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Abstract: Understanding a person’s attitude or sentiment from their facial expressions has long been
a straightforward task for humans. Numerous methods and techniques have been used to classify and
interpret human emotions that are commonly communicated through facial expressions, with either
macro- or micro-expressions. However, performing this task using computer-based techniques or
algorithms has been proven to be extremely difficult, whereby it is a time-consuming task to annotate
it manually. Compared to macro-expressions, micro-expressions manifest the real emotional cues of
a human, which they try to suppress and hide. Different methods and algorithms for recognizing
emotions using micro-expressions are examined in this research, and the results are presented in a
comparative approach. The proposed technique is based on a multi-scale deep learning approach
that aims to extract facial cues of various subjects under various conditions. Then, two popular multi-
scale approaches are explored, Spatial Pyramid Pooling (SPP) and Atrous Spatial Pyramid Pooling
(ASPP), which are then optimized to suit the purpose of emotion recognition using micro-expression
cues. There are four new architectures introduced in this paper based on multi-layer multi-scale
convolutional networks using both direct and waterfall network flows. The experimental results show
that the ASPP module with waterfall network flow, which we coined as WASPP-Net, outperforms the
state-of-the-art benchmark techniques with an accuracy of 80.5%. For future work, a high-resolution
approach to multi-scale approaches can be explored to further improve the recognition performance.

Keywords: deep learning; convolutional neural networks; micro-expression analysis; emotion classification

1. Introduction

A micro-expression is a human emotion expressed briefly, spontaneously, and unwill-
ingly. Usually, there are emotions that people desire to keep hidden for a variety of reasons.
Due to their subtlety and spontaneity, it is harder to conceal micro-expressions than to
repress fake long-duration expressions. As a result, it is very difficult for a human to spot
micro-expressions at a glance. However, slow-motion capturing of these micro-expressions
using high-speed digital cameras allows us to play back the video for analysis purposes. In
the early period of micro-expressions analysis systems development, handcrafted feature
extraction techniques such as Histogram of Oriented Gradient (HOG) [1], Main Directional
Mean Optical flow (MDMO) [2], Bi-Weighted Oriented Optical Flow (Bi-WOOF) [3], and
Local Binary Pattern with Three Orthogonal Planes (LBP-TOP) [4] were used to extract
the spatio-temporal information used for the automated recognition. In addition, all these
conventional machine learning techniques are heavily dependent on designer experience
in extracting the optimal set of features [5]. As the machine learning technology becomes
more mature, researchers have turned to convolutional neural networks (CNNs) to extract
the optimal set of features needed for micro-expression-based emotion classification.

The classification of emotions using micro-expressions is a challenging task due to
the issue of multi-scale in muscle movements among the subjects. Some subjects have a
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broader facial structure and hence, the muscle movements expressed by them affect wider
areas, especially around the mouth and eyes. On the other hand, some subjects have a
slimmer facial structure or smaller eyes, which will result in different movement patterns,
thence creating variable size challenges to the recognition system. To reduce the facial size
issue, all input images were resized and cropped to a standard format, in which only a
region of interest from each subject will be processed by the system. The standardized
facial region is readily available from each of the tested datasets. Yet, the size of the affected
muscle movement areas cannot be standardized, especially when multi-datasets of various
subject backgrounds are used for validation. Figure 1 shows a few subjects that express a
happy emotion, whereby they produce different movement intensity around the mouth
regions. In this example, subject 3 produces bigger facial muscle movements compared to
subjects 1 and 2. It is also observable that the subjects have different facial structures, which
cause different patterns in the muscle excitation, which can be addressed by embedding
multi-scale capability in the deep network.
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Figure 1. Differences in facial muscle movement for happy emotion among the test subjects:
(a) subject 1; (b) subject 2; (c) subject 3.

Therefore, multi-scale embedding in the CNN network was recently explored by
Sian et al. [6] through simple insertion of the Spatial Pyramid Pooling (SPP) module. How-
ever, the authors only tested a basic SPP using two sets of down-pooling kernels using a
fixed number of parallel paths. Even more, the multi-scale unit is inserted into the original
architecture of VGG-M without modifications or network optimization. In addition to that,
they have not explored other multi-scale network configurations apart from the SPP unit.
To overcome their suggested work limitations, we analyze and design a comprehensive
multi-scale unit addition to a compact network. Two multi-scale approaches are explored
that include the SPP and Atrous Spatial Pyramid Pooling (ASPP), which will be optimized
in terms of unit placement, number of parallel paths, and down-pooling kernel sets. In
addition, we also analyze the network flow of the multi-scale unit through direct and
waterfall methodology to produce the best emotion recognition based on micro-expression
input cues. Therefore, the following are main contributions of this paper: (i) optimize
multi-scale approaches by exploring the optimal position and parallel branches for the SPP
and ASPP module, (ii) optimize network flows—either direct or waterfall flows.

