v a l a t e
Ce4(OH)2(piv)10(H2O)2 and Ce(IV) oxo pivalate
Ce6O8(piv)8(deta)4 were synthesized according to previously
reported methods.57,58

One general method was employed to prepare
[(CH3)2NH2]2[Ce2(bdc)4(DMF)2]·2H2O (Ce-MOF), differ-
ing only in the precursor compound and its amount. A mixture
o f H 2 b d c ( 1 3 6 m g , 0 . 8 mm o l ) a n d ( i )
Ce4(OH)2(piv)10(H2O)2 (170 mg, 0.1 mmol), (ii) Ce-
(CH3COO)3 ·1.5H2O (136 mg, 0.4 mmol), ( i i i)
Ce6O8(piv)8(deta)4 (150 mg, 0.07 mmol), or (iv) Ce-
(NO3)3·6H2O (178.5 mg, 0.4 mmol) was dispersed in DMF
(12 mL). Then, dimethylamine water solution (340 μL, 2
mmol) was added and the mixture was placed in Teflon-lined
stainless-steel reactors (23 mL), heated at 120 °C for 48 h, and
then cooled to room temperature for 24 h. The resulting
powder was filtered off, washed with DMF and ethanol, dried,
and stored in air. Yield was determined to be ca. 80%.
Ce5(bdc)7.5(DMF)4 (Ce5) was prepared from H2bdc and

(i) Ce4(OH)2(piv)10(H2O)2 or (ii) Ce(CH3COO)3·1.5H2O
by the same method as described above in the absence of
dimethylamine. Yield was ca. 60%.
The CeO2@Ce5 composite was prepared from H2bdc and

(iii) Ce6O8(piv)8(deta)4 by the same method as described
above in the absence of dimethylamine. The yield was ca. 50%.
Single crystals of Ce-MOF for X-ray structure analysis were

serendipitously obtained during the optimization of the
preparation method of Ce5.

Table 1. Summary of Ce3+ MOFs with Terephthalate Linkers Reported in Literature with Porosity Analysis Performed with
PLATONa46

formula
building
unit

free volume
(%)

free volume desolvated
(%)

CCDC ref
code

CCDC
number ref

Ce6(bdc)9(DMF)9(H2O)3 chain 26.9 49.1 ALUJIB 745286 30
Ce5(bdc)7.5(DMF)4 (Ce5) chain 29.6 43.0 GOBXAY 912350 31
Ce2(bdc)3(DEF)2 chain 30.3 51.3 QOCSAD 630356 47
[(CH3)2NH2]2[Ce2(bdc)4(DMF)2]·2H2O (Ce-MOF) dinuclear 32.3 52.7 2106041 this work
Ce2(bdc)3(DMF)2(DMSO)2 dinuclear 31.9 56.2 BUVHEH 844407 48
Ce2(bdc)3(e-urea)2(H2O)2 dinuclear 28.0 45.6 LAGPOA 786945 49
Ce2(bdc)2(NMP)4(ac)2 dinuclear 28.2 60.4 UNECEX 868529 50

aAbbreviations for ligands: H2bdc�terephthalic acid; DMF�N,N-dimethylformamide, DMSO�dimethyl sulfoxide, e-urea�ethylene urea,
DEF�N,N-diethylformamide, NMP�N-methyl pyrrolidone, Hac�acetic acid.
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3. RESULTS AND DISCUSSION
3.1. General Remarks on Synthesis. Recently, we have

elaborated the synthetic routes for tetranuclear {Ln4(OH)2},
{Ln4(OH)4} and hexanuclear {Ce6O8}, {Ln6(OH)8} lantha-
nide carboxylate complexes.57−59 The intent of the current
study was to examine the possibility of creating new MOFs by
linking the di-, tetra-, and hexanuclear Ce complexes into an
extended 3D framework via the terephthalate linker.
The compounds [(CH3)2NH2]2[Ce2(bdc)4(DMF)2]·2H2O

