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Abstract: Envenomation caused by contact with Lonomia obliqua bristles is characterized by pain,
an intense systemic proinflammatory reaction and disturbances in the coagulation cascade that can
cause severe clinical manifestations and death. However, the role of immune system components in
these effects is still poorly understood. In this study, we evaluated the cytotoxic effect of L. obliqua
venom on THP-1-derived macrophages and its ability to modulate inflammatory markers, as well
as the cytokine and chemokine release profile. Our results show that L. obliqua venom is able to
directly exert a potent pro-inflammatory reaction in macrophages, characterized by the activation
of the NF-κB transcription factor pathway, the expression of CD80 and CD83, and the release of
pro-inflammatory mediators such as TNF-α, IL-1β, IL-6, IL-8 and CXCL10. These results suggest
that macrophages can play an important role during the orchestration of the inflammatory response
present in envenomation caused by Lonomia obliqua caterpillars.

Keywords: Lonomia obliqua; inflammation; macrophage activation

Key Contribution: Lonomia obliqua venom directly induces NF-κB pathway activation in macrophages,
leading the cells into a pro-inflammatory phenotype. The venom increases TNFα, IL-1β, IL-6 and
CXCL10 release and co-stimulatory molecules expression, such as CD80 and CD83. All these data
suggest that macrophages might contribute to the systemic inflammatory reaction observed in the
victims of lonomism.

1. Introduction

Caterpillars of the genus Lonomia are present in South and Central America [1–3].
Lonomia obliqua and Lonomia achelous are two species known to cause lonomism, a type
of envenomation associated with hemorrhagic syndrome, proinflammatory response and
acute renal dysfunction that can lead the victim to death [4].

L. obliqua, specifically, is responsible for accidents in the non-Amazonian regions of
Brazil, mainly in the Southern Region, and in neighboring countries such as Uruguay,
Paraguay and Argentina [5]. Recent data from the epidemiological monitoring direction of
Santa Catarina state (Brazil) show that about 200 people were hospitalized for poisoning
by L. obliqua in 2017 (DIVE—Diretoria de Vigilância Epidemiológica, 2018) [6]. The number
of accidents is probably underestimated, since most of the accidents occur in non-urban
areas, where it is not always possible to confirm the agent that causes the injuries by the
responsible agencies. Thus, lonomism caused by L. obliqua is a public health problem in
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Brazil, and the antilonomic serum produced by the Butantan Institute is the only clinical
recourse to revert the dramatic hemorrhagic syndrome in poisoned patients.

Envenomation by the L. obliqua caterpillar occurs when victims come into contact with
its urticating bristles and the venom is injected subcutaneously. The initial symptoms de-
scribed after contact with the caterpillar consist of pain, a burning sensation, and an intense
local inflammatory reaction, which begins shortly after contact. Severe symptoms appear
within 6 to 72 h after contact, such as hemorrhagic diathesis, spontaneous hematomas,
bruises, macroscopic hematuria, hematemesis, melena, bleeding of the skin and mucous
membranes and generalized hemorrhage [1,7,8]. More severe cases can progress to acute
kidney injury or intracerebral bleeding, which are the main causes of death from contact
with L. obliqua [9–11].

Pathophysiologically, the hemorrhage syndrome caused by L. obliqua is well char-
acterized [11,12]. It is described in the literature that proteins present in the venom can
modulate the victim’s homeostatic system by proteolytically activating coagulation factors,
such as prothrombin and X factor, with consequent activation of fibrinogen breakdown and
kinine cascades [13–17]. The consumption coagulopathy due to the intensive activation of
the coagulation cascade leads to an increase in the concentration of thrombin, plasmin and
kallikrein circulating in the blood, which act directly by increasing vascular permeability,
inducing hypotension, nociceptive and edematogenic response [11,18–21].

In addition to the consumption coagulopathy, L. obliqua envenomation is characterized
by triggering an intense proinflammatory response in the victims, initially manifested
by pain and a burning sensation, followed by the formation of edema and erythema [11].
These symptoms are related to disorders in the vascular tissue, intense activation of the
immune system and acute renal inflammation [22,23]. In recent years, several studies
in vivo and in vitro have been carried out to clarify and relate the role of the inflammatory
response induced by the venom in the development of clinical symptoms characteristic of
lonomism. Most of inflammatory effects during envenomation rely on the production and
release of humoral factors (bradykinin, prostaglandins, histamine), but L. obliqua venom
proteins have been also proposed to induce the activation of a cellular response that could
be involved in the generation and/or amplification of clinical manifestations [16,20,24–26].

Macrophages are innate immune cells, important to tissue development, the response
to pathogens, surveillance and monitoring changes and the maintenance of tissue home-
ostasis. Once activated, these cells become specialized phagocytes which engulf and
consume cellular debris, foreign bodies and microorganisms, triggering an inflammatory
response and tissue remodeling [27]. Macrophages can be activated and polarize into
distinct phenotypes based on stimuli and signals from the microenvironment [28]. These
cells can polarize into a proinflammatory or anti-inflammatory phenotype, which are char-
acterized by their differences in gene expression, specific membrane markers, metabolic
behavior, release of cytokines and biological functions [29,30]. There are two macrophage
populations that are well-characterized in vitro, the classically activated macrophages (M1),
stimulated by lipopolysaccharides (LPS) and/or proinflammatory cytokines such as IFN-γ,
and the alternatively activated macrophages (M2) stimulated with IL-4 and IL-13. M1
macrophages are characterized by the high release of proinflammatory cytokines such as
TNF-α, IL-1α, IL-1β, IL-6 and IL-8, and increased expression of MHC II and co-stimulatory
molecules, such as CD80 and CD86, which are responsible for inducing complete Th cell
activation [31,32]. Moreover, M1 macrophages are characterized by antimicrobial activity
and activation of an acute inflammatory response. Meanwhile, alternatively activated
macrophages (M2) are characterized by low proinflammatory cytokine production and
high production of IL-10 and growth factors such as TGF-β and VEGF [33]. Functionally,
M2 macrophages have a potent phagocytosis capacity, promote tissue repair and wound
healing, and suppress the proinflammatory response [33,34].

