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Major depressive disorder (MDD) is phenotypically associated with cardiovascular

diseases (CVD). We aim to investigate mechanisms underlying relationships between

MDD and CVD in the context of shared genetic variations. Polygenic overlap analysis

was used to test genetic correlation and to analyze shared genetic variations between

MDD and seven cardiovascular outcomes (coronary artery disease (CAD), heart failure,

atrial fibrillation, stroke, systolic blood pressure, diastolic blood pressure, and pulse

pressure measurement). Mendelian randomization analysis was used to uncover causal

relationships between MDD and cardiovascular traits. By cross-trait meta-analysis, we

identified a set of genomic loci shared between the traits of MDD and stroke. Putative

causal genes for MDD and stroke were prioritized by fine-mapping of transcriptome-wide

associations. Polygenic overlap analysis pointed toward substantial genetic variation

overlap betweenMDD and CVD.Mendelian randomization analysis indicated that genetic

liability to MDD has a causal effect on CAD and stroke. Comparison of genome-wide

genes shared byMDD and CVD suggests 20q12 as a pleiotropic region conferring risk for

both MDD and CVD. Cross-trait meta-analyses and fine-mapping of transcriptome-wide

association signals identified novel risk genes for MDD and stroke, including RPL31P12,

BORSC7, PNPT11, and PGF. Many genetic variations associated with MDD and CVD

outcomes are shared, thus, pointing that genetic liability to MDD may also confer risk

for stroke and CAD. Presented results shed light on mechanistic connections between

MDD and CVD phenotypes.

Keywords: major depressive disorder, cardiovascular disease, Mendelian randomization, polygenic overlap,

stroke

INTRODUCTION

Collectively, mental disorders and cardiovascular diseases (CVD) account for a large proportion of
the total disability and morbidity worldwide (1, 2). Major depressive disorder (MDD), commonly
referred to as depression, is characterized by the persistence of low mood. MDD is the most
prevalent mental disorder and is accompanied by considerable morbidity, mortality, and a high
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risk of suicide (3). At some point during the lifetime, it affects
1 out of 5 adults (4). Major forms of CVD include hypertension,
coronary heart disease, heart failure, stroke, and atrial fibrillation.
High-rate of co-morbidity between depression and CVD is
well-acknowledged; patients with depression are more likely to
develop CVD, and patients with CVD have higher depression
scores than the general population (5). Among patients with
CVD, depression is a major contributor to increased healthcare
cost, mortality, and reduced quality of life (6, 7), and is
also considered an independent risk factor for major adverse
cardiovascular events (8). Specifically in coronary heart disease
patients, the prevalence of depression is reported at 15–23% (9).

A prevailing measure of quantifying the genetic relationship
between two traits is a genetic correlation coefficient, with
its sign indicating the direction of the shared genetic effect.
However, when dealing with mixtures of effect directions across
shared genetic variants, the genetic correlation analyses may be
underpowered (10). Polygenic overlaps were recently proposed
to measure the fraction of genetic variants causally associated
with both traits over the total number of causal variants across
a pair of traits involved (10).

In previous studies, MDD has been reported to be
genetically correlated with coronary artery disease (CAD) (11).
Nevertheless, whether these associations are causal remains to
be seen. Mendelian randomization (MR) approach tests for
causative association between an exposure and an outcome
by utilizing genetic variants as instrumental variables (12,
13). Several frameworks have been proposed for MR analysis,
including MR-Egger methods (14). Recently, a powerful GSMR
(Generalized Summary-data-based Mendelian Randomization)
suit was developed to account for linkage disequilibrium (LD) by
leveraging power frommultiple genetic variants (15). The GSMR
framework is increasingly employed in recent analyses (16–20),
with reports of the causal effects of MDD on small vessel stroke,
ischemic heart disease, and CAD already available (21–23).

