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Abstract

Virtual anatomic phantoms offer precise voxel mapping of the variation of anatomy

with ground truth deformation vector fields (DVFs). Dice similarity coefficient (DSC)

and mean distance to agreement (MDA) are the standard metrics for evaluating geo-

metric contour congruence when testing deformable registration (DIR) algorithms. A

HN virtual patient phantom data set was used for a kVCT‐kVCT automatic propaga-

tion contour validation study employing the Accuray DIR algorithm. Furthermore,

since TomoTherapy uses MVCT images of the relevant anatomy for adaptive moni-

toring, the kVCT image data set quality was transformed to an MVCT image data

set quality to study intermodal kVCT‐MVCT DIR accuracy. The results of the study

indicate that the Accuray DIR algorithm can be expected to autopropagate HN con-

tours adequately, on average, within tolerances recommended by TG‐132 (DSC 0.8‐
0.9, MDA within voxel width). However, contours critical to dosimetric planning

should always be visually proofed for accuracy. Using standard reconstruction

MVCT image quality causes slightly less, but acceptable, agreement with ground

truth contours.
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1 | INTRODUCTION

Deformable image registration (DIR) algorithms, widely available in

commercial software, have come into regular use in the clinic for

tasks such as autosegmentation and adaptive planning. AAPM Task

Group 132 provides recommendations for quality assurance and

quality control of clinical processes involving both rigid and deform-

able registration.1 The TG‐132 dataset, while suitable for general

commissioning and quality assurance (QA) of DIR software, is limited

to in‐depth, site‐specific validation of DIR algorithms due to unique

anatomic variations, both spatial and temporal, associated with a

given treatment site. TG‐132 recommends the use of 10 patient

datasets to evaluate site‐specific registration methods. Frederick

et al.2 proposed a standardized framework for validating automatic

contour propagation using interobserver expert contouring on both

the primary and secondary patient image sets. Congruence of DIR‐
propagated contours and expert contours can be evaluated geomet-

rically or dosimetrically; the geometric congruence metrics recom-

mended by TG‐132 are as follows: (a) mean distance to agreement

(MDA) and (b) Dice similarity coefficient (DSC).

As an alternative, virtual anatomic phantoms can provide precise

voxel mapping of the anatomic variation with ground‐truth deforma-

tion vector fields (DVFs) for the evaluation of DIR algorithms.3–11 In

addition to geometric congruence, the distribution of the voxel regis-

tration error for a specified target volume (TRE) can be a useful met-

ric for comparative DVF analysis.9

A library of 10 HN interfraction virtual anatomic phantoms from

patient CT image data is available for evaluating DIR algorithms.11

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine

Received: 5 June 2020 | Revised: 29 August 2020 | Accepted: 21 March 2021

DOI: 10.1002/acm2.13246

58 | wileyonlinelibrary.com/journal/jacmp J Appl Clin Med Phys 2021; 22:5:58–68

https://orcid.org/0000-0003-0589-2653
https://orcid.org/0000-0003-0589-2653
https://orcid.org/0000-0003-0589-2653
https://orcid.org/0000-0003-1586-8091
https://orcid.org/0000-0003-1586-8091
https://orcid.org/0000-0003-1586-8091
mailto:
http://creativecommons.org/licenses/by/4.0/
http://www.wileyonlinelibrary.com/journal/JACMP


Each test case in the library consists of a start‐of‐treatment (SOT)

and a simulated end‐of‐treatment (sEOT) kVCT image set. These

sEOT images sets were generated by deforming the SOT image sets

to match the actual EOT image sets. As recommended by TG‐132,
DVFs from two different deformation models (biomechanical and

thin‐plate) were used sequentially and combined to minimize biased

validation results. Patients selected for the library lost 4‐20% of

body weight (average10.6%) from SOT to EOT. The two deformation

models allowed Pakula and colleagues9 to model head/mandible

rotations and translations, spine flexion, shoulder position, hyoid

movement, tumor/node shrinkage, weight loss, and parotid shrink-

age. The entire HN dataset, including SOT contours and DVFs, is

available through Oncology Systems Limited. The SOT kVCT

(kVCTSOT) and simulated EOT kVCT (kVCTsEOT) are available for

download from the Deformable Image Registration Evaluation Pro-

ject (DIREP) website. Pukala et al.9 used the HN dataset to bench-

mark dose accumulation congruence metrics for five commercial DIR

algorithms; however, the Accuray DIR algorithm was not part of

their study.

