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The circulating tumor DNA (ctDNA), as a promising biomarker of liquid biopsy, has
potential clinical relevance on the molecular diagnosis and monitoring of cancer. However,
the trace concentration level of ctDNA in the peripheral blood restricts its extensive clinical
application. Recently, high-throughput-based methodologies have been leveraged to
improve the sensitivity and specificity of ctDNA detection, showing a promising avenue
towards liquid biopsy. This review briefly summarizes the high-throughput data features
concerned by current ctDNA detection strategies and the technical obstacles, potential
solutions, and clinical relevance of current ctDNA profiling technologies. We also highlight
future directions improving the limit of detection of ctDNA for better clinical application.
This review may serve as a reference for the crosslinks between data science and ctDNA-
based liquid biopsy, benefiting clinical translation in advanced cancer diagnosis.
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INTRODUCTION

Liquid biopsy, a non-invasive real-time method, can provide diagnostic and prognostic information
during cancer progression and treatment (1). Unlike tissue biopsy, liquid biopsy examines
circulating tumor cells (2) or tumor-released molecules, such as DNAs (3) and RNAs (4), from
the circulatory system. Circulating tumor DNA (ctDNA) is generated from tumor cells (5), which
forms a small minority of the cell-free DNA (cfDNA) in circulation against a background of
fragments mostly derived from normal cells in the event of cell death or exosome secretion (6, 7).
Plasma ctDNA could originate from both the nuclei or the mitochondria of tumor cells (8).
However, only nucleus ctDNA records sufficient information of tumor genome, revealing tumor
generation, development, metastasis, and recurrence (9), while mitochondrial ctDNA often
provides information noise due to its less genomic information and higher copy number
(Supplementary Figure 1). Thus, the concentration and abnormal sequence features of nucleus
ctDNA (hereinafter ctDNA for convenience) in patients’ blood are significantly correlated with the
course of the disease and curative effect (10), rendering it an emerging tumor marker and an
Abbreviations: CAPP-Seq, the Cancer Personalized Profiling by deep sequencing; CH, clonal hematopoietic; cfDNA, cell-free
DNA; ctDNA, circulating tumor DNA; HTS, high-throughput sequencing; PCR, polymerase chain reaction.
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essential part of liquid biopsy (11). Although the trace
concentration of ctDNA in the peripheral blood and intense
background noises challenge the clinical application of ctDNA, a
series of ctDNA capture methods based on data science aiming at
its biological features improves the sensitivity and accuracy of
ctDNA detection and gradually clears the obstacles in the
potential clinical application of ctDNA detection (12, 13). This
review briefly summarizes the recent development and
application of data science for highly sensitive and robust
ctDNA detection. We also discuss the current challenges of
ctDNA detection technologies and provide insights into the
potential development direction in their future application.
DATA FEATURES UTILIZED BY CURRENT
ctDNA DETECTION STRATEGIES

Current ctDNA detection strategies are developed mainly based
on the fragment concentration and the sequence features, such as
abnormal mutations and methylations. The dynamic
concentration of ctDNA is significantly correlated with the
progress of the cancer disease. Because of its short half-life of
less than 2 hours (14) and its low concentration (5), ctDNA is
almost undetectable in patients with primary tumors. However,
along with the progression of the disease, the immune system is
attenuated, and ctDNA is gradually accumulated, which could be
discriminated from cfDNA under certain limits of detection (15).
The increased concentration of ctDNA could identify patients
with cancer from healthy cohorts and stratify patients in the early
and advanced stages (16). Besides, the changes in ctDNA levels
before and after drug treatment are related to the therapeutic
effect for patients (17). Furthermore, for tumor-free patients after
treatment, the concentration level of ctDNA indicates the risk of
cancer recurrence (18).

Technically, concentration analysis of ctDNA is a challenging
task because ctDNA makes up a small proportion of the total
cfDNA extracted from serum (19, 20). For example, Diehl et al.
found that the mean mutated allele frequency of APC gene of
patients with colorectal cancer ranged from early stages’ 0.04% to
late stages 11% (21). Extraction of ctDNA information from other
cfDNA noise should be an initial step for ctDNA detection. Size
selection–based data selection has been widely utilized in ctDNA
detection to increase the signal-to-noise ratio. The size of cfDNA
generated from the apoptosis of normal cells is about 167 bp, which
is due to the structure of the histone octamer (22). However, studies
show that the ctDNA is shorter than cfDNA in the meaning of
statistics (23) and has a typical size of less than 142 bp in low
molecular weight (24). The enriched mitochondrial ctDNA is about
100 bp in size, much smaller than that of nuclear ctDNA, further
displaying the size variety of ctDNA fragments (8). Notably, there
are long-size cfDNA fragments that exist, such as 2 kb and 20 kb
fragments, which are probably generated from cancer cell necrosis
(25) and blood cell surface (26), respectively. The accurate
enrichment of ctDNA in a particular interval size eliminates some
background noises to some extent and relatively enhances data
processing efficiency. For example, Mouliere et al. mapped the
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distribution of ctDNA fragments and optimized the ctDNA capture
by choosing to concentrate ctDNA fragments in the size of 90–150
bp from the blood samples (27). In parallel, the interference from
mitochondrial ctDNA fragments can be significantly eliminated by
reducing the interval size of captured DNA fragments (28, 29), and
the size selection strategy not only greatly reduces the cost of
sequencing but also considerably decreases the false-positive rates
of results by data analysis (30).