It is still not clear how components of the immune system contribute to trigger
the proinflammatory reaction observed in victims of lonomism. Since macrophages are
important cells in the triggering, control and resolution of inflammation, the present study
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evaluated the direct effect of L. obliqua crude bristle extract (LOCBE) on THP-1-derived
macrophages activation. We showed that L. obliqua venom is able to cause the macrophage
to take on a proinflammatory phenotype, releasing a considerable amount of TNF-α, IL-1β
and IL-6, increasing the expression of activation markers, such as CD80. Moreover, we also
showed that the NF-κB pathway may play an important role in these effects.

2. Results
2.1. LOCBE Cytotoxic Effect on Macrophages

No cytotoxicity was detected for macrophages after 24 h in the presence of different
concentrations of LOCBE evaluated by MTT and LDH release assays. In the MTT assay,
only the positive control, hydrogen peroxide at 1 mM, was able to significantly reduce
cell viability by 41.7 ± 2.18% compared to the control (100%). LOCBE treatments in all
concentrations assayed caused no effect on cell viability (Figure 1A). A similar result
was observed in the LDH release assay (Figure 1B). Additionally, LPS also did not have
cytotoxic effect, nor did it induce cell death at the concentration of 1 µg/mL in either of the
two assays.
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**** p < 0.0001 vs. control 100%). 
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of three different concentrations of LOCBE (5, 25 and 50 μg/mL) on the NF-κB pathway 
in macrophages (Figure 2A,B). Our data showed that LOCBE was able to induce a signif-
icant increase in NF-κB nuclear translocation in THP-1-derived macrophage in all the con-
centrations tested. While the control group had a basal level of 5.35 ± 0.9% of positive cells, 
macrophages treated with 5, 25 and 50 μg/mL of LOCBE showed an increase of 59.71 ± 
1.95%, 52.65 ± 2.25% and 54.45 ± 1.88% (n = 3, * p < 0.05 vs. control) of positive cells, respec-
tively. Moreover, there were no statistical differences in LOCBE-induced NF-κB activation 
when comparing the three concentrations assayed (Student’s t-test). The maximum num-
ber of positive cells value was obtained in the lowest concentration tested, 5 μg/mL. 

Figure 1. Effect of LOCBE on macrophage viability. (A) Cellular viability was measured by MTT assay after 24 h of
treatment with three different concentrations of LOCBE. Hydrogen peroxide (H2O2) was used as the positive control.
(B) Supernatants from the MTT assay were used to evaluate LDH release as a cytotoxicity marker. All data represent the
mean ± S.E.M. Significant differences between the control and treatments were evaluated using Student’s t-test. (n = 3,
** p < 0.01; **** p < 0.0001 vs. control 100%).

2.2. LOCBE Capacity to Activate NF-κB Pathway

Nuclear factor-κB (NF-κB) is responsible for regulating pro-inflammatory responses
and plays key roles in macrophage survival and polarization [32]. We examined the
effect of three different concentrations of LOCBE (5, 25 and 50 µg/mL) on the NF-κB
pathway in macrophages (Figure 2A,B). Our data showed that LOCBE was able to induce a
significant increase in NF-κB nuclear translocation in THP-1-derived macrophage in all the
concentrations tested. While the control group had a basal level of 5.35 ± 0.9% of positive
cells, macrophages treated with 5, 25 and 50 µg/mL of LOCBE showed an increase of
59.71 ± 1.95%, 52.65 ± 2.25% and 54.45 ± 1.88% (n = 3, * p < 0.05 vs. control) of positive
cells, respectively. Moreover, there were no statistical differences in LOCBE-induced NF-
κB activation when comparing the three concentrations assayed (Student’s t-test). The
maximum number of positive cells value was obtained in the lowest concentration tested,
5 µg/mL.
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secondary AlexaFluor-647 and the nuclei (blue) were stained with Hoechst 33342 (5 μM). (B) NF-κB 
translocation was calculated by measuring the ratio of fluorescent intensity of the protein in the 
nucleus and cytoplasm region. Data are expressed as the percentage of positive cells. Negative cells 
mainly displayed cytoplasmatic staining of NF-κB (red). Stimulation with LPS or LOCBE caused 
translocation of NF-κB to the nucleus. Data represent the mean ± S.E.M. Significant differences be-
tween the control and treatments were performed by Student’s t-test (n = 3, *** p < 0.001). 
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were expressed at a 2.55 ± 0.23 and 3.35 ± 0.64-fold higher rate, respectively. Interferon-
regulatory factors, IRF4 and IRF5, were not affected (Figure 3A). LOCBE also induced an 
increase in proinflammatory cytokines gene expression, such as IL-1β (4.56 ± 0.36-fold 
higher), IL-6 (289.9 ± 48.62-fold higher), and IL-8 (4.8 ± 0.98-fold higher) (Figure 3B). Alt-
hough the increase in TNF-α expression was only 1.55 ± 0.05-fold higher, this was statisti-
cally significant. 