The Accuray DIR model (Accuray Inc., Sunnyvale, CA) uses a

non‐parametric, non‐rigid transformation to represent the deforma-

tion field.12 The algorithm optimizes the normalized cross‐correlation
(NCC) over small neighborhood patches. The optimization occurs

iteratively over the entire image domain in a multi‐resolution, coarse‐
to‐fine scheme, using up to 4 resolutions and up to 500 iterations at

each resolution level. The estimated deformation field is regularized

after each iteration with a smoothing operator. The Accuray Preci-

sion treatment planning system utilizes this DIR algorithm for atlas‐
based autosegmentation, re‐planning contour propagation, adaptive

therapy dose accumulation, and MVCT dose‐of‐the‐day metrics.

Deformable registration works best with feature‐rich images with

high contrast variations.13 However, the lower image contrast of

MVCT images can limit registration accuracy.14 Noise degrades con-

trast and DIR accuracy,15 and TG‐132 recommends adding noise to

virtual phantoms to better model imaging systems. Several studies

added CBCT quality noise to kVCT patient image data to evaluate

the impact of kVCT‐CBCT intermodal DIR.7,16

The purpose of this study was to present a validation of Accuray

DIR automatic contour propagation using a publicly available HN

dataset, and, hence, a methodology using these publicly available HN

datasets for contour propagation studies is presented for further

comparative studies. Furthermore, to validate the clinical use case in

which kVCT images are deformably registered to MVCT images, the

HN kVCTsEOT image data sets were transformed to MVCT image

data sets to evaluate the impact of MVCT image quality on DIR.

2 | MATERIALS AND METHODS

Table 1 lists the HN contours of interest for the study along with

the average and standard deviation (SD) volume and the number of

contour sets used for each contour of interest. Some contour sets

were missing from the dataset or were rejected based on an inverse

consistency threshold discussed below. The CTSOT contours were

propagated to the CTsEOT image set for each HN test case using

inverted ground‐truth DVFs to compare with auto‐propagated Accu-

ray DIR contours. The CTSOT contours supplied with the HN dataset

were not modified.

2.A | Generation of HN dataset CTsEOT contours

Only the CTSOT contours are available in the HN dataset. For the

purpose of validating contour propagation, DVFs available in the HN

dataset were used to generate the CTsEOT contours. The DVFs are

inversions of the ground‐truth DFVs used to generate the CTsEOT

image data from the CTSOT image data. They had been inverted to

analyze CTsEOT to CTSOT deformation mapping for reference dose

accumulation.9 ImSimQA version 4.2 (Oncology Systems Limited,

Shrewsbury, UK) was used to “re‐invert” the DVFs (back to their

original source–target direction) to propagate the SOT contours to

the CTsEOT image set. The DVF inversion was validated using the

ImSimQA inverse consistency error (ICE) tool. Similar to using the

ImSimQA DVF comparison tool to analyze the TRE distribution, con-

tours were selected for the volumetric analysis of the voxel ICE dis-

tribution.

For the nine of the test sets, 79% of the contours of interest

had mean ICE distances of <0.005 mm, and 97% had mean ICE dis-

tances of <0.05 mm. However, three contours had mean ICE dis-

tances of >0.2 mm and were excluded from the study. All the

contours of interest in test case 7 had mean ICE distances >

0.5 mm, and for this reason, this test case has been excluded from

the study.

2.B | Accuray DIR contour propagation

The Accuray DIR algorithm is an automated, proprietary process that

is integrated into a MIM viewer with limited options for the user.

Contours from both the initial rigid registration and the subsequent

deformable registration are available in the MIM viewer for further

analysis and modification. The Precision Re‐Treatment module allows

for the verification and manual fine‐tuning of the initial rigid

TAB L E 1 List of HN contours of interest sets used for validation
study along with average volume (±SD).