In this study, we evaluated genetic correlation and polygenic
overlap between MDD and eight cardiovascular conditions and
reported their causal associations. To achieve this, a multi-
SNP MR analysis was run on summary GWAS datasets. Across
MDD and CVD, pleiotropic genes were extracted by comparing
genome-wide genes reported for each trait. Then, in cross-trait
meta-analyses, pleiotropic genomic loci shared between MDD

TABLE 1 | Summary information of the datasets.

Trait Author Year PMID Cases Controls N

Major depressive disorder Wray et al. 2018 29700475 135,458 344,901 480,359

Coronary artery disease Nelson et al. 2017 28714975 71,602 260,875 332,477

Heart failure Shah et al. 2020 31919418 47,309 930,014 977,323

Atrial fibrillation Roselli et al. 2018 29892015 65,446 522,744 588,190

Stroke Malik et al. 2018 29531354 40,585 406,111 446,696

Systolic blood pressure Evangelou et al. 2018 30224653 NA NA 745,820

Diastolic blood pressure Evangelou et al. 2018 30224653 NA NA 757,601

Pulse pressure Evangelou et al. 2018 30224653 NA NA 745,820

Cardiovascular disease Sudlow et al. 2015 25826379 14,510 97,828 112,338

and stroke were identified, followed by prioritizing putative risk
genes by leveraging a multi-tissue eQTL database.

METHOD

GWAS Summary Datasets and Quality
Control
The summary results of GWAS of MDD (20) and seven
cardiovascular conditions—CAD (24), heart failure (25), atrial
fibrillation (26), stroke (27), systolic blood pressure (28), diastolic
blood pressure (28), and pulse pressure measurement (28)—were
used for the analyses. The summary result of GWAS of CVD (29)
was used in the validation stage. The CVD dataset included a
mixture of multiple cardiovascular diseases recruited by the UKB
(29). Participants from these datasets were either of European
origins (for traits of MDD, stroke, heart failure, CVD, and blood
pressure) ormainly of European origins (for atrial fibrillation and
CAD). Condition-specific sample sizes have ranged from 332,477
to 977,323. Each SNP was analyzed across pairs of datasets
after exclusion of all SNPs with conflicting alleles, and effect
harmonization. Detailed information on the datasets included in
this study is summarized in Table 1 and Supplementary File.

Genetic Correlation and Polygenic Overlap
Analysis
GWAS summary results were utilized to extract the genetic
correlation of MDD with cardiovascular conditions using LD
score regression software (LDSC, v1.0.1) (30, 31). Polygenic
overlaps were analyzed by MiXeR v1.2 using default parameters
(10). The MiXeR pipeline evaluates the number of shared and
trait-specific causal variants between two traits, while accounting
for effects of LD structure, minor allele frequency (MAF), sample
size, cryptic relationships, and sample overlap. The total number
of causal variants was 22.6% of the total estimate, which accounts
for 90% of SNP heritability for each trait.

MR Analyses
We examined causal effects between MDD and the seven
cardiovascular conditions, namely, CAD, heart failure, atrial
fibrillation, stroke, systolic blood pressure, diastolic blood
pressure, and pulse pressure measurement. GSMR v1.0.9
was used to infer bidirectional causal associations between
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MDD and the cardiovascular conditions, with causal effects
of cardiovascular conditions on MDD being called reverse
Mendelian randomization (15). Instrumental variants were
selected based on default P ≤ 5 × 10−8. When the threshold
was surpassed by <10 SNPs, a P-value threshold of 1× 10−5 was
used. As pleiotropy is known to serve as a potential source of bias
and, therefore, an inflated estimation in an MR analysis (32), we
used the HEIDI-outlier approach, which detects and eliminates
genetic instruments with apparent pleiotropic effects on both
the risk factors and the disease (15, 33). Multiple tests were
corrected by FDR, with significant causal association detected at
FDR < 0.05. A detailed description of the MR is provided in the
Supplementary Methods section.