The proposed multi-scale networks are discussed in five sections, whereby the follow-
ing Section 2 provides an overview of various related works, while Section 3 describes the
technical details used to classify the emotions using facial micro-expression cues, which
also include all the proposed architecture variants. Section 4 discusses the results of the
emotion classification experiments, followed by Section 5 which concludes the findings
and some plans for future work.

2. Recent Works

In general, micro-expression recognition systems are separated into two modules:
spotting the maximum instantaneous changes in facial expressions and classifying the
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emotion behind the spotted micro-expression frame. The spotting approach assumes that a
single frame information, which is the apex frame, is enough to detect the right emotion.
On the other hand, if a long-video format is used, the spotting module aims to recognize
three crucial frames, namely the onset, apex, and offset frames, which are then used to
detect the presence of micro-expressions.

In ref. [7], Davison et al. detected micro-expressions via histogram-oriented gradient
by labeling the frames as the true positive detection if the frame sequence is less than
100 frames, which also includes noise issues from video flicker and fixation. Then, a
false positive case is identified when the detected motion sequence is not encoded into
the respective class. Their simulation results, which were tested on the SAMM database,
produced accuracy, Recall Rate, and F1 score of 0.70, 0.84, and 0.76, respectively. According
to the research in ref. [8], the combination of optical strain and optical flow magnitudes
can further improve the performance of automated emotion recognition using micro-
expressions, which have been verified using both SMIC and CASME II datasets. In ref. [2],
Liu et al. employed a unique optical flow technique known as MDMO to better extract the
textural information of the images. Then, an affine transformation was used to eliminate
any subtlety of illumination and head motions. The facial areas were also subdivided into
several regions of interest (ROIs), which were then fed to an SVM classifier to detect the
genuine emotion class. One of the papers that popularizes the usage of the apex frame as
the sole input for emotion classification is the work by Liong et al. [3]. They utilized the
Bi-WOOF method to extract the important features in the apex frame. Then, OffApexNet
was proposed in ref. [9] as a hybrid approach, whereby this network employs two frames of
information to represent the micro-expression: onset and apex frames. Then, the computed
optical flow features from these two frames were passed to a CNN model for optimal
feature extraction.

Deep learning has shown promising results in various domains of study in recent
years [10–12], and it has also been used successfully in micro-expression recognition.
Kim et al. [13] proposed a combination between CNN and long short-term memory
(LSTM) to capture the spatio-temporal information in a video to locate and recognize
micro-expressions. The spatial features of facial expressions were first analyzed using
CNN that covers all expressions, which are then passed to the LSTM to extract temporal
relationships of the CNN inputs. Khor et al. [14] presented a unique CNN-LSTM model
through the Enriched Long-Term Recurrent Convolutional Network (ELRCN). Their ap-
proach utilized both optical flow and optical strain characteristics as the inputs to model
the minute facial muscle movements. This combination of CNN-LSTM has been proven
to be robust in extracting both the optimal temporal and spatial features from the tested
videos [15–17]. After the features were extracted, the emotion was categorized using a
conventional machine learning approach through Support Vector Machines (SVM). For
micro-expression recognition, Shaheen et al. [18] proposed a framework for an emotion
recognition system that treats emotions as generalized ideas abstracted from sentences by
incorporating compositional, syntactic, and semantic analysis. Erenel et al. [19] developed
and compared a new feature selection approach for emotion classification to various feature
reduction techniques, including chi-square, Gini-text, and delta. The proposed approach,
known as the relevance score, was shown to improve emotion classification.

Peng et al. [20] suggested a dual-template CNN model based on the optical flows ex-
tracted from successive micro-expression sequences. However, extracting their multiple op-
tical flow input requires much computation, which significantly reduces the dual-template
CNN model’s efficiency. The optical flow data from the entire video need to be retrieved
first before they are supplied to the CNN feature extractor. Then, a new automated micro-
expression analysis technique, which is called Flownet 2.0 [21], was used by Li et al. [22]
to improve a dual-template CNN model performance, yet the performance is still inferior
to the conventional approaches [23]. Kumar et al. [24] then employed a method based on
frequency domain to delete low-intensity expression frames. In their paper, the frames with
the least amount of texture variance are defined as the low-intensity frames. Significant
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motion will magnify the emotion image that was created from the remaining high-intensity
frames. The emotions are then classified by passing through all these high-intensity frames
into the respective CNN model. SPP was initially introduced by He et al. [25], and has
been effectively applied to various semantic segmentation tasks [26], anti-spoofing appli-
cations [27], expression analysis systems [6], and many other automated systems in the
computer vision literature. Meanwhile, ASPP was originally proposed by Chen et al. [28],
and demonstrated success in a range of works that include object detection [29], image
segmentation [30,31], image classification [32], etc.