 
Figure 3. LOCBE upregulates gene expression of inflammatory modulators. mRNA expression lev-
els of transcriptional factors genes related to the regulation of the inflammatory response (STAT1, 
STAT3, IRF4, IRF5, NF-κB) (A) and proinflammatory cytokine genes (TNF-α, IL-1β, IL-6 and IL-8) (B) 
in macrophage after 6 h treatment with 5 μg/mL LOCBE. RPL17A and ACTB genes were used as 
housekeeping genes. Data are shown as the mean ± S.E.M. of fold change (2−(ΔΔCt)) compared to the 

Figure 2. Effect of LOCBE on NF-κB pathway activation. (A) Representative images of NF-κB nuclear translocation verified
by high content imaging after 30 min of THP1-derived macrophages treatment with LOCBE. Macrophages were fixed and
immunostained for NF-κB (p65) antibody and secondary AlexaFluor-647 and the nuclei (blue) were stained with Hoechst
33342 (5 µM). (B) NF-κB translocation was calculated by measuring the ratio of fluorescent intensity of the protein in the
nucleus and cytoplasm region. Data are expressed as the percentage of positive cells. Negative cells mainly displayed
cytoplasmatic staining of NF-κB (red). Stimulation with LPS or LOCBE caused translocation of NF-κB to the nucleus. Data
represent the mean ± S.E.M. Significant differences between the control and treatments were performed by Student’s t-test
(n = 3, *** p < 0.001).

2.3. LOCBE Upregulates Inflammatory Genes Expression

LOCBE at 5 µg/mL increased the expression of transcriptional factors and cytokine
genes in macrophages after 6 h of treatment. As shown in Figure 3, LOCBE treatment
significantly upregulates STAT1, STAT3 and NF-κB expression. While STAT1 was expressed
at a 4.8 ± 1.19-fold higher rate when compared to the control, STAT3 and NF-κB were ex-
pressed at a 2.55 ± 0.23 and 3.35 ± 0.64-fold higher rate, respectively. Interferon-regulatory
factors, IRF4 and IRF5, were not affected (Figure 3A). LOCBE also induced an increase
in proinflammatory cytokines gene expression, such as IL-1β (4.56 ± 0.36-fold higher),
IL-6 (289.9 ± 48.62-fold higher), and IL-8 (4.8 ± 0.98-fold higher) (Figure 3B). Although the
increase in TNF-α expression was only 1.55± 0.05-fold higher, this was statistically significant.

Toxins 2021, 13, 462 4 of 15 
 

 

 
Figure 2. Effect of LOCBE on NF-κB pathway activation. (A) Representative images of NF-κB nu-
clear translocation verified by high content imaging after 30 min of THP1-derived macrophages 
treatment with LOCBE. Macrophages were fixed and immunostained for NF-κB (p65) antibody and 
secondary AlexaFluor-647 and the nuclei (blue) were stained with Hoechst 33342 (5 μM). (B) NF-κB 
translocation was calculated by measuring the ratio of fluorescent intensity of the protein in the 
nucleus and cytoplasm region. Data are expressed as the percentage of positive cells. Negative cells 
mainly displayed cytoplasmatic staining of NF-κB (red). Stimulation with LPS or LOCBE caused 
translocation of NF-κB to the nucleus. Data represent the mean ± S.E.M. Significant differences be-
tween the control and treatments were performed by Student’s t-test (n = 3, *** p < 0.001). 

2.3. LOCBE Upregulates Inflammatory Genes Expression 
LOCBE at 5 μg/mL increased the expression of transcriptional factors and cytokine 

genes in macrophages after 6 h of treatment. As shown in Figure 3, LOCBE treatment 
significantly upregulates STAT1, STAT3 and NF-κB expression. While STAT1 was ex-
pressed at a 4.8 ± 1.19-fold higher rate when compared to the control, STAT3 and NF-κB 
were expressed at a 2.55 ± 0.23 and 3.35 ± 0.64-fold higher rate, respectively. Interferon-
regulatory factors, IRF4 and IRF5, were not affected (Figure 3A). LOCBE also induced an 
increase in proinflammatory cytokines gene expression, such as IL-1β (4.56 ± 0.36-fold 
higher), IL-6 (289.9 ± 48.62-fold higher), and IL-8 (4.8 ± 0.98-fold higher) (Figure 3B). Alt-
hough the increase in TNF-α expression was only 1.55 ± 0.05-fold higher, this was statisti-
cally significant. 

 
Figure 3. LOCBE upregulates gene expression of inflammatory modulators. mRNA expression lev-
els of transcriptional factors genes related to the regulation of the inflammatory response (STAT1, 
STAT3, IRF4, IRF5, NF-κB) (A) and proinflammatory cytokine genes (TNF-α, IL-1β, IL-6 and IL-8) (B) 
in macrophage after 6 h treatment with 5 μg/mL LOCBE. RPL17A and ACTB genes were used as 
housekeeping genes. Data are shown as the mean ± S.E.M. of fold change (2−(ΔΔCt)) compared to the 

Figure 3. LOCBE upregulates gene expression of inflammatory modulators. mRNA expression levels of transcriptional
factors genes related to the regulation of the inflammatory response (STAT1, STAT3, IRF4, IRF5, NF-κB) (A) and proin-
flammatory cytokine genes (TNF-α, IL-1β, IL-6 and IL-8) (B) in macrophage after 6 h treatment with 5 µg/mL LOCBE.
RPL17A and ACTB genes were used as housekeeping genes. Data are shown as the mean ± S.E.M. of fold change (2−(∆∆Ct))
compared to the control group without treatment (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, Student t-test.).