Comparison of Genome-Wide Genes
Shared Between MDD and CVD
GWAS results were obtained for MDD and four types of CVD
from the GWAS Catalog database (34). For stroke, we combined
the following labels: stroke as such, large artery stroke, small
vessel stroke, cardioembolic stroke, and ischemic stroke. Analysis
of gene overlaps among the five traits was conducted using the R
package SuperExactTest (35), with the total gene number in the
genome being set as 30,000.

Cross-Trait Meta-Analysis
Given that MDD has the closest relationship with stroke
among the CVD, we performed a cross-trait meta-analysis of
the MDD and the stroke using the subset-based fixed-effects
method ASSET (version 2.4.0) (36). The meta-analysis pools the
effect of a given SNP across K studies, weighting the effects
by the size of the study under the default parameters. After
subset-based meta-analysis, SNPs with P-values lower than 5 ×

10−8 were considered statistically significant. FUMA was used
for functional annotation and gene-mapping of variants and
identify LD-independent genomic regions in the meta-analysis
result (37). Enrichment of the shared genes in the GWAS
catalog reported categories was calculated using FUMA (37).
Gene property analysis for tissue specificity was performed by
FUMA. To ensure that sample overlap did not contribute to
inflated estimates of genetic overlap between MDD and stroke,
λmeta statistics were calculated (38). The λmeta is a statistic
that uses effect size concordance to detect sample overlap or
heterogeneity. Under the null hypothesis, λmeta = 1 when the
pair of cohorts are completely independent. When there are
overlapping samples, λmeta < 1. When there is heterogeneity
between datasets, the expectation is λmeta > 1. In most GWAS
meta-analyses, λmeta is likely to be slightly larger than 1 due to
unknown heterogeneity.

Fine-Mapping of TWAS Associations
To prioritize putatively causal genes, we used fine-mapping of
causal gene sets (FOCUS v0.6.10) (39) to the meta-analysis
MDD and stroke results in three relevant tissues, including the
brain, whole blood, and heart. FOCUSmodels predict expression
correlations and assign a posterior inclusion probability (PIP)
for genes at each transcriptome-wide association study (TWAS)
region and relevant tissue types. A multi-tissue eQTL reference T
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FIGURE 1 | Shared causal variants and causal effects between MDD and CVD. MDD, major depressive disorder; HF, heart failure; AF, atrial fibrillation; CAD, coronary

artery disease. (A) Venn diagrams of unique and shared causal variants between major depressive disorder and cardiovascular diseases. The numbers indicate the

estimated quantity of causal variants (in thousands) per component, explaining 90% of SNP heritability in each phenotype. The size of the circles reflects the degree of

polygenicity. (B) Causal effects of MDD on cardiovascular diseases. The dotted lines denote effect sizes (bxy). (C) Overlapped genes between major depressive

disorder and cardiovascular disease from GWAS-catalog. The matrix of solid and empty circles at the bottom illustrates the “presence” (solid green) or “absence”

(empty) of the gene sets in each intersection. The numbers to the right of the matrix are set sizes. The colored bars on the top of the matrix represent the intersection

(Continued)
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FIGURE 1 | sizes with the color intensity showing the P-value significance. (D) Pleiotropic genes shared by MDD and CVD. (E) Mechanisms underlying associations

between MDD and CVD. (F) Gene property analysis for tissue specificity in general GTEx tissues. (G) Fine-mapping of TWAS hits within 14:72890537-14:76444767 in

heart_left_ventricle. Transcriptome-wide association signal indicating the strength of predicted expression associated with the trait.

TABLE 3 | Genomic loci shared between major depressive disorder and stroke.