The sequence information carried by ctDNA can reflect the
mutation load and the methylation features of tumor cells.
ctDNA profiling facilitates their delineation not only on a
genome-wide scale but also in some specific genes or intervals
of the tumor genome. Some studies showed that the mutational
spectrum constructed by ctDNA is highly consistent with that of
tissue biopsy (31, 32). Besides, ctDNA, which comes from a
broader range of tumor cells, represents the heterogeneity of the
tumor mutational spectrum better than the tissue biopsy (31).
The spatial heterogeneity with the tumor’s continuous self-
cloning and the temporal heterogeneity possibly resulting from
drug resistance can be tracked by real-time monitoring in ctDNA
fragments (33). An inspiring technology termed Cancer
Personalized Profiling by deep sequencing (CAPP-Seq)
preselected some specifically mutational exon regions by
mining a large number of genetic mutations in silico. These
exon-containing ctDNAs are subsequently extracted from serum
cfDNAs using customized probes and then analyzed by high-
throughput sequencing. This method could remarkably improve
the detection sensitivity and specificity of ctDNAs by reducing
the potential impact of stochastic noise and biological variability
(34) (Supplementary Figure 2).

In addition, the methylation features of ctDNA reveal some
epigenetic information of cancer patients. The methylation
patterns can be maintained stably throughout the life span
after de novo methylation (35), and the changes in the
methylated patterns predict the risk of diseases (36). Because
of the increased accuracy of high-throughput sequencing (HTS)
technologies, the slight differences in methylation profiles
between cancer patients and healthy cohorts shed light on the
differential gene expression patterns at the epigenetic level and
the relevance of epigenetic modification and tumor stage (37).
For instance, the hypermethylation of tumor suppressor genes is
strongly consistent with cancer occurrence, indicating that the
methylation status of these modifications detected by ctDNA can
play an essential role in the early detection of cancer and the
determination of tissue of origin, and those patterns benefit
machine learning for classification modeling (38).

Data mining has increasingly become a potential requirement
for algorithm design of ctDNA detection. Given the rapid
development in omics, the biological data in the open database
online have increased exponentially, reforming the traditional
data processing methods (39–41) (Supplementary Figure 3). By
narrowing the scope of previous experimental data and using an
appropriate workflow, the data mining system for ctDNA is
simplified, accompanied by dramatically reduced costs of the
whole research project. It provides the possibility for finding the
new features of ctDNA hidden in the data structure to promote
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further development of ctDNA capture (Figure 1). For example,
Misawa et al. mined the transcriptome data and filtered out the
abnormal methylations as biomarkers in ctDNA, which assists in
designing a mathematical model of ctDNA detection to identify
patients with human papillomavirus–associated oropharyngeal
cancer (42).
TECHNICAL OBSTACLES AND
POTENTIAL SOLUTIONS OF DATA
PROCESSING IN ctDNA PROFILING

With the deepening understanding of biological features of
ctDNA, the prevalence of ctDNA detection in cancer diagnosis
inspired researchers. However, several technical shortcomings
limit the clinical application of ctDNA detection.

Firstly, the sensitivity and specificity of ctDNA profiling are
remarkably influenced by poor experimental conditions when
facing complex biological characteristics (43). The trace amount
and inevitable degradation of plasma ctDNA jeopardize ctDNA
detection, especially when the blood sample is isolated and
collected by centrifugation. Recent related studies demonstrate
that plasma ctDNA loses about 50% after centrifugation (44, 45).
The current blood storage manners are always accompanied by
hemagglutination and extravasation, which considerably hamper
ctDNA detection. Moreover, several commercial kits have been
developed but show different extraction efficiencies and fragment
size preferences, thereby challenging the repeatability and
Frontiers in Oncology | www.frontiersin.org 3
comparability of ctDNA detection resulting from different
studies (46–49). Thus, the development of a universal standard
protocol used for ctDNA extraction is essential in the future
clinic application of ctDNA detection strategies.