Toxins 2021, 13, 462 5 of 14

2.4. LOCBE Induces Inflammatory Cytokine and Chemokine Release

Macrophage cytokine and chemokine release profile was evaluated after 6 and 24 h
of LOCBE treatment. As indicated in Figure 4 5 µg/mL LOCBE was able to directly
induce the expression of proinflammatory cytokine in both treatment times. After 6 h
of treatment, macrophages enhance the release of the cytokines TNF-α (1959 ± 512 vs.
9820 ± 623 pg/mL for control and LOCBE, respectively, n = 3, ** p < 0.01), IL-1β (32.1 ± 13.6
vs. 272.3 ± 44.3 pg/mL for control and LOCBE, respectively, n = 3, ** p < 0.01), IL-6 (3.9 ± 1.9
vs. 817.5 ± 86.5 pg/mL for control and LOCBE, respectively, n = 3, **** p < 0.0001), and VEGF
(183 ± 54.9 vs. 498 ± 61.0 pg/mL for control and LOCBE, respectively, n = 3, * p < 0.05)
(Figure 4A).
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Figure 4. Cytokine secretion profile in LOCBE-treated macrophage. Cells were treated with 5 µg/mL LOCBE and cytokine
release was evaluated after 6 h (A) and 24 h (B) by Millipore Multiplex assay. Data are shown as mean ± S.E.M. in pg/mL.
Significance of the differences were evaluated with t Student test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

Moreover, after 24 h of LOCBE treatment, there was a significant liberation of all cy-
tokines similar to 6 h treatment, such as IL-1β (96.4 ± 4.7 vs. 443.9 ± 41.23 pg/mL for con-
trol and LOCBE, respectively, n = 3, **** p < 0.0001), IL-6 (2.7± 0.4 vs. 538.7 ± 196.2 pg/mL
for control and LOCBE, respectively, n = 3, * p < 0.05) and VEGF (217.4 ± 23.0 vs.
761.4 ± 74.34 pg/mL for control and LOCBE, respectively, n = 3, *** p < 0.001. In ad-
dition to these cytokines, after 24 h of LOCBE treatment, it was observed that there was
an increase in the release of IL-8 (8132 ± 552.0 vs. 11,205 ± 718.7 pg/mL for control and
LOCBE, respectively, n = 3, * p < 0.05), and IL-4 (3.9 ± 0.5 vs. 12.7 ± 3.2 pg/mL for control
and LOCBE, respectively, n = 3, * p < 0.05) (Figure 4B). TNF-α and IL-10 release was not
affected by the 24 h treatment of macrophages with LOCBE.

The chemokine profile (CXCL10, CCL22, CCL2, CCL3 and CCL4) in LOCBE-treated
macrophages was also analyzed. Values and S.E.M for chemokine release are presented
in Table 1. LOCBE was able to induce significant CXCL10 release after 6 h of treatment
(11,888 pg/mL) in comparison with non-treated cells (219.8 pg/mL). On the other hand,
the other chemokines showed a tendency to increase their expression after 6 h of LOCBE
treatment, however not in a significant way. In contrast, after 24 h of treatment, an in-
creased release of all chemokines analyzed were observed when compared to control group,
CXCL10 (2670 pg/mL), CCL22 (114.1 pg/mL), CCL2 (455.6 pg/mL), CCL3 (450.9 pg/mL)
and CCL4 (5161 pg/mL). Macrophages after 24 h of treatment with LOCBE showed an
increase in CXCL10 (17,275 pg/mL), CCL22 (2283 pg/mL), CCL2 (6015 pg/mL). Regarding
CCL3 and CCL4 release, the values detected after LOCBE treatment exceeded the maxi-
mum limit of the detection curve of the method used, which were 8200 and 8643 pg/mL,
respectively.
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Table 1. Macrophage upon treatment with LOCBE chemokine release profile.

Analyte
(pg/mL)

Control LPS LOCBE

6 h 24 h 6 h 24 h 6 h 24 h

CXCL10 219.8 ± 101 2670 ± 200.3 13,831 ± 2379 ** 16,729 ± 503.3 **** 11,888 ± 1362 ** 17,275 ± 107.6 ****
CCL22 17.53 ± 1.2 114.1 ± 23.1 69.20 ± 15.7 * 2405 ± 612.6 * 36.23 ± 12.5 2283 ± 263.5 ***
CCL2 5810 ± 1826 455.6 ± 51.9 8678 ± 341.5 8448 ± 217.3 **** 7399 ± 979.9 6015 ± 1471 *
CCL3 5587 ± 1329 450.9 ± 110 7887 ± 312.8 8108 ± 92.5 **** 7294 ± 732 8200↑
CCL4 5802 ± 1462 5161 ± 784.3 8643↑ 8643↑ 8090 ± 553.5 8643↑

Chemokine secretion profile in Lonomia obliqua bristle extract-treated macrophage. Cells were treated with 5 µg/mL of LOCBE for 6 and 24
h and evaluated for the release of CXCL10, CCL22, CCL2, CCL3 and CCL4 by Multiplex assay. Data are represented in pg/mL with mean
± SEM. Values above the detection limit of the assay are indicated by a vertical arrow (↑). Significant differences in relation to untreated
control were evaluated using Student’s t test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