Contour
Volume (cc)
Ave (±SD)

Mandible n = 9 71.8 ± 16.0

Oral cavity n = 7 31.3 ± 14.9

Brainstem n = 9 29.7 ± 7.4

Spinal cord n = 9 22.8 ± 7.5

Parotid gland n = 18 19.9 ± 7.7

Pharyngeal constrictors n = 6 11.1 ± 4.7

Esophagus n = 9 6.6 ± 2.5

Submandibular gland n = 15 5.3 ± 2.4

Larynx n = 9 5.1 ± 2.0
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alignment before deformable registration is applied. Using the TG‐
132 translation geometric phantom in the Precision Retreatment

module, we verified the initial alignment for all three noncoplanar 2‐
mm spherical markers was better than 0.1 mm in all directions.

A simple plan in Precision was calculated for each test case

using the CTSOT image set and SOT contours of interest to allow

the use of the Precision Re‐Treatment module. The module was

used to automatically apply deformable registration and subsequent

contour propagation to each of the EOT image sets, that is, the

kVCTsEOT and simmulated MVCTEOT image sets. The option to fine

tune rigid registration manually before deformable registration was

bypassed. Contours were exported to MIM version 6.9.4 (MIM

Software Inc., Cleveland, OH) for the analysis of MDA and DSC

metrics.

As an additional test, three patients who were re‐simulated mid-

way through treatment and manually re‐contoured for adaptive

treatment were selected for comparison with the results of the HN

phantom dataset validation study. The same procedure as above was

used to generate contours and congruence with manually drawn

contours was analyzed in MIM. This clinical study was limited to kV‐
kV DIR.

2.C | MVCT image quality modeling

The transformation of HN kVCTsEOT image data to MVCT quality

(MVCTEOT) consisted of three steps: (a) smoothing images, (b) scaling

the dynamic range, and (c) adding MVCT random noise quality.

Image data from kVCT and MVCT scans of a TomoTherapy “Cheese”

phantom TomoTherapy were used to model MVCT image quality.

The kVCT scans were performed on a Siemens MX8000 using 3 mm

slice spacing, and the MVCT scans were performed on an Accuray

TomoTherapy HD using coarse scanning and 3 mm slice standard

reconstruction. All three steps of CTsEOT image modification were

accomplished using Python 3.7. Figure 1 shows a CTsEOT image slice

before and after MVCT image quality transformation along with an

actual clinical kVCT and MVCT image slice for qualitative compari-

son.

MVCT‐quality random noise quality was added to each modified

CTEOT image slice. The measured MVCT noise power spectrum

(NPS) was extracted from two consecutive MVCT scans of the uni-

formity section of the “Cheese” phantom using the approach pro-

posed by Friedman and colleagues [cf. Fig. 2(e)].17 To generate an

MVCT spatial noise image quality, a Gaussian white noise (sigma =

F I G . 1 . HN virtual phantom image slice
before (a) and after (b) MVCT image
quality transformation. An actual clinical
kVCT (c) and MVCT (d) HN image slice for
qualitative comparison.
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4%) image mask (GWNIM) was generated and the positive and neg-

ative definite parts of the GWNIM were then Fourier transformed

separately and folded with the NPS in frequency space. The resulting

positive and negative definite parts of the MVCT spatial noise pat-

tern in frequency space were then inversely Fourier transformed to

obtain the positive and negative definitive part of the spatial MVCT

spatial noise pattern and were then combined into a single MVCT

quality spatial noise pattern by subtracting the negative definite part

from the positive definite part. The resulting MVCT‐quality spatial

noise pattern was then added to the kVCT image, and following that,

a 0.5‐pixel Gaussian smoothing was applied to the MVCT noise

image to slightly blur the distinct salt‐and‐pepper pattern. The result-

ing additive noise was +30 HU. A separate and new MVCT‐quality
spatial noise pattern was generated for each CT slice in the KVCT

data set.