(Ce-MOF) and previously reported Ce5(bdc)7.5(DMF)4
31

(Ce5) were successfully synthesized by solvothermal method
from terephthalic acid (H2bdc) and three different Ce
carboxylate precursors, (i) Ce4(OH)2(piv)10(H2O)2, or (ii)
Ce(CH3COO)3·1.5H2O, or (iii) Ce6O8(piv)8(deta)4, in DMF
as outlined in Scheme 1.
The solvothermal reaction that is usually employed for

preparation of MOFs is carried out at a relatively high
temperature and autogenous pressure of the solvent. Even a
slight change in reaction conditions (temperature, pH,
presence of modulating reactant) may guide it to a different
product.60,61

Apart from the desired reaction, interfering processes could
occur, including decomposition of the compounds. Accord-
ingly, in situ generated dimethylammonium cation
(CH3)2NH2

+ is a frequent guest in many anionic MOF crystal
structures due to the solvent (DMF) decomposition in the
temperature range of 100−160 °C.62−70

Indeed, in the present work, several serendipitously formed
single crystals of the Ce-MOF byproduct were harvested from
the reaction product of solvothermal synthesis between
Ce6O8(piv)8(deta)4 and H2bdc in DMF, while the main
precipitate was the composite CeO2@Ce5. As in previous
works, the (CH3)2NH2

+ ions have formed due to hydrolysis of
DMF in the presence of water traces and acted as a template
for the framework assembly (see Section 3.4). However, out-
of-control hydrolysis of DMF complicates the synthesis of pure

Ce-MOF powder in high yield. We have varied the Ce-
containing precursor (i−iii), as well as temperature (120−160
°C), time (2−48 h), and reagent concentration in solvothermal
syntheses, but most of the syntheses resulted in formation of
Ce5. The only rigorous and easy way to reproducible synthesis
of Ce-MOF was discovered to be the deliberate addition of
(CH3)2NH excess into the reaction vessel. In our view, this
novel approach opens the prospect for reproducible synthesis
of a large variety of new and previously reported anionic MOFs
on templating (CH3)2NH2

+ and related cations.
3.2. Synthesis and Characterization of Ce5 and

CeO2@Ce5. We found that the reaction between terephthalic
acid (H2bdc) and either (i) Ce4(OH)2(piv)10(H2O)2,

57 (ii)
Ce2(ac)6(H2O)3, or (iii) Ce6O8(piv)8(deta)4

58 in DMF under
a broad range of solvothermal conditions leads to formation of
a prev ious ly repor ted s tab le Ce3+ -based MOF
Ce5(bdc)7.5(DMF)4 (Ce5) (Scheme 1 and Figure S1).31,71

Notably, if Ce6O8(piv)8(deta)4 is used as a precursor, Ce4+ is
only partially reduced to Ce3+ and the reaction leads to the
formation of a CeO2@Ce5 composite, according to PXRD
data (Figure 1). The possible mechanism includes reduction of
Ce4+ to Ce3+ by deta, which can be readily oxidized to form
polyamines (Figure S2).72,73 Such types of CeO2/MOF-based
composites are currently studied as catalysts having a prospect
to enhance catalytic activity and selectivity.74,75

The broad peaks on the experimental PXRD pattern
corresponding to CeO2 reflect the nanoscale state of the
particles in the composite. This is supported by the results of
scanning electron microscopy (Figure S3), indicating that
nano-CeO2 is distributed on the surface of Ce5 crystals. Total
X-ray scattering with PDF analysis demonstrated that the
experimental PDF is in good agreement with the theoretical
one of CeO2 nanoparticles (Figure 2).
The average particle size of the nanomaterial can be deduced

from the PDF being a histogram of interatomic distances as the
distance at which the curve flattens out since the particle