2.5. LOCBE Increases Expression of Membrane Markers

Macrophages were treated with LOCBE at 5 µg/mL for 24 h to evaluate its effect on
the polarization surface markers expression by flow cytometry. We observed that LOCBE
upregulated the expression of costimulatory molecules, such as CD80 (Figure 5A) and
CD83 (Figure 5B), in macrophages. Thus, LOCBE-treated macrophages presented values
of MFI for CD80 of 7.9 × 105 ± 5.7 × 104 vs. 2.1 × 105 ± 1.3 × 104 for control, and values
of MFI for CD83 of 2.5 × 104 ± 5.2 × 103 vs. 2.1 × 104 ± 4.04 × 103 for control. LPS at
1 µg/mL was used as the positive control.
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Figure 5. LOCBE increases the expression of macrophage activation markers. Macrophages were
treated 24 h with LOCBE at 5 µg/mL, then stained with specific antibodies for CD80-BB515 (A) and
CD83-APC (B) followed by Imaging flow Cytometry analysis. Data are shown as the mean of Median
of Fluorescence Intensity (MFI) ± S.E.M. (C) Representative images of CD80 (green) and CD83 (red)
staining. (** p < 0.01, *** p < 0.001).
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3. Discussion

Envenomation by contact with L. obliqua caterpillars is characterized by an intense
local inflammatory reaction initially manifested by pain and edema formation, which
can later develop into a hemorrhagic disturbance and persistent systemic inflammatory
reaction. In recent years, studies have tried to elucidate the molecular mechanism of those
effects and shown the role of the inflammatory response in serious envenomation clinical
complications, such as vascular disorders and renal dysfunction [22].

In this work, we investigated the proinflammatory effect on human THP-1-derived
macrophages induced directly by LOCBE in vitro. Our data showed that the venom
was able to enhance the secretion of proinflammatory cytokines and chemokines from
macrophages and also increases macrophage activation surface marker expression. Further-
more, LOCBE induces NF-κB pathway activation and upregulates transcriptional factor
genes, such as STAT1 and STAT3, which are described as important pathways to lead this
cell to a proinflammatory phenotype.

In general, crude animal venoms have high cytotoxicity and capacity to induce cell
death [35]. Our results show that LOCBE, at the concentrations assayed, has no cytotoxic
effect or ability to decrease cellular viability in macrophages. In fact, studies have demon-
strated that L. obliqua venom possesses proliferative effects and it is able to increase the
viability of several cell lines, such as human glioblastoma and colon adenocarcinoma [36].
Several studies with isolated proteins from LOCBE, known as LOPAP, a prothrombin
activator protease, and LOSAC, a Factor X activator, have shown them to promote cytopro-
tection in fibroblast, endothelial, neutrophil and neuron cells under nutrient deprivation
through an antiapoptotic mechanism. Besides cytoprotection, LOSAC was also able to
induce proliferative effects on vascular endothelium [16,26,37–39].

Macrophages are the major effector cells mediating the inflammatory response in
damaged tissues. Depending on the external stimulus, it can polarize to a proinflammatory
or anti-inflammatory phenotype expressing specific mediators and membrane markers.
A common signaling event in macrophage polarization to a proinflammatory profile is
the activation of the canonical NF-κB pathway. Once activated, p65 from NF-κB complex
induces the transcription of IL-1β, TNF-α and IL-6 genes that are responsible for initiating
the inflammatory response [40]. Our results show that a low dose of LOCBE is able to
activate the NF-κB pathway in macrophages derived from THP-1 monocytes in a short
period of time. Corroborating our findings, Nascimento-Silva and collaborators [20]
showed that low non-hemorrhagic doses of L. obliqua venom are able to induce NF-κB
activation in endothelial cells.

Given our observation that LOCBE activates the NF-κB pathway, we examined the
mRNA levels of other transcription factors associated with inflammation and macrophage
activation. mRNA levels of STAT1, STAT3 and the p65 protein gene of the NF-κB complex
were all upregulated. STAT1 is known to induce the expression of genes related to NO pro-
duction, such as NOS2 and MHC II leading macrophages to M1 profile [41,42]. Meanwhile,
STAT3 can be activated by IL-6 and also IL-10, and this leads to the upregulation of these
two antagonist cytokines genes, serving as a regulator of an exacerbated proinflammtory
response [43]. Simultaneously, we also showed that after 6 h of LOCBE treatment, the levels
of TNF-α, IL-1β, IL-6 and IL-8 mRNA were also upregulated. Thus, our results suggest
that NF-κB, and also STAT1 and STAT3, could lead these cells to a transcriptional cascade
inducing the proinflammatory cytokine release.

Therefore, we investigated the levels of proinflammatory and anti-inflammatory
cytokines and chemokines secreted by macrophages after 6 and 24 h of LOCBE treatment.
The release of high concentrations of TNF-α, IL-1β, IL-6 was observed in the supernatants
after 6 h of LOCBE treatment. Moreover, the amount of pro-inflammatory cytokines IL-1β,
IL-6 and IL-8 released after 24 h was higher than after 6 h of treatment, suggesting a
persistence of the inflammatory response. LOCBE also showed to induce an increase in the
release of a chemokine panel in THP-1-derived macrophages. There was an initial effect
on CXCL10 release after 6 h of treatment, and then, after 24 h, an increase in the release of
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CCL22, CCL2, CCL3 and CCL4 was observed. These chemokines play an important role
in recruiting effector blood cells to the site of inflammation, where each type induces the
recruitment of well-defined leukocyte subtypes. Interestingly, CXCL10 appears to play an
important role in the first hours of treatment with LOCBE. This chemokine is related to the
recruitment of Th cells and natural killer cells to the inflammation site [44].