For each test case, three associated MVCTEOT image sets were

created by adding a separate MVCT‐quality spatial noise map (4%

spatial MVCT noise) to each KVCT image slice in the KVCTsEOT

image set. For each test case, MDA and Dice metrics of the three

kV‐MV DIR results were averaged. This allowed a better estimate of

the expected differences between kV‐kV and kV‐MV DIR modes.

The Wilcoxon rank test was used to determine if the differences

between kV‐kV and kV‐MV DIR metrics were statistically significant.

3 | RESULTS

3.A | Accuray DIR algorithm process

Figure 3 shows a graphical representation of the Accuray DIR pro-

cess using phantom test case 5. By fusing the SOT image set with

the EOT image set (represented by inverse grayscale voxel values)

and applying a 50% blend, the differences due to weight loss and

setup variation, such as head rotations, appear most notably where

there is a bony mismatch. An overlay of the body contour from the

SOT image set allows for better visualization of missing tissue. An

overlay of the DVF vectors on the deformed SOT image shows how

F I G . 2 . MVCT image quality transforms. (a) shows the line through resolution holes for sampling pixel intensity profiles shown in (b) and (c),
where true MVCT is red and kVCT is blue [before (b) and after (c) image quality transformation]. (d) shows the kVCT‐to‐MVCT pixel intensity
conversion function. (e) shows the radial profile of the measured MVCT noise power spectrum.
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F I G . 3 . Graphical representation of Accuray DIR process. The first row shows the coronal, axial, and sagittal views of the kVCTSOT image
set, which is the moving image set, and the second row shows views of the kVCTEOT (with inverse grayscale voxel intensity), which is the
stationary image set. The third row shows the fusion of the two image sets using a 50% blend before DR, along with the body contour of the
SOT image to accentuate the missing tissue from weight loss. The fourth row shows views of the resulting DR image with an overlay of the
DVF vectors, while the fifth row shows the overlap of the DR SOT image set with the original SOT image set.
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the algorithm accounts for weight loss, spine inflexion, and head

rotations. A 50% blend of the deformed moving SOT image and the

stationary EOT image (using inverse grayscale) shows a relatively

uniform distribution of less intense features from intensity mismatch.

3.B | kV‐kV contour congruence

The kV‐kV MDA geometric congruence in millimeters is summarized

in Table 2. For each contour group, the table lists the average MDA

and standard deviation (SD) for both rigid registration (RR) and

deformable registration (DR) contours. On average, the MDADR dis-

tances are well within a voxel width as recommended by TG‐132.
The voxel dimensions of the image data in the HN library are

approximately 1 × 1 × 3 mm3. The MDARR distances are within

5 mm millimeters which indicates that the initial rigid alignment was

acceptable (cf. Fig. 4). It is good practice to always first do a RR to

bring the image sets into alignment as close as possible before pro-

ceeding with a DR. Most notable was the MDARR for the brainstem

which was under 1 mm and <0.1 mm variance. Figure 4 shows the

relationship between MDARR and MDADR for all contours of interest

and illustrates the improvement in geometric convergence in the

algorithm process step from RR to DR. Figure 5 shows the relation-

ship between contour volume and MDADR for all contours of inter-

est. The volume shown for each contour of interest is the average

of the SOT and EOT contour volumes.

kV‐kV DSC geometric congruence is summarized in Table 3. For

each contour group, the table lists the average DSC and SD for both

RR and DR contours. On average, the DSCDR scores for both DIR

modes, which range from 0.828 to 0.938, are within the TG‐132 rec-

ommended range of 0.8 to 0.9. Figure 6 shows the relationship

between DSCRR and DSCDR for all contours of interest, again illus-

trating the improvement in geometric convergence in the process

step from RR to DIR. Figure 7 shows the relationship between con-

tour volume and DSCDR for all contours of interest. The variation in

DSC is larger for volumes <20 cm3 (5.3%) than for volumes

>20 cm3 (1.8%). This is expected and TG‐132 recommends a DSC

congruence range of 0.8 to 0.9, as it may be difficult to achieve

higher overlap congruence (DSC) with smaller volumes although

surface congruence (MDA) is within voxel dimensions.