Scheme 1. Synthetic Scheme of Ce-MOF and Ce5 Preparation from Various Ce Carboxylate Precursorsa

aSBET values refer to the desolvated Ce-MOF samples obtained from the respective precursors.
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diameter is reached, and no interatomic distances exist any
further. The CeO2 particle size value of 4.5 nm was obtained
by the PDF fit using a spherical shape function and is in line
with the results of transmission electron microscopy (Figure
2).
It should be noted that the CeO2 signal dominates the PDF

despite the comparable amounts of individual phases in
CeO2@Ce5 (Synthesis section in the SI). The reason for this
lies in the higher frequency of Ce−O and Ce−Ce distances in
CeO2 involving the strong scatterer Ce compared to many
light scatterers (H, C, O, N) in Ce5 making the Ce5 signal
hardly visible on the PDF of the composite. Yet, the structural
remnants can be seen in the difference curve (Figure S4).

XANES spectra of Ce3+ near its L3 edge (Figure 3) feature a
single strong peak at 5726 eV, whereas those of Ce4+ have two

maxima of lower intensity at 5730 and 5739 eV. The
experimental spectrum of CeO2@Ce5 can be represented as
a sum of the two components, confirming the presence of Ce
in both oxidation states. The fitting of XANES spectra of
model compounds to the spectrum of CeO2@Ce5 estimates
the Ce3+:Ce4+ molar ratio as 0.47 ± 0.01:0.53 ± 0.01.

3.3. Synthesis of Ce-MOF. Inspired by a serendipitous
formation of several Ce-MOF crystals as a byproduct due to
hydrolysis of DMF, we decided to deliberately add the
templating (CH3)2NH to the reaction mixture. This led to the
formation of pure Ce-MOF for all three investigated
carboxylate precursors�Ce6O8(piv)8(deta)4, Ce2(ac)6(H2O)3,
and Ce4(OH)2(piv)10(H2O)2 (Figure 4). Notably, synthesis
from Ce6O8(piv)8(deta)4 is accompanied by full reduction of
Ce4+ to Ce3+ due to amine excess.
Variation of (CH3)2NH content demonstrated that Ce-

MOF could be obtained in pure form within a wide range of
(CH3)2NH content (1 to 10 equiv with respect to Ce),
indicating the stability of the framework. Notably, if a simple
and commercially available Ce source Ce(NO3)3(H2O)6 was
used as a precursor, it was not possible to obtain pure Ce-
MOF (Figure S5), highlighting the importance of preorganized
Ce atom arrangement in the carboxylate precursors for the
synthesis. Despite the identical composition of the Ce-MOF
powders derived from three different precursors, BET surface
area measurements clearly indicate a substantial difference in
specific surface area of the sample prepared from
Ce4(OH)2(piv)10(H2O)2 having SBET (222 m2/g) twice as
large as that of the ones prepared from Ce6O8(piv)8(deta)4
(110 m2/g) and Ce2(ac)6(H2O)3 (112 m2/g) (Scheme 1 and
Figures S6 and S7).
This can originate from a rather loose arrangement of 1D

polymeric structural entities in Ce4(OH)2(piv)10(H2O)2 due

Figure 1. Experimental PXRD pattern (λ = 1.5419 Å) of CeO2@Ce5
(blue) and calculated patterns of Ce5 (red), nano-CeO2 (yellow), and
their composition Ce5+nano-CeO2 (green). Peak broadening of the
nano-CeO2 pattern was calculated for a grain size of 4.5 nm according
to the Scherrer equation. Vertical orange bars show the positions of
the Bragg peaks of CeO2.

Figure 2. PDF refinement (red) of measured data of CeO2@Ce5
(blue) with the CeO2 spherical particle model for the distance range
1−50 Å. Difference curve (green) is offset for clarity. Weighted
agreement factor Rw and Pearson correlation coefficient r between the
experimental and fitted curve are shown below the graphs. Insets
show the TEM image of the composite (left) and selected-area
diffraction pattern with clearly visible diffraction rings corresponding
to CeO2 (right).