Furthermore, the low signal-to-noise ratio remains a major
problem for data processing of ctDNA detection. In addition to
the low proportion of ctDNA in the serum cfDNA pools, as
mentioned above, somatic mutations deriving from clonal
hematopoietic (CH) and mitochondrial ctDNA also bring
significant background noises. CH variants are cumulated with
age, which could be attributed to the cloning expansion of stem cells
carrying somatic mutations (50). Due to the high false-positive rate
in ctDNA detection results, CH variants also interfere with the
construction of the ctDNA mutation spectrum (51). Although
mitochondrial ctDNA could be roughly excluded by size selection
manner, the leaking information still exists during ctDNA detection
(52). Given the above, the development of data analysis algorithms
to increase signal-to-noise rate will facilitate the reliability of ctDNA
as a tumor biomarker applied in clinical diagnosis. For instance,
Nassiri et al. have developed a machine learning–based model to
analyze the data generated from methylated HTS in ctDNA
detection, increasing the accuracy of subtyping intracranial
tumors (53). Moreover, CH variances produced by white blood
cells are recognized by the combination of computational
algorithms, then the false-positive rates of ctDNA detection would
be decreased (54). With the help of statistical analysis and machine
learning models, the CH variances spectrum can be built quickly
and will be removed effectively by comparing it to the mutational
spectrum of tumors constructed by ctDNA assays (30).
FIGURE 1 | Data mining process of ctDNA detection. ctDNA, circulating tumor DNA.
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Additionally, the technological bias of HTS platforms
inevitably interferes with the high-throughput ctDNA
detection. These sequencing errors can be partially reduced or
corrected. For instance, increased sequencing depth dilutes the
error information (55), and the introduction of appropriate
barcodes and indexes could evaluate the sequence duplication
bias produced through polymerase chain reaction (PCR)
amplification (56). The erroneous sequencing on barcodes,
which affects the deduplication of unique ctDNA molecules
and results in errors in aligning molecules to unique ctDNA,
can be optimized by increasing the hamming edit distance
between different barcodes (57). However, these additional
barcodes occupy some part of reads and then reduce the actual
length of target ctDNA to be sequenced, attributing to the
limitation of the reading sequence length of long-read
assembly technology. Therefore, the choice of proper barcodes
used for HTS of ctDNA detection is the critical factor in
resolving the inevitable sequencing errors, calling for new
methods for pre- and post-sequencing error correction based
on a statistical landscape.
CLINICAL RELEVANCE OF CURRENT
ctDNA PROFILING TECHNOLOGIES

The clinical relevance of the ctDNA biomarker shows substantial
potential in non-invasive liquid biopsy, which may benefit millions
of patients for early detection of tumor (58, 59), determination of
tissue of origin (37), prediction of therapeutic effect, especially for
immunotherapies (60–62), and monitoring (15, 30). The dynamic
risk stratification correlated to the tumor genesis could also be
facilitated by ctDNA detection such as occupation, age, living habits,
and evenmutational signatures (63).With the aid of classification or
non-supervisor clustering, ctDNA detection technologies are
conspicuously improved in terms of accuracy, sensitivity,
specificity, operational convenience, and reasonable cost.

The patterns of mutational spectrums or epigenetic profiles
recognized by data mining uncover the particular clinical
relevance of ctDNA detection. The genome-wide mutational
landscape is conducive to the evaluation of tumor mutation
burden (13), neoplasm staging (64), genotyping (11), and the
choice of therapies (65). Meanwhile, the methylation profiles of
ctDNA contribute to discriminating patients from healthy cohorts
Frontiers in Oncology | www.frontiersin.org 4
(37), differentiating cancer types (53), and identifying the primary
tumor location (66). These profiles can complement each other in
many aspects, though those meaningful patterns below them
require plenty of modeling theories for recognition accuracy.
The combination of mutation and methylation spectrums makes
the acquirement of detailed genomic landscapes possible, provides
multiple insights into the tumor heterogeneity, and evaluates the
impact of tumor heterogeneity on the selection of therapies, such
as non-responders or drug resistance (67, 68).