No Lead SNP Chr BP Start:End P Genes

1 rs61453857 1 80893110 80784642:80900786 1.23 × 10−8 HNRNPA1P64

2 rs1568452 2 58012833 57942325:58237405 1.17 × 10−8 VRK2

3 rs76485002 2 127342267 127342267:127342267 3.07 × 10−10 YWHAZP2, GYPC

4 rs12994955 2 157116975 157014004:157150188 2.96 × 10−8 NR4A2

5 rs73102900 3 61337306 61337306:61355422 9.08 × 10−9

6 rs12658032 5 103904226 103671867:104082179 1.46 × 10−11 RN7SL255P

7 rs4721058 7 12267256 12233848:12285140 1.99 × 10−9 TMEM106B, VWDE

8 rs4741790 9 2977388 2935580:2998222 4.96 × 10−10 CARM1P1

9 rs3824344 9 37000687 36999369:37001471 6.86 × 10−9 PAX5

10 rs7029033 9 126682068 126573102:126688136 2.18 × 10−8 DENND1A, PIGFP2

11 rs7968921 12 23960177 23929026:23979791 9.15 × 10−9 SOX5

12 rs7152906 14 75125540 75108290:75397764 4.45 × 10−9 AREL1, FCF1, YLPM1, PROX2,

DLST, RPS6KL1, PGF

13 rs2163544 18 36885075 36777092:36904968 6.58 × 10−9 LINC00669

Chr, chromosome; BP, base position.

weight database was employed, and LD information from LDSC
was used as reference. Multiple testing corrections were used
to account for all gene–tissue pairs using Benjamini–Hochberg
adjusted TWAS P-values (FDR < 0.05).

RESULTS

Genetic Correlation and Polygenic Overlap
Analysis
Genetic correlation analyses indicated thatMDDhas a significant
genetic correlation with CAD, heart failure, atrial fibrillation,
and pulse pressure (Table 2). Polygenic overlap analysis indicated
that 15.8 thousand variants causally influence MDD, while
CVD was associated with much smaller numbers of causal
variants, ranging from 0.5 thousand for the atrial fibrillation
to 2.8 thousand for heart failure. Each of the tested CVD or
cardiovascular measurements has shared a substantial set of
causal variants with that of MDD (Figure 1A).

MR Analysis
MDD confers a causal effect on CAD, stroke, and pulse pressure
(Table 2, Figure 1B). Positive causal effects of MDD on stroke
(bxy = 0.19) were the largest among the cardiovascular conditions
profiled. Of note, causal effects of MDD on pulse pressure were
negative (bxy = −0.56), indicating that liability to MDD may
result in decreased pulse pressure. However, in general, we show
that cardiovascular conditions do not confer a causal effect
on MDD.

Validation of Genetic Correlation and MR
Analysis
In the validation stage, we examined the genetic correlation and
causal associations betweenMDD and CVD. Our results indicate
that MDD has a significant genetic correlation with CVD (rg =
0.357, s.e. = 0.056, P = 1.79 × 10−10). Genetic liability to MDD
confers a causal effect on CVD (bxy = 0.26, s.e. = 0.10, P = 9.84
× 10−3), while genetic liability to CVD confers a causal effect on
MDD (bxy = 0.07, s.e. = 0.03, P = 4.74 × 10−3). However, the
causal effect conferred by CVD on MDD was relatively weak.

Overlapped Genes Between MDD and CVD
There were 675, 253, 328, 426, and 1,653 genome-wide significant
genes for CAD, heart failure, atrial fibrillation, stroke, and MDD,
respectively. There was an over-representation of shared genes
between MDD and each of the four types of CVD (Figure 1C,
Supplementary Table 1). A total of seven pleiotropic genes were
implicated in MDD and at least three types of CVD, including
SLC39A8, MAML3, FADS2, ZFHX3, PLCG1, ZHX3, and ADI1P1
(Figure 1D). Notably, ZHX3 and ADI1P1 genes were shared by
MDD with all four types of CVD.