On the other hand, we also observed an increase in anti-inflammatory mediators
after 24 h of LOCBE treatment. IL-4 e VEGF, two anti-inflammatory cytokines and the
chemokine CCL22. The production of anti-inflammatory cytokines can be activated by
an exacerbated proinflammatory stimulus, as mechanism of these cells to induce M2 ac-
tivation and suppress the proinflammatory response [32,43]. IL-4, for example, inhibits
the macrophage production of proinflammatory cytokines, including TNF-α, IL-1, and
IL-6 [45,46], while VEGF and CCL22 are described to be secreted by anti-inflammatory
macrophages [47,48]. Additionally, our results show that IRF4 and IRF5 were not modu-
lated by LOCBE-treatment. IRF5 regulates the M1 macrophage phenotype, whereas IRF4
regulates M2 polarization [49]. Thus, both transcription factors have non-redundant roles
in LOCBE-induced effects in macrophages.

Aiming to characterize the macrophage activation, we observed an increase in the
expression of the costimulatory molecules CD80 and CD83. Both proteins are responsible
for assisting the activation of naive T lymphocytes, making these cells effectors of the im-
mune response, since the cytokines produced by T lymphocytes are powerful inducers and
regulators of inflammatory response [50]. All those results together indicate that LOCBE
can directly activate macrophages and lead these cells to a proinflammatory phenotype.

Macrophages are important cells in the cross-talk between inflammation and home-
ostasis. The release of excessive proinflammatory cytokines by macrophages at the inflam-
mation site leads to the disturbance of vascular tissue with an increase in NO production,
which contributes to the increase in ROS and the modulation of vascular tone [51]. In
endothelial cells specifically, these proinflammatory mediators cause an increase in the
expression of COX-2 and the production of prostaglandins and NADPH-oxidase, causing
increased permeability of the vessels, facilitating the infiltration of fluids in the tissue and
the formation of edema [52,53].

In the past few years, many studies have shown that LOCBE and its toxins cause proin-
flammatory effects in vivo and in vitro. Studies showed that LOCBE direct induces a proin-
flammatory phenotype in endothelial cells where LOCBE increases adhesion molecules,
metalloproteinases (MMPs), COX-2, IL-6, and IL-8 expression in these cells [14,20]. More-
over, the LOPAP protein has been shown to increase the release of IL-8 in fibroblasts [25].
Furthermore, an increase in ROS dependent on NADPH expression was also seen in vas-
cular smooth muscle cells treated with L. obliqua venom [24]. Moreover, studies in vivo
using a model of LOCBE-induced acute renal failure pointed out that kidneys of enven-
omed rats presented increased levels of superoxide, NO, MMPs and an excessive amount
of proinflammatory cytokines such as TNF-α and IL-1β [22]. In parallel, Barrios and
colleagues [54] demonstrated an increase in the release of TNF-α and NO after 1 h of ad-
ministration of Lonomia Achelous venom in the blood of animal models. This other species
of caterpillar of the genus Lonomia triggers hemorrhagic events physiologically similar to
L. obliqua poisoning.

There are reports in the literature demonstrating that whole venoms and toxins
isolated from snakes and scorpions, for example, are able to activate macrophage func-
tions, such as phagocytosis and the production of reactive oxygen species, cytokines and
eicosanoids [55–58]. Bothrops alternatus snake venom is able to induce a proinflamma-
tory reaction in vivo and increase IL-1, IL-12, TNF-α and COX2 in murine macrophages
in vitro [58]. Scorpion venoms such as Tityus serrulatus and Androctonus australis Hec-
tor are also efficient inducers of macrophage TNF-α secretion [59,60]. Those results are
related to the formation of prominent local edema, pain, and extensive swelling in snake-
envenomed victims and play an important role in the genesis of organ failure during severe
scorpion envenomation.
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In the case of lonomism, once the venom is injected in the victim, the first clinic
manifestation is a proinflammatory reaction, and the results shown here suggest that
macrophages can be participating as an effector of those events. Since LOCBE can di-
rectly induce these cells to release a considerable amount of proinflammatory mediators,
macrophages might contribute to endothelium activation and the maintenance of the sys-
temic inflammatory reaction observed in the victim together with the hemorrhagic events.
An excess of proinflammatory mediators increases endothelium permeability and it can
contribute to hemorrhagic events mainly in the microvascular vases in the brain that are
the most cases of fatal outcomes after the envenomation. Furthermore, an exacerbated
proinflammatory mediator release was suggested to be related to the renal failures in
animal models.

In summary, the data demonstrate that L. obliqua venom has a direct proinflamma-
tory effect on macrophages derived from the THP-1 lineage, promoting a high release
of cytokines and chemokines and a change in intracellular signaling cascades that result
in the activation of these cells to a pro-inflammatory profile. Here, we also showed that
the NF-κB pathway plays an important role in inducing this phenotype. Toxins, such as
LOPAP, isolated from the LOCBE have already been characterized with regard to some of
their effects on the modulation of molecules, with an important role in the inflammatory
process. These and other venom components may be responsible for the effect mentioned.

4. Conclusions

Lonomia obliqua venom directly induces macrophage to take on a proinflammatory
activation phenotype, increasing cytokine release and upregulating costimulatory cell-
surface markers, possible with the involvement of NF-κB pathway that is responsible for
inducing the expression of many inflammatory cytokine and chemokine genes.