Figure 3. X-ray absorption near edge structure (XANES) spectra of
CeO2@Ce5 recorded near the Ce L3 absorption edge fitted with
experimental spectra of the model compounds Ce2(bdc)3(H2O)4 and
CeO2.
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to the bulky pivalate ligands or from a different reactivity of the
precursors but requires further investigation. Thus, to the best
of our knowledge, Ce-MOF having SBET of 222 m2/g shares
the second highest reported specific surface area value among
Ce3+ MOFs with dicarboxylic linkers.60,71

3.4. Crystal Structures of Ce-MOF and Ce-MOF−H2O.
Ce-MOF crystallizes in the P21/n space group, the unit cell
contains one symmetrically independent Ce1 atom, and the
crystal structure is composed of the centrosymmetric dinuclear
[Ce2(bdc)4]2− species (Ce1−Ce1i separation equals 4.185 Å)
linked by two bridging and two chelate bridging carboxylic
groups of four terephthalate anions (bdc2−) (Figure 5 and
Figure S8). Each Ce1 is coordinated by O1 and O2 atoms of a
chelating bdc2− ion, O3 and O4 atoms of a chelating bridging
bdc2−, O5 and O6 atoms of a bridging bdc2−, O3 from another

chelating bridging bdc2−, O7 atom from a terminal bdc2−, and
O1S from the coordinated DMF molecule. The ninefold
coordination environment of Ce1 is best described as a muffin
according to CShM (continuous shape measures) analysis
(Figure S9 and Table S4).76 It is worth noting that the
geometry of dinuclear [Ce2(bdc)4]2− species is typical for
cerium carboxylates and, for instance, occurs in
Ce2(bdc)3(DMF)2(DMSO)2

48 and Ce2(bdc)2(NMP)4(ac)2
50

MOF structures. However, the presence of a terminal COO
group is quite unusual and is due to the formation of ion pairs
with [(CH3)2NH2]+ cations. The dinuclear [Ce2(bdc)4]2−

fragments are joined together into a three-dimensional anionic
framework [Ce2(bdc)4]2−

∞ by the dicarboxylate terephthalate
anions of two types, which are considered as μ2 and μ4
connectors (Figure 6).

Figure 4. PXRD patterns (λ = 1.5419 Å) of Ce-MOF samples
prepared from various Ce precursors.

Figure 5. Crystal structure of Ce-MOF. The dinuclear building unit on the left is presented as a ball-and-stick model for clarity; see the SI for the
thermal ellipsoid plot of the building unit. Dashed lines show H-bonds. Symmetry codes: (i) 1−x, 1−y, 1−z; (ii) 1.5−x, 0.5+y, 1.5−z; (iii) −0.5+x,
0.5−y, −0.5+z. Guest molecules on the right are shown as semitransparent for clarity. The right panel shows the view along the channels in the
[1̅1̅1] direction. Semitransparent green lines show unit cell edges.

Figure 6. Dinuclear building unit of Ce-MOF surrounded by eight
neighbor units as a node of an 8-c topological bcu net.
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The framework features a complex intertwined channel
system along the [11̅1̅] and [1̅1̅1] directions with the largest
rhombic aperture of 9.47 Å × 17.58 Å along the diagonals, as
calculated from the distances between Ce ions (Figure 5 and
Figure S10). Topology analysis of the Ce-MOF crystal
structure with ToposPro software77 indicates that the structure
can be represented as an 8-c net (point symbol {4.2464}) of a
bcu-type topology with Ce2 building units as nodes (Figure 6
and Figure S11). Porosity analysis of the crystal structure
demonstrates the highest porosity of Ce-MOF among the
reported Ce3+-based MOFs with a terephthalic linker and the
third highest porosity after virtual solvent exclusion (Table 1).
Structural analysis of dehydrated Ce-MOF−H2O demon-

strates that removal of water molecules does not affect the
crystal structure of the framework substantially (Tables S1 and
S2) due to its rigidity and only leads to disorder of
dimethylammonium cations and dimethylformamide mole-
cules. Porosity analysis of the crystal structure demonstrates
the highest porosity of Ce-MOF among the reported Ce3+-
based MOFs with the terephthalic linker and the third highest
porosity after virtual solvent exclusion (Table 1).
Crystal structures of Ce-MOF and Ce-MOF−H2O were also

determined at room temperature and were demonstrated to
have no noticeable differences from the ones at 100 K (Tables
S1 and S2). Figure S12 shows the Rietveld refined powder
XRD profile of Ce-MOF.