Cross-Trait Meta-Analysis
The cross-trait meta-analysis of MDD and stroke revealed 45 loci
with 104 independent significant SNPs (IndSigSNPs), including
13 loci involving 19 pleiotropic IndSigSNPs and associated with
both traits (Table 3, Figures 2A–D). Tissue expression analysis
showed that the associations were significantly enriched in brain
tissues (Figure 1F). For datasets on MDD and stroke, λmeta
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FIGURE 2 | Meta-analysis of major depressive disorder with stroke. (A) Manhattan plot of the meta-analysis. The x-axis is the chromosomal position of SNPs and the

y-axis is the significance of the SNPs (-log10P). Genes implicated by independent significant SNPs were annotated. (B–D) The four highlighted genomic loci. Each

SNP is color-coded based on the highest r2 to one of the independent significant SNPs if that is greater or equal to the r2 threshold of 0.6. Other SNPs (below the r2

of 0.6) are colored in gray.
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values were at 1.11 ± 0.01, indicating no significant overlap
between disease-specific GWAS samples. Quantile-quantile
(QQ) plots to display the observed meta-analysis statistics vs. the
expected statistics under the null model of no associations in the
-log10(p) scale are shown in Supplementary Figure 1.

Fine-Mapping of TWAS Associations
To prioritize putatively causal genes from the meta-analysis
of MDD and stroke, fine-mapping of TWAS associations was
performed. A total of 100 gene-tissue pairs were identified as
part of the 90% credible set for the three tissues, with 71 genes in
total. Four genes were identified to be in the credible set with the
highest posterior probabilities (PIP> 0.90), including RPL31P12,
BORCS7, PTPN11, and PGF (Supplementary Table 2,
Figure 1G, Supplementary Figures 2–5).

DISCUSSION

Depression is a major cause of morbidity and poor quality of
life among CVD patients (6), and an independent risk factor
for major adverse cardiovascular events (8). The comorbidity of
depression and adverse cardiovascular outcomes typically forms
a vicious cycle, known to significantly impact both the course and
the management of these common conditions.

The polygenicity of MDD is much higher than that of CVD.
Although the genetic correlation between MDD and CVD is
relatively low, the substantial polygenic overlap between MDD
and CVD was evident. For each CVD or related physiological
parameter, more than 60% of genetic variants overlap with those
of MDD. Notably, nearly all causal variants influencing atrial
fibrillation risk also affect MDD. In addition, we observed an
over-representation of shared genes between MDD and all types
of CVD. Interestingly, two genes locating at chromosome 20q12,
PLCG1, and ZHX3, were implicated in all the five traits, making
the chromosome 20q12 region a major pleiotropic locus for both
MDD and CVD.

The gene PLCG1 encodes protein PLCγ1, which plays a
key role in the intracellular transduction of the signal from
receptor-mediated tyrosine kinase activators. In the brain, PLCγ

is primarily activated by neurotransmitters, neurotrophic factors,
and hormones. Prior studies have reported the potential role
of PLCG1 in both normal brain function and brain disorders,
including MDD (40, 41). On the other hand, the PLCγ1-
dependent signaling is critical for arterial development (42), the
repair of the intima after vessel injury (43), and the myogenic
constriction of cerebral arteries (44). The ZHX3 gene encodes
a member of the zinc fingers and homeoboxes (ZHX) gene
family. Dysregulation of ZHX factors has been reported in both
neurological and hematological diseases (45).

Even as high comorbidity of MDD and CVD has long been
acknowledged, and their associations have been well-studied
and discussed (7, 11), causal relationships between these two
conditions came into the focus just recently. In this work,
genetic liability to MDD was shown to etiologically influence the
development of CAD and stroke, while liability to cardiovascular
outcomes exerted no or minimal influence on MDD. Genetic
correlation evaluates the relationship between two traits, and

the sign of the correlation coefficient is determined by whether
the directions of the shared genetic effect are predominantly
the same or opposite for the two traits. Two traits can have
substantial polygenic overlap with a non-significant genetic
correlation between them (10, 46), which may account for
the causal effect of MDD on stroke in the context of no
genetic correlation between them. This leads us to the argument
that the high rate of cardiovascular events in MDD patients
may, at least partially, follow genetic variations inherited by
the patients. When compounded with an unhealthy lifestyle,
including an overall reduction of the physical activity commonly
seen in depressed patients, this pre-existing liability may lead to
the acquisition of cardiovascular disease. On the contrary, the
high rate of depression seen in CVD patients may largely be
due to a psychological and physical reaction that occurs after
cardiovascular events, rather than from inherited genetic liability
to MDD.