The correlation between MDADR and DCSDR is plotted in Fig. 8;

the Pearson correlation coefficient for the plotted regression line is

−0.71. It is notable that the larger volume contours appear predomi-

nately above the regression while lower volume contours appear

predominately below the regression line. This illustrates again the

acceptable range of DSC values recommended by TG‐132 to

account for the effects of small volume on contour overlap congru-

ence.

3.C | kV‐MV contour congruence

kV‐MV MDA geometric congruence in millimeters is summarized in

Table 4. For each contour group, the table lists the average and SD

TAB L E 2 Average (±SD) MDA in mm for both RR and DIR kV‐kV
contour propagation.

Contour
MDARR (mm)
Ave ± SD

MDADR (mm)
Ave ± SD

Mandible 1.3 ± 0.6 0.4 ± 0.1

Oral cavity 1.6 ± 0.5 0.7 ± 0.1

Brainstem 0.7 ± 0.03 0.4 ± 0.1

Spinal cord 1.4 ± 0.9 0.5 ± 0.1

Parotid gland 2.1 ± 0.8 0.5 ± 0.1

Pharyngeal constrictors 1.2 ± 0.6 0.7 ± 0.2

Esophagus 1.2 ± 0.9 0.6 ± 0.2

Submandibular gland 1.7 ± 1.0 0.6 ± 0.1

Larynx 1.4 ± 0.5 0.7 ± 0.2

F I G . 4 . Plot of MDADR vs MDARR for all
kV‐kV contour propagations. The contours
are ordered in the legend by average
volume from largest to smallest.
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MDA for deformable registration (DR) contours. On average, the

MDADR distances are within a voxel width as recommended by TG‐
132. Also listed is the Wilcoxon signed‐rank test p‐value to deter-

mine if the results are significantly different from kV‐kV DIR results.

All contours of interest with the exception of the spinal cord and lar-

ynx were within the 0.05 significance level. The oral cavity showed

the greatest deviation from kV‐kV DR results.

kV‐MV DSC geometric congruence in millimeters is summarized

in Table 5. For each contour group, the table lists the average and

SD DSC for deformable registration (DR) contours. On average, the

DSCDR distances are within the acceptable range of 0.8–0.9 as rec-

ommended by TG‐132. Also listed is the Wilcoxon signed‐rank test

p‐value to determine if the results are significantly different from

kV‐kV DIR results. All contours of interest with the exception of the

oral cavity, spinal cord, and larynx were within the 0.05 significance

level.

3.D | Clinical case results

Tables 6 and 7 show the tabulated results of the autocontour con-

gruency test of the three patients who were re‐simulated midway

through treatment and manually re‐contoured for adaptive treat-

ment. For the MDA results (Table 6), 14 of 15 contours had MDA

distances within 2 SDs of the mean MDA distance of the contour in

the HN phantom dataset, and 10 of 15 contours showed better sur-

face congruency. For the DSC results (Table 7), 14 of 15 contours

had DSC values within 2 SDs of the mean DSC value of the contour

in the HN phantom dataset, and 11 of 15 contours showed better

overlap congruency.

4 | DISCUSSION

In this study, we have evaluated and validated Accuray DIR con-

tour propagation using a commercially available virtual HN phantom

dataset for both kV‐kV and kV‐MV DIR modes. The dataset models

the changes in patient anatomy and setup typical for a 30+ frac-

tionated treatment, and therefore is ideal for testing contour prop-

agation for both planning retreatments and adaptive monitoring.

Ground‐truth contours had to be generated on the EOT image sets

by inverting the DVFs provided with the datasets. Generalized

inverse consistency18 allowed confidence for inverting the DVFs

and propagating the SOT contours to the EOT image sets. Varad-

han et al. provide an in‐depth discussion regarding the use of ICE

as a framework for the validation of DIR software to provide evi-

dence of a stable system.6 However, TG‐132 states that the quan-

titative metric of inverse consistency does not provide the direct

verification of accuracy.

Contour geometric congruency metrics, DSC and MDA, were cal-

culated and summarized for each of the nine contours of interest.