In addition to its non-invasiveness, near real-time monitoring
and prognosis prediction are additional advantages of ctDNA
detection over tissue biopsy (69, 70). For example, the
concentration of ctDNA was correlated with the prognosis of
patients treated with pembrolizumab (10). Furthermore, ctDNA
detection, as an auxiliary method for low-dose computed
tomography, can track the molecular minimal residual disease
and predict the risk of recurrence for tumor-free patients (18, 71).
Finally, the real-time information of ctDNA detection reflects
patients’ status and sheds light on the personalized profiling for
each patient, which is essential for precision medicine (72).
FUTURE DIRECTIONS IMPROVING THE
LIMIT OF DETECTION OF ctDNA

There is a definite clue that an evolution is happening in high-
throughput ctDNA detection by introducing novel sequencing
platforms, a combination of different biomarkers, and a
development of new principles. New-generation sequencing
technologies, such as nanopore sequencing, begin to be utilized
in ctDNA detections (73). Compared with HTS technologies,
nanopore sequencing exhibits real-time sequencing and long
reads, resulting in its potentially broad application in the field of
nucleic acid sequencing in the future (74). Moreover, nanopore
sequencing is PCR-free, avoiding amplification bias and errors of
PCR during the process of sequencing library preparation.
Although nanopore sequencing remains to have some
shortcomings in sequencing short DNA fragments, many
efforts have been made to ameliorate these shortcomings (2,
75). For instance, Sun et al. have applied the solid-state nanopore
to detect ctDNA originating from serum samples. This strategy
cooperates with the hybridization chain reaction to amplify the
TABLE 1 | Comparison of techniques in ctDNA detection.

Techniques Flux Level Sensitivity (%) Specificity (%) VAF or LOD (%) Reference (PMID)

Lung-CLiP HTS somatic mutation 64, 82, and 100% for stages I, II, and III 98 0.01 32269342
iDES-enhanced CAPP-Seq HTS somatic mutation 90 96 0.02 27018799
CAPP-Seq HTS somatic mutation 50 for stage I, 100 for stages II–IV 96 0.02 24705333
TEC-Seq HTS somatic mutation 97.4 89 0.1 28814544
MCTA-Seq HTS methylation alteration 94 89 / 26516143
dPCR PCR somatic mutation 92.9 100 0.5 25324352
ARMS PCR somatic mutation 96.3 65.2 0.15 28868565
BEAMing PCR somatic mutation 90.4 93.5 0.001 28106345
MSP PCR methylation alteration 67 100 / 18006766
July 2021 | Volume
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target’s signals, improve data authenticity, and overcome the
hurdles of nanopore application (76).

Combining multi-biomarkers in liquid biopsy, based on
optimized models and algorithms, has a higher efficiency in
tumor detections. The various biomarkers used as the inputs of
the detection model have a complementary function because of
their different sensitivity and specificity to patients. For example,
combining exosome RNA and ctDNA in plasma, Krug et al.
leveraged the threshold of a predefined model to detect EGFR
mutations in non-small cell lung cancer, achieving a higher
sensitivity than that of ctDNA detection alone (77). Cohen
et al. utilized the protein biomarkers as a supplement to
ctDNA detection, and a few patients with ctDNA undetectable
were finally detected (78). Furthermore, the combination of
multi-biomarkers provides the convenience of multi-
parameters to machine learning in future liquid biopsy and
promotes the development of detection tools in the diagnosis
and prognosis for patients with cancer.

New principles, whether biological feature-based or data-
driven, are the catalyzers of the ctDNA detection improvement.
In the last decades, discovering new principles of ctDNA detection
methods contributes to promoting the clinical application of this
intriguing biomarker of liquid biopsy (Table 1). For example, the
definition of recurrence index, an index equal to total unique
patients with mutations covered per kb of an exon, has been
introduced into CAPP-Seq as a selection principle that obviously
improved the limit of detection of ctDNA (34). The continuous
evolution of new technical principles of data analysis provides the
substantial potential to ctDNA as a promising biomarker for its
future clinical utility (79).
CONCLUSION

Embracing data science, ctDNA is a promising biomarker in
cancer detection. ctDNA has several exciting characteristics,
which could be handled to raise strategies to improve ctDNA
detection performance. Herein, we reviewed data science that
played an essential role in current strategies, such as data
selection, data mining, and data correction, to overcome the
technical obstacles in ctDNA detection. The recognition of the
value of directing data processing indicates a possible trend to
exploit ctDNA assays further. With the rapid development of
data acquisition methodologies, modeling, and data processing
algorithms, ctDNA detection enhanced its prevalent advantages
in monitoring intrinsic tumor information. Novel high-
throughput technology platforms and the combination of
diverse biomarkers in liquid biopsy were also essential for this
technology advancement. ctDNA-based liquid biopsies, as an
alternative or even a substitutive choice of tissue biopsy, have
Frontiers in Oncology | www.frontiersin.org 5
significant clinical relevance in cancer diagnosis and prognosis.
Subsequent efforts should be continued to promote the
advancement of the detection technologies, theories, and
principles accelerated by prosperously developed data science.
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