A recent study by Tang et al. reported a causal association of
MDD with CAD (23). As the present study was conducted in
a CAD dataset which was almost twice larger than that utilized
by Tang et al. (332,477 vs. 184,305 patients) and as analytic
frameworks were different, our study may be interpreted as a
piece of corroborating evidence for the causal effect of MDD
on CAD. Another recent work reported that genetic risk factors
for MDD may pleiotropically increase CAD risk in females (47).
However, the causal effect of MDD on CAD uncovered in our
study was relatively weak (bxy = 0.06) when compared with the
effects of MDD on stroke (bxy = 0.19). Moreover, our results
do not support a causal role of genetic liability to MDD in the
development of hypertension but suggest that liability to MDD
may result in a marked reduction of pulse pressure instead (bxy
=−0.56).

Importantly, our results point to a causal effect of MDD
on stroke, thus, extending findings from Cai et al.’s study that
have reported the causal effect of MDD on an increased risk of
small vessel stroke, but not on a stroke of large arteries (21).
The high comorbidity between MDD and stroke has long been
observed, with post-stroke depression constituting a common
mental health issue (48, 49). However, biological mechanisms
underlying the phenotypic relationships between MDD and
stroke remain largely elusive. Our meta-analysis of MDD and
stroke identified 16 protein-coding genes as shared by the two
traits. Among these genes, nine have been previously implicated
in GWASs of depression, namely, AREL1, DENND1A, NR4A2,
PAX5, RPS6KL1, SOX5, TMEM106B, VRK2, and YLPM1; none
of these genes have been identified in any GWAS for stroke.
Five genes have been described as genome-wide associated with
cardiovascular traits, including PGF, PROX2, DLST, TMEM106B,
and VWDE. Notably, TMEM106B was repeatedly identified
as a risk gene for frontotemporal lobar degeneration (50–52).
Evidence for the involvement of TMEM106B in depression is also
compelling (20, 53, 54). Incidentally, one recent study reported
TMEM106B as a genome-wide risk gene for CAD (55).

To identify potentially causal genes involved in MDD and
stroke, we used the fine-mapping of TWAS hits implemented in
FOCUS. In course of estimating the causality in three relevant
tissues, a total of 71 genes were included in the 90%-credible
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set, including four genes with high PIP. Specifically, the genomic
region 1p31.1 (Figure 2B) containing RPL31P12 was included in
the 90%-credible gene set with a posterior probability of 1.00 in
the brain cerebellum. It was reported that the SNP rs10789336
in the NEGR1 gene is associated with the expression level of
RPL31P12 in brain tissues, and also confers the risk for MDD
(56). In the 10q24.32 region, BORCS7, a genome-wide risk gene
for schizophrenia (57, 58), blood pressure (59, 60), body mass
index (61), and CAD (55), had the highest PIP of 0.97 in the
dorsolateral prefrontal cortex. Notably, in a PET imaging study,
a SNP in this gene was associated with the altered dopaminergic
function (62). Given that both stroke and MDD affect the brain,
both RPL31P12 and BORCS7 loci are attractive as candidates
conferring genetic liability for both diseases.