5. Materials and Methods
5.1. Lonomia obliqua Crude Bristle Extract Obtention

Lonomia obliqua crude bristle extract (LOCBE) was obtained from caterpillars collected
in the south of Brazil (states of Santa Catarina, Rio Grande do Sul and Paraná) and provided
by the Butantan Institute. Briefly, to obtain the extract, caterpillar’s bristles were harvested
by cutting them at their base, ground in a mortar and homogenized in PBS (pH 7.4). The
solution was sterilized by filtration using Millex filters (Millipore, Darmstadt, Germany,
#SLGV013SL). Protein content was evaluated using the Pierce BCA Protein Assay Kit
(Thermo Scientific, Rockford, IL, USA), according to the manufacturer’s protocol, and
stored at −80 ◦C until use.

The endotoxin levels present in LOCBE samples were assessed following Good Manu-
facturing Practice (GMP) using the Gel Clot—limit test assay. Endotoxin was detected at
an acceptable level between 0.1 and 1.2 EU/mL at 5 µg/mL LOCBE. LPS 1 µg/mL (99%
purity) was employed as a positive control.

5.2. Cell Culture and Differentiation

THP-1 cell line was obtained from the American Type Culture Collection—ATCC
(Manassas, VA, USA). The THP-1 monocytes were cultured in complete culture medium
composed by RPMI 1640 medium (Sigma-Aldrich, St. Louis, MO, USA, #R6504) supple-
mented with 10% fetal bovine serum (Gibco, Grand Island, NY, USA, #26140079), 100 U
penicillin/streptomycin (Gibco, Grand Island, NY, USA, #15140122), 2 mM L-glutamine
(Sigma-Aldrich St. Louis, MO, USA, #A2916801), 1 mM Sodium Pyruvate (Sigma-Aldrich,
Sigma-Aldrich, St. Louis, MO, USA, #P5280) and incubated at 37 ◦C in 5% CO2. THP-1
monocytes cells were differentiated to macrophages using phorbol 12-myristate 13-acetate
(PMA) (Sigma-Aldrich, St. Louis, MO, USA, #P8139). Briefly, 25 nM PMA was added to a
medium culture containing 2× 106 cells in a T25 cell culture flask for 48 h, followed by 24 h
of rest in a PMA free medium, as previously suggested to inflammatory studies [61]. Mono-
cyte differentiation into macrophages was verified by both total cell adhesion to the plate
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and morphology and membrane marker expression, CD14 and CD11b (Supplementary
Figure S1).

5.3. Cellular Viability and Cytotoxicity

THP-1 macrophage viability was evaluated by the MTT colorimetric assay [62]. Af-
ter 48 h with PMA, macrophages were detached using 1 mL of TripleExpress (Gibco,
Grand Island, NY, USA, #12604021) for 5 min, then cells were seeded in a 96-well plate
at 2 × 104 cells/well. After 24 h resting in PMA-free medium, cells were incubated with
LOCBE at 5, 25, and 50 µg/mL, 1 µg/mL LPS (Sigma-Aldrich, St. Louis, MO, USA, #L4516)
or 1 mM H2O2 (Sigma-Aldrich, St. Louis, MO, USA, #323381) for 24 h. The cells were
incubated with 100 µL of MTT (Sigma-Aldrich, #M2003) solution (0.5 mg/mL in complete
culture medium) at 37 ◦C for 3 h. MTT formazan crystals were solubilized in 100 µL of
DMSO (Sigma-Aldrich, St. Louis, MO, USA, #D8418) during 5 min. Absorbance was read
at 540 nm using a spectrophotometer Spectra Max 190 (Molecular Devices, San José, CA,
USA). The percentage of LOCBE-induced cell death was determined from the experimental
group absorbance divided by untreated controls absorbance × 100%.

Lactate dehydrogenase (LDH) release was quantified in 50 µL supernatants using
the Cytotox 96 NonRadioactive Cytotoxicity assay (Promega, Madison, WI, USA, #G1780)
following the manufacturer’s instructions. Values were expressed as the percentage of
maximum LDH release (set at 100%) obtained through total lysis of cultured cells.

5.4. NF-κB Pathway Activation

High-content screening (HCS) was used to detect data on multiple parameters in
single cells as well as in populations of cells [63], aiming to measure the L. obliqua venom
capacity to induce NF-κB pathway activation by measuring the protein translocation from
the cytoplasm to the nuclei. After differentiation, macrophages were seeded in 96-well mi-
croplates for fluorescence detection (Greiner, Kremsmünster, Austria) at 2 × 104 cells/well
and incubated for 24 h with PMA-free medium. Macrophages were treated with LOCBE
at 5, 25 and 50 µg/mL for 30 min and with 1 µg/mL LPS as a positive control. After-
wards, cells were fixed with 100 µL PHEM buffer (2 nM HEPES, 10 mM EGTA, 2 mM
MgCl2, 60 mM PIPES at pH 6.9) containing 4% paraformaldehyde (PFA) (Sigma-Aldrich,
St. Louis, MO, USA, #P6148) for 1 h, followed by permeabilization with 0.5% Triton-100
(Sigma-Aldrich, St. Louis, MO, USA, #T8787) in PHEM buffer for 5 min. Macrophages
were washed 3× with Glycine 0.1 M in PHEM buffer before blocking with 1% BSA (Sigma-
Aldrich, St. Louis, MO, USA, #A7606) in PHEM buffer for 30 min. The cells were stained
overnight with primary anti-NF-kB (p65) antibody (Cell Signaling, Danvers, MA, USA,
#3033S) (1:500) at 4 ◦C. Plate was washed with PHEM buffer and then stained for 1h at
room temperature with goat anti-rabbit AlexaFluor 647 antibody (ThermoFisher Scientific,
Bengaluru, India, #A27040) (1:1000) and Hoechst 33342 (Thermo Fisher Scientific, Eugene,
OR, USA, #62249) at 5 µM for labeling DNA.