F I G . 5 . Plot of MDADR vs contour
volume (cc) for all kV‐kV DR contour
propagations.

TAB L E 3 Contour of interest average (±SD) DSC for both RR and
DR contour propagation.

Contour
DSCRR

Ave + SD

DSCDR

Ave + SD

Mandible 0.77 + 0.09 0.92 + 0.01

Oral cavity 0.80 + 0.06 0.90 + 0.02

Brainstem 0.91 + 0.04 0.94 + 0.01

Spinal cord 0.73 + 0.16 0.92 + 0.01

Parotid gland 0.70 + 0.11 0.92 + 0.03

Pharyngeal constrictors 0.66 + 0.19 0.86 + 0.04

Esophagus 0.73 + 0.15 0.89 + 0.03

Submandibular gland 0.64 + 0.20 0.88 + 0.05

Larynx 0.70 + 0.13 0.83 + 0.05
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MDA congruence was within 1‐mm except for one submandibular

contour. DSC congruence was within the TG‐132 recommended

range of 0.8‐0.9 for 93% of contours. Note that these results are

specific to applications involving adaptive treatment management;

auto‐segmentation of contours using atlases of different patients

may not be as accurate. Contour congruence becomes more difficult

as contour volume falls below 20 cm3. However, other factors such

as initial rigid alignment and change volume size had little effect on

DIR accuracy. This is nicely illustrated in the principle component

analysis plot shown in Fig. S1. Image slice thickness may have an

effect on contour overlap in the inferior and superior extent of the

image set as illustrated in Fig. 9. Small volumes that span only a few

image slices such as the larynx are especially sensitive to this. The

original benchmark study of commercial DIR platforms by Pukala and

collegues9 analyzed DIR TRE in the source‐target direction from

EOT to SOT and did not include the Accuray DIR algorithm at the

time. In the interest of comparing the Accuray DIR algorithm with

other platforms, we performed a similar study whose results are tab-

ulated in the Table S1. The average TREmean distances for the brain-

stem (0.5 mm), spinal cord (0.5 mm), mandible (0.5 mm), and parotid

glands (0.5 mm) were in good agreement with an earlier version of

MIM (5.6.2); the MIM values were 0.5, 0.5, 0.9, and 1.2/1.5 mm,

respectively. Both algorithms use a free‐form deformation model.

Although the current study analyzed TRE with DVFs in the opposing

source–target direction, the ground‐truth DVFs were inversely con-

sistent for the contour volumes evaluated. Future studies will test

dosimetric congruency using the HN dataset and other image data-

sets.

F I G . 6 . Plot of DSCDR vs DSCRR for all
kV‐kV contour propagations.

F I G . 7 . Plot of DSCDR vs contour
volume for all kV‐kV contour propagations.
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MVCT‐image quality has a small, but significant effect on auto-

contour congruence. On the one hand, Murphy et al.16 showed no

sensitivity to noise when comparing automatic and manual contour

variability; they reason that the use of an equivalent cross‐correla-
tion coefficient method for similarity optimization is analogous to

using an optimal signal‐to‐noise match filter to detect a known signal

in noisy data. Faggiano et al.19 demonstrated a DIR algorithm that

showed no significant differences between automatic parotid gland

F I G . 8 . Correlation between DSCDR and
MDADR for all kV‐kV contour
propagations. The Pearson correlation
coefficient for the plotted regression line is
−0.71.

TAB L E 4 Contour of interest average (±SD) MDA in mm for kV‐MV
DR contour propagation. Also listed is the Wilcoxon signed‐rank test
P‐value to determine if the results are significantly different from
kV‐kV DIR results.

Contour
MDADR

Ave + SD

Wilcoxon
P‐value

Mandible 0.4 + 0.1 0.021

Oral cavity 1.0 + 0.5 0.036

Brainstem 0.6 + 0.1 0.008

Spinal cord 0.4 + 0.1 0.139

Parotid gland 0.6 + 0.1 0.002

Pharyngeal constrictors 0.5 + 0.1 0.028

Esophagus 0.5 + 0.1 0.028

Submandibular gland 0.6 + 0.2 0.003

Larynx 0.7 + 0.2 0.767

TAB L E 5 Contour of interest average (±SD) DSC for kV‐MV DR
contour propagation. Also listed is the Wilcoxon signed‐rank test P‐
value to determine if the results are significantly different from kV‐
kV DIR results.