3.5. Thermal Behavior. Since MOFs synthesized under
solvothermal conditions usually contain guest solvent mole-
cules in the voids, their desolvation upon heating at moderate
temperatures is required to activate the porosity. The thermal
behavior of the new Ce-MOF was investigated by means of in
situ PXRD, TG-DTA with mass spectrometric evolved gas
analysis, and total X-ray scattering with PDF analysis. In the
process of thermal decomposition of Ce-MOF, several stages
can be distinguished. The decomposition begins from the
elimination of the weakly bound water molecules (m/z = 18,
17) from the pores at 50−100 °C, the experimental weight loss
is 3.1%, which is consistent with the theoretically calculated
weight loss of 3.0% (Figure 7 and Figure S13). Judging by the
data obtained in the in situ PXRD experiment (Figure 7 and

Figure S14), only slight structural changes occur (at Q of ca.
1.4 and 1.8 Å−1) with most of the peaks retaining their
positions and intensity. This is in line with the SC XRD crystal
structure of a Ce-MOF−H2O.
Upon further heating, DMF and dimethylamine molecules

leave the pores on the next stage of weight loss at 250−275 °C
(exp. 22.8%, calcd 22.4%) and appearance of peaks in the mass
spectrum with m/z = 73 (DMF+), 44 ((CH3)2N+), 18 (NH4

+),
17 (NH3

+). This corresponds to the major change in PXRD
pattern (see detailed view in Figures S15 and S16) manifested
in intensity drop and disappearance of several diffraction peaks
(e.g., at 0.8−1 Å−1). Lighter dimethylamine molecules residing
in the pores of the framework are eliminated simultaneously
with the heavier coordinated dimethylformamide molecules
due to the firm retention in the form of (CH3)2NH2

+ cations
by the anionic framework [Ce2(bdc)4]2− and a system of H-
bonds. The proton that should remain upon elimination of
dimethylamine for charge compensation is supposedly bound
to the O8 atom of the terminal bdc2− ligand that acted as the
H-bond acceptor from (CH3)2NH2

+ in the as-obtained Ce-
MOF.
At ca. 350 °C, one H2bdc molecule per formula unit is

eliminated, leaving the Ce2(bdc)3 framework (exp. and calcd
weight losses of 36.0%). According to TG-DTA-MS data, the
framework exhibits thermal stability up to at least 450 °C in
argon while the peaks of m/z 44, 73, and 166 at higher
temperatures originate from terephthalic linkers indicating
MOF destruction. The argon atmosphere impedes oxidation,
and the formation of CeO2 is only achieved by 1000 °C (exp.
and calcd weight losses of 72.0 and 71.6%, respectively). The
thermal behavior of Ce-MOF in air demonstrates the same
three elimination stages at temperatures of 100−150, 200−
250, and 300−350 °C while combustion of the framework
occurs in the temperature range of 390−500 °C with the
formation of CeO2 (Figure S17).
To get more insight into the structural changes in Ce-MOF

upon heating, we performed total scattering experiments with
PDF analysis of as-synthesized Ce-MOF and of the products of
its heating at 100 (Ce-MOF−H2O), 250 ([Ce2(bdc)3(H2bdc)]),
and 400 °C ([Ce2(bdc)3]) in a vacuum (Figure 8). The data