3. Methodology

Firstly, a compact base CNN model with five convolutional layers was proposed. It
is hard to optimize a deeper network because of the limited availability of the database.
Then, the optimal design of the multi-scale modules that include exploration of SPP and
ASPP modules was implemented by considering various configurations of parallel paths
and module placement positions. Lastly, optimal network flow selection for both SPP
and ASPP modules between direct and waterfall flows was experimented to produce the
best-performing emotion classification system.

3.1. Dataset

A crucial prerequisite for developing a micro-expression-based emotion classification
system using a deep learning network is the availability of sufficient labeled training data.
In general, our primary emotions are classified into six different categories, namely, angry,
disgusted, scared, happy, sad, and surprise. However, in this study, only three types of
emotion are used, whereby several emotions are combined into either positive, negative, or
surprise. In addition to that, a combined dataset from three available online databases was
used in this study, namely CASME II, SAMM, and SMIC, which also limits the emotion
categories to three classes only. Table 1 shows the number of samples for each dataset used
in this study.

Table 1. The number of samples for the tested datasets.

Types of Emotion Combined CASME II SAMM SMIC

Positive 109 32 26 51
Negative 250 88 92 70
Surprise 83 25 14 43

Total 441 145 132 164

The Chinese Academy of Micro-Expression Sciences (CASME II) is one of the latest
versions of the CASME family dataset that was developed by Yan et al. [33], which contains
247 micro-expressions from 26 subjects. Each of the 247 micro-expression samples has
been annotated into one of the five emotion classes, namely happy, disgusted, shocked,
oppressive, and others. All video sequences of the facial micro-expressions were recorded
using a high-speed camera with a frame rate of 200 frames per second (fps) with a rela-
tively low resolution of 280 × 340 pixels. The expressions in the CASME II database were
labeled based on a combined assessment of the Action Unit (AU), participant reports, and
video content. In this study, only 145 samples were used due to the emotion class avail-
ability, which is then separated into three emotion categories: positive (happy), negative
(repression, disgust), and surprise.

The second dataset, Spontaneous Actions and Micro-Movement (SAMM), was de-
veloped by Davison et al. [34], consisting of 156 samples of micro-expressions. The data
were collected from 32 subjects with an average age of 33.24 years that come from diverse
ethnicities. This dataset originally had seven types of micro-expression-based emotions:
hatred, disgust, surprise, fear, sadness, anger, and happiness. Contrary to the CASME
II dataset, the SAMM dataset was recorded using a high-speed camera of 200 fps with a
resolution of 2040 × 1088 pixels. This dataset also comes with an annotated frame index
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for the onset, apex, and offset frames. In this study, only 133 micro-expression samples
were used, which were then recategorized into three types of emotions: positive (happy),
negative (fear, disgust, hatred, sadness, and anger), and surprise.

The last dataset, Spontaneous Micro-Expression Corpus (SMIC), was developed by
Li et al. [35], and consists of three imaging subtypes, namely HS-SMIC, VIS-SMIC, and
NIR-SMIC. There are a total of 164 micro-expression samples taken from 16 subjects for the
HS-SMIC subtype, whereas only 71 samples from 7 subjects were available in the VIS-SMIC
and NIR-SMIC datasets. Again, the samples from these three SMIC subsets were divided
into three micro-expressions categories, namely positive, negative, and surprise. These
micro-expression samples also come with annotated frame index information for the onset
and apex frames.

3.2. CNN Architecture Model

This study uses compact CNN architecture to extract sophisticated micro-expression
information to classify the emotion categories into three classes. Before a multi-scale
module is added, an optimized compact network needs to be finalized so that the multi-
scale experiments can be processed effectively. The base model is derived from optimal
hierarchical spatial features using multiple building blocks such as convolutional, pooling,
and fully connected (FC) layers. The final base model will include five convolutional layers,
three pooling layers, and three FC layers. The pooling layer task is to reduce the feature
map size generated by the convolutional layer. Then, the FC layer takes all the latent
variables and performs dense connections from the previous layer.