In the 12q24.13 region (Figure 2C), PTPN11 entered in the
credible gene set with a PIP of 0.92 for the left ventricle
of the heart. Previous GWASs have implicated PTPN11 in
peripheral artery disease (63), blood pressure (64, 65), and
multiple sclerosis (66). Locus PTPN11 encodes SHP2, a member
of the protein tyrosine phosphatase family that regulates a wide
variety of cellular functions including cell growth, differentiation,
mitotic cycle, and oncogenic transformation. In particular, SHP2
serves as a pivotal regulator of normal cardiac development
and function (67). PTPN11 mutations are the most common
cause of Noonan syndrome, a relatively common autosomal
dominant disorder, classified as a RASopathy (68), a disorder
of RAS signaling commonly associated with hypertrophic
cardiomyopathy, or other malformations of the blood vessels.
Our study provides evidence supporting the potential causal role
of PTPN11 in stroke.

In the genomic locus 14q24.3 (Figure 2D), PGF had a
PIP of 0.96 for the left ventricle of the heart. PGF encodes
a secreted placental growth factor (PGF), which belongs to
the vascular endothelial growth factor (VEGF) superfamily.
PGF regulates cardiac adaptation through the hypertrophy of
the heart tissue by inducing capillary growth and fibroblast
proliferation (69). In the heart, PGF serves as a protective
paracrine effector (70). One animal study demonstrated that
the deficiency of Pgf in rodents affects cognitive functions,
brain neuroanatomy, and cerebrovasculature (71). In human
patients, reduced expression of PGF was linked to preeclampsia
and cerebrovascular and neurological aberrations occurring in
fetuses; in turn, preeclampsia may impair cognitive functioning,
increase the risk for stroke and lead to adverse stroke outcomes
(72). Previous genome-wide analyses identified PGF as a
candidate gene both for CAD (55) and for mood instability (73).
Our meta-analysis identified PGF as a risk gene for both MDD
and stroke, and fine-mapping of TWAS signals further asserted
that PGF is a possible causal gene for stroke.

In 2008, the American Heart Association (AHA) issued an
advisory to screen all patients with CAD for depression (74).
Later it was demonstrated that, in this group of patients, a
standardized screening pathway for the assessment of depression
offers the potential for early identification and improved
management (75, 76). Similarly, recognition of shared genetic
liability between MDD and CVD suggests the need to evaluate
cardiovascular risk in patients with MDD, for example, by using
polygenic risk scores (PRS). Since medical comorbidities are also

known to contribute to either poor response to antidepressants
or treatment resistance (77), it is tempting to speculate that a
stratified allocation of treatment for MDD patients with higher
genetic risk for CVD may help both to achieve a better response
to SSRIs and to lower the risk for an adverse outcome of CVD.

Together, our study reveals novel mechanisms by which
MDD influences the risk for the development of CVD
(Figure 1E). Identification of shared genetic foundations for
MDD and CVD may guide drug discovery and inform early
prediction and personalized treatment for these commonly
comorbid conditions.

The presented study has several strengths. First, to evaluate
the shared genetic liability between MDD and CVD multiple
cardiovascular outcomes were analyzed. Second, for each trait,
we typically prioritized the largest available dataset as a
study backbone. Furthermore, to avoid potential population
heterogeneity across the studies, whenever possible, we limited
our analysis to individuals of European ancestry. Finally, the
genetic relationships between MDD and CVD were evaluated
using multiple analytic strategies, corroborating each other.

We should acknowledge several limitations of this work. As
our analyses were limited to a genetic component of the traits
and European ancestry population, the presented results should
be interpreted cautiously. It is also worth noticing that TWAS
associations are not free of noise, since the gene expression
levels were imputed from weighted linear combinations of
SNPs. Considering that the observed causal effect of MDD
on CAD was relatively weak, only stroke was included in the
further gene-hunting analyses, thus, minimizing the possibility
of overreaching for causal inference.

CONCLUSION

MDD and major types of CVD share substantial genetic
variations. Genetic liability to MDD may confer risk for
stroke and CAD. Presented results shed light on mechanisms
underlying phenotypic relationships between MDD, CVD, and
prioritize several candidate genes for future studies.
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