Figure 7. In situ PXRD pattern (λ = 0.5594 Å) of Ce-MOF upon heating in a capillary sealed in vacuum (left). Semitransparent dashed lines divide
the temperature range into several stages of the sample evolution. TG curve of Ce-MOF in argon with scaled ionic currents of ions in evolved gas
with the respective m/z (right).
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were collected according to our previously developed
procedure.78 See the Supporting Information for the details
on data collection and choice of structure models for the
refinements.
The PDFs of Ce-MOF and Ce-MOF−H2O closely resemble

each other, which is reflected in their Pearson correlation
coefficient r value of 0.98 (Figure S18) and are well described
by the corresponding structure models of Ce-MOF and Ce-
MOF−H2O within a distance range of up to 40 Å, which
indicates that the local structure remains unchanged upon
elimination of water molecules.
Heating of Ce-MOF up to 250 °C is accompanied by

departure of DMF and dimethylamine molecules and leads to
formation of [Ce2(bdc)3(H2bdc)], and a substantial change of
the structure is expressed in both in situ PXRD and PDF data
(Figures 7 and 8, respectively). The local structure changes
and the peaks corresponding to Ce−Ce distances (e.g., at 11.4
and 28.4 Å) become less pronounced in the PDF of
[Ce2(bdc)3(H2bdc)] indicating partial loss of the long-range
order. PDF of [Ce2(bdc)3] is similar to the one of
[Ce2(bdc)3(H2bdc)] with an r value of 0.91.
Due to the change of structure between 100 and 250 °C, the

last two PDFs differ significantly from the first two, which is
quantitatively expressed in the Pearson correlation coefficient
values of ca. 0.7 (Figure S17). At the same time, the two PDFs
are fitted rather well with the Ce5(bdc)7.5 model constructed
from the Ce5(bdc)7.5(DMF)4 crystal structure

31 by exclusion
of DMF within the short distance range up to 15 Å, which
points to substantial structure change upon elimination of
DMF and dimethylamine and only a minor change between
250 and 400 °C.
PXRD patterns of Ce-MOF above 350 °C (Figure 7), a

previously reported product of Ce5 heating above 275 °C in
the N2 atmosphere,

71 and that of CeO2@Ce5 above 275 °C
(Figure S19) are similar to each other, and these three

substances contain the same modification of Ce2(bdc)3. It
should be noted that poor crystallinity of that phase hinders
the structural study by means of Rietveld refinement; therefore,
its crystal structure remains to be determined.
In an oxidizing atmosphere, Ce2(bdc)3 is readily oxidized to

form nano ceria (Figures S15). The oxidation process depends
on the surface area of the initial MOF and thus on the
precursor employed. The largest surface area of Ce-MOF is
obtained in the case of the Ce4(OH)2(piv)10(H2O)2 precursor
(222 m2/g) and the corresponding Ce-MOF is fully oxidized
to CeO2 at 390 °C, while the Ce-MOF sample synthesized
from Ce2(ac)6(H2O)3 only forms traces of CeO2 at that
temperature and full combustion occurs after heating at a
constant temperature of 400 °C for 10 min (Figure S20).
Here, we have also studied the CeO2@Ce5 composite

behavior upon heating in a vacuum (Figure S19). It has been
found that nanoceria does not influence thermal decom-
position of the Ce5 framework in composite, which loses DMF
at 250 °C and undergoes pyrolysis after 475°C similarly to
pure Ce5, while nanoceria gradually crystallizes upon heating.

3.6. Catalytic Performance of MOF-Derived CeO2.
MOFs are widely explored as catalysts for various industrially
important processes with the Ce-based ones and their
derivatives, e.g., MOF-derived ceria being the most prominent
in redox reactions due to the two stable oxidation states of
Ce.33−36 Many reports point to the high catalytic activity of
CeO2 and its composites in the CO oxidation reac-
tion:38,39,79,80

+CO 0.5O CO2 2

Less attention was devoted to Ce-based MOFs with only
several reported examples indicating high efficiency of these
MOFs and corresponding composites.81,82