Contour
DSCDR

Ave + SD

Wilcoxon
P‐value

Mandible 0.92 + 0.01 0.015

Oral cavity 0.88 + 0.05 0.069

Brainstem 0.92 + 0.02 0.008

Spinal cord 0.92 + 0.01 0.110

Parotid gland 0.91 + 0.03 0.003

Pharyngeal constrictors 0.86 + 0.05 0.028

Esophagus 0.88 + 0.02 0.038

Submandibular gland 0.86 + 0.05 0.004

Larynx 0.83 + 0.05 0.594

TAB L E 6 Tabulated values for MDA (mm) congruency test of
clinical patient data compared to the average (+SD) MDA of the HN
phantom dataset tests.

HN dataset
Ave + SD Patient 1 Patient 2 Patient 3

Parotid left 0.5 + 0.1 0.43 0.65 0.61

Parotid right 0.5 + 0.1 0.34 0.69 0.64

Mandible 0.4 + 0.1 0.42 0.34 0.42

Brainstem 0.4 + 0.1 0.25 0.44 0.42

Spinal cord 0.5 + 0.1 0.33 0.38 0.80

TAB L E 7 Tabulated values for DSC congruency test of clinical
patient data compared to the average (+SD) DSC of the HN
phantom dataset tests.

Contour
HN dataset
Ave + SD Patient 1 Patient 2 Patient 3

Parotid left 0.92 + 0.03 0.948 0.922 0.904

Parotid right 0.92 + 0.03 0.958 0.905 0.901

Mandible 0.92 + 0.01 0.930 0.941 0.927

Brainstem 0.94 + 0.01 0.970 0.949 0.953

Spinal cord 0.92 + 0.01 0.934 0.930 0.900
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contour propagation and manual contouring in HN MVCT images.

Whereas, on the other hand, our study did show small but significant

differences when comparing intermodal DIR (kV‐MV) using ground‐
truth virtual phantoms. Future studies will address contributions

from each component of the MVCT image transformation and possi-

ble solutions that can be translated into the clinic to improve inter-

modal DIR. Iterative reconstruction methods available for MVCT

imaging on the Accuray Radixact characteristically have better

CNR20; it is expected that kV‐MV DR agreement is as good or better

than the results shown in this study.

5 | CONCLUSION

The results of this validation study of the Accuray DIR algorithm using

a benchmark HN virtual phantom dataset indicate that this DIR algo-

rithm, when applied to adaptive treatment management, can be

expected on average to auto‐propagate HN contours adequately

within the tolerances recommended by TG‐132. However, contours

critical to dosimetric planning should always be visually proofed for

accuracy. Standard reconstruction MVCT image quality causes slightly

lower, but acceptable, agreement with ground‐truth contours.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Supplementary Figure 1: Principal component analysis of registra-

tion results. The loadings are the initial rigid alignment congruency

results for DSC (Dice r) and MDA (r), the DR congruency results for

DCS (Dice d) and MDA (d), the average (ave) and the percent differ-

ence (diff) in volume between SOT and EOT. The orthogonality of

the rigid alignment and diff loadings to the DR results suggest little

to no correlation. The average volume has some positive correlation

to DR DSC, and DSC and MDA have negative correlation as would

be expected, i.e. the larger the overlap agreement the smaller the

mean distance to surface agreement. None of the loadings appear

on either principle component axis suggesting little influence in the

variation of data, and none of the loadings have component lengths

greater than 1 suggesting no particular loading had greater influence

on the variationof data.

Supplementary Table 1: Comparison of mean registration error

statistics for voxels contained in the contour of interest. Statistics

are listed as mean ± SD and maximum errors are shown parentheses.

Results shown for MIM, Velocity, RayStation, Pinnacle, and Eclipse

are from Pukala et al.9.
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