Images were obtained using ImageXpress Micro Confocal High-Content Imaging
System (Molecular Devices, San Jose, CA, USA). To determine NF-κB translocation from
the cytoplasm to nucleus, we analyzed fluorescence intensity in the nucleus area and
intensity in the cytoplasm area (Inner/Outer Intensity Ratio). The translocation value
(%) was calculated by the ratio of nuclear and cytoplasmic region fluorescence intensity
(Nuc/Cyt Ratio) (Correlation coefficient ≥0.6). In this case, the module “Translocation
Enhanced” was used. Three independent experiments were performed, and the percentage
of positive cells was calculated using the average of 16 sites/well.

5.5. Gene Expression

For gene expression analysis, THP-1 derived macrophages were treated with LOCBE
at 5 µg/mL for 6 h. After treatment, supernatants were collected and stored at −80 ◦C for
cytokine analyses, and cells were washed three times with PBS and the pellet was stored at
−80 ◦C. Total RNA was isolated and purified from differentiated cells using the RNAspin



Toxins 2021, 13, 462 11 of 14

Mini kit (GE Healthcare, Chicago, IL, USA) according to the manufacturer’s instructions
applying an additional treatment with DNase I for 1 h. Total RNA was quantified using
the ND-1000 NanoDrop (Thermo Fisher, Wilmington, DE, USA). Real-time qPCR was
performed to analyze transcriptional factors and their responsive genes expression. First,
reverse transcription was performed to obtain cDNA followed by qPCR. For all genes,
oligo-dT and random primed reverse transcription was performed using 500 ng of total
RNA in 20 µL of RT reaction with SuperScript III (Invitrogen, Carlsbad, CA, USA), followed
by qPCR using 2 µL of the 10-fold diluted RT reaction in 8 µL of qPCR (QuantStudio 3 Real-
Time PCR System, ThermoFisher Scientific). Transcript levels were normalized with Ct
average from RPL17A and ACTB genes, and represented as relative abundance using
the delta Ct method [64]. Conditions for PCR reactions were: 40 cycles of 95 ◦C/15 s,
60 ◦C/1 min, using specific primers to measure the expression of a panel of genes including
NF-κB, STAT1, STAT3, IRF4 and IRF5 transcriptional factors and TNF-α, IL-1β, IL-6 and
IL-8 cytokines.

5.6. Cytokine and Chemokine Profile Liberation

Cell-free supernatants were used to determine cytokine and chemokine secretion
after 6 and 24 h after LOCBE treatment. The quantification was performed by multiplex
analysis using the Milliplex MAP Human Cytokine/Chemokine Magnetic Bead Panel
(Millipore, #HCYTOMAG-60K-13) with detection and analysis using the Luminex-200
system (Millipore). The software for acquisition was Luminex xPONENT 4.3 and for results
analysis we used the MILLIPLEX Analyst 5.1. The assay kit was performed according to
the manufacturer’s specification. The range of detection for each molecule (TNF-α, IL-1β,
IL-6, IL-8, IL-4, IL-10, VEGF, CXCL10, CCL22, CCL2, CCL3 and CCL4) was in pg/mL.

5.7. Cell Surface Proteins Expression

After differentiation protocol, 2 × 106 macrophages were treated with LOCBE at
5 µg/mL for 24 h. Then, supernatants were collected and stored at –80 ◦C for cytokine
analyses, and cells were detached, washed with PBS, and fixed with 0.25% PFA in PBS for
1 h at room temperature. Macrophages were washed three times with PBS and stained with
anti-CD80 conjugated with BB515 and anti-CD83 conjugated with APC (BD Biosciences,
Franklin Lakes, NJ, USA, #565058 and #551073, respectively) antibodies (1:50) for 2 h at
room temperature. Samples were analysed on Amnis ImageStreamX MkII flow cytometer
using ISX software (Luminex Corporation, Austin, TX, USA) equipped with 4 lasers (405,
488, 642 and 785 nm (SSC). Experiments were carried out using 488 and 642 lasers set to
maximum power, and all data were acquired with 40×magnification.

The BB515 signal was collected in channel 2 (480–560 nm filter) and APC signals in
channel 11 (660–745 nm filter). Channels 1 (430–480 nm filter) and 9 (570–595 nm filter)
were used as brightfield channels and channel 6 (745–800 nm filter) for SSC detection. At
least 10,000 events were acquired. All data were analyzed using IDEAS® Software.

5.8. Statistical Analysis

All experiments were carried out at least in at least three independent biological
experiments and data were recorded as mean ± standard error of the mean. Comparison
between groups was achieved using non-parametric Student’s t-tests using Prism 6.01
software (GraphPad Software). Significance was set at p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxins13070462/s1, Figure S1: THP-1 monocyte differentiation in macrophages. The differenti-
ation protocol wasevaluated by image flow cytometry with anti-CD14-APC and anti-CD11b-PECy7
antibodies, and cellular morphology was assessed by confocal microscopy.

https://www.mdpi.com/article/10.3390/toxins13070462/s1
https://www.mdpi.com/article/10.3390/toxins13070462/s1
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