Preliminary catalytic experiments demonstrated that no
activity is exhibited by Ce-MOF and Ce5 per se at lower
temperatures and the activation to form the MOF-derived
CeO2 is essential. The Ce-MOF sample with the lowest surface
area (112 m2/g) prepared from the Ce2(ac)6(H2O)3 precursor
did not oxidize to CeO2 under the conditions of the catalytic
reaction even at 400°C but transformed to [Ce2(bdc)3] and
thus did not exhibit catalytic activity (Figure 9, Figure S21, and
Table S5). At the same time, all other MOFs that transformed
to CeO2 in situ demonstrate comparable activity with the
conversion of CO at the level of ca. 30% corresponding to the
16 mmol h−1 g−1 reaction rate, which is significantly higher
than that of bulk CeO2 (Figure 9). A minor decrease of activity
of derived CeO2 from Ce5, CeO2@Ce5, and Ce-MOF is in
perfect correlation with the decrease of the CeO2 BET surface
area: 224, 188, and 182 m2/g, respectively (Table S5). The
only reaction product is CO2; accordingly, the selectivity for
CO2 is 100%. The material balance of the reaction for carbon
calculated from gas chromatography data is 95−98% (Figure
S22 and Table S6).
Further studies of the activity and life cycle of the catalyst

were performed for Ce-MOF. Since only around 30%
conversion of CO was achieved during the preliminary
experiments, the loading mass of the catalyst was increased,
keeping all other reaction conditions unchanged. The
efficiency of the catalyst increases significantly upon in situ
transformation to CeO2 at ca. 350°C on the first cycle (Figure
10), and high CO conversion (80%) is already observed at a
temperature of 270 °C on the second cycle. The lifetime of the
catalyst was examined, and it demonstrated to maintain its high

Figure 8. Measured PDF data (shades of blue) of Ce-MOF samples
(as is and heated to different temperatures) and refinements (red)
with the corresponding periodic models. Difference curves (gray) are
offset for clarity. Weighted residual factor Rw and Pearson correlation
coefficient r between experimental and fitted curves are shown below
the graphs.
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efficiency for more than 14 h at 300 °C (Figure S23). The
catalytic activity of the Ce-MOF-derived CeO2 is comparable
to the reported catalysts in CO oxidation (Table
S7).38,39,79,81,82

4. CONCLUSIONS
T o c o n c l u d e , t h e n o v e l C e 3 + - b a s e d MOF
[(CH3)2NH2]2[Ce2(bdc)4(DMF)2]·2H2O (Ce-MOF) has
been prepared by solvothermal reaction in DMF from various
Ce carboxylates with terephthalic acid (H2bdc) and dimethyl-
amine. The choice of carboxylate precursor did not impact the
phase composition; however, it affected the specific surface

area of the obtained material. In the absence of added
dimethylamine, the solvothermal reaction leads to the
formation of Ce5(bdc)7.5(DMF)4 (Ce5) or its composite
CeO2@Ce5. It is worth noting that while nano-CeO2 is hardly
visible in PXRD patterns of the composite, its signal dominates
the PDF. This highlights the value of total scattering for
characterization of the MOFs that could contain amorphous or
nanocrystalline admixtures.
Ce-MOF has 3D connectivity of the bcu type with a

dinuclear fragment connected with eight neighbors and three
types of solvate species residing in its pores: water, DMF, and
dimethylammonium cation.
The framework retains its integrity upon elimination of

water molecules, while departure of DMF and dimethylamine
leads to substantial structural transformation, which was
evidenced through in situ XRD, thermogravimetric analysis,
and total scattering experiments with PDF analysis.
Further heating leads to formation of Ce2(bdc)3, which is

stable up to at least 450 °C in nonoxidative conditions and
undergoes combustion after 390 °C to form nano-CeO2.
MOF-derived CeO2 has a mean crystallite size of ca. 5−6 nm
and exhibits catalytic activity in the CO oxidation reaction.
Finally, we developed a synthetic strategy for a new anionic

Ce-based MOF formed due to the templating effect of
deliberately added dimethylamine. We believe that the
proposed approach could pave the way for the synthesis of
new anionic MOFs.
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