Then, an optimal set of hyperparameters needs to be configured due to the compact
nature of the model that has a higher likelihood to overfit when the training data availability
is limited. If the overfitting problem occurs, the training accuracy will be relatively high,
while the test accuracy will return a much poorer performance. In other words, the model
learns with limited generalization capability, whereby the distractions that are not needed
also fit into the model during the training phase. Table 2 shows the network architecture of
the base CNN model used for multi-scale integration experiments.

Table 2. Network architecture of the proposed base CNN model.

Layer Size of
Kernel Stride Padding Size of Output Activation

Function

Conv1 7 × 7 1 1 96 × 69 × 69 ReLu
Conv2 5 × 5 1 1 256 × 65 × 65 ReLu
Conv3 3 × 3 1 0 512 × 65 × 65 ReLu
Pool3 3 × 3 2 1 512 × 32 × 32 -
Conv4 3 × 3 1 0 512 × 32 × 32 ReLu
Pool4 3 × 3 2 1 512 × 16 × 16 -
Conv5 3 × 3 1 0 512 × 16 × 16 ReLu
Pool5 3 × 3 2 1 512 × 8 × 8 -
FC1 - - - 128 ReLu
FC2 - - - 128 ReLu
FC3 - - - 3 Softmax

Based on Table 2, the first and second convolutional layers use kernel depths of
96 and 256, respectively. In comparison, the kernel depth for convolutional operation in
the third, fourth, and fifth layers is set to 512. Then, the output size of the fully connected
(FC) layers, FC1 and FC2, are set to 128 units, while FC3 only uses three output nodes
because of the three emotion classes. All input networks are fed with the optic flow images
that are adjusted to a size of 75 × 75 pixels, which is the input requirement for the first
convolutional layer (Conv1). The activation function for all convolutional layers, FC1 and
FC2, is set to Rectified Linear Unit (ReLu), whereas the FC3 activation layer utilizes the
Softmax function to make the final classification. This study generally focuses on modifying
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the proposed architecture by inserting new layers into it, namely the SPP layer and the
ASPP layer.

3.3. Emotion Classification Based on the SPP Module

SPP is a multi-scale feature pooling module that uses repeated down-pooling informa-
tion to create parallel branches to extract features of various sizes. Each of the new branches
will focus on a smaller set of features. The SPP modules generally consist of four parallel
layers, and each layer has a different feature map size, derived from the same original input
source. For each parallel branch, the feature extraction process will consist of a convolution
layer, average pooling layer, batch normalization, and ReLU activation function. The kernel
size of average pooling to down-sample the feature maps varies between different scales.
Then, the output of each parallel branch will undergo a resizing process by scaling them
to match the input source size so that all outputs can be concatenated together. A skip
connection layer is also added to bring forward the original feature map to further enrich
the multi-scale feature extraction module. Figure 2 shows the general architecture of an
SPP module with four parallel branches.
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Several variants of the SPP module have been developed to produce an optimal
compact network to recognize human emotion through micro-expression input. In this
study, the number of optimal parallel branches in the SPP modules is experimented with,
coupled with the optimal placement of the module. Overall, there are eight variants of SPP
module architectures being developed and tested. The differences between these variants
are in terms of the optimal number of parallel path modules, the kernel size of average
pooling, and the position of the module placement. Specifically, this study defines the
average pooling parameters as (2, 4, 6, 8, 10) pool size, which produces pool sizes of 2 × 2,
4 × 4, 6 × 6, 8 × 8, and 10 × 10, respectively. Then, the fixed-dimensional vectors will
be the input for the following convolution layer. Table 3 shows the list of SPP module
architectures that were proposed to recognize the emotions, and Figure 3 shows the position
of the embedded SPP module on the proposed base CNN model.
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Table 3. List of the SPP module architecture variants.

SPP Model Number of Parallel Paths Maximum Kernel Size Position

I 2 SPP 4 × 4 After Conv1
II 3 SPP 6 × 6 After Conv1
III 4 SPP 8 × 8 After Conv1
IV 5 SPP 10 × 10 After Conv1
V 2 SPP 4 × 4 After Conv2
VI 3 SPP 6 × 6 After Conv2
VII 4 SPP 8 × 8 After Conv2
VIII 5 SPP 10 × 10 After Conv2
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3.4. Emotion Classification Based on the ASPP Module

The original version of the ASPP module was first introduced in [36], which extracts
multi-scale features through parallel atrous convolution with different dilation rates. Atrous
convolution as applied in the ASPP module allows the convolutional filter to capture larger
feature maps by allowing spaces between the filter kernel. The larger the spacing, the
bigger the dilation rate, which still retains the same sized convolutional kernel. This sparse
concept of filter captures the multi-scale features through varying the atrous rate. For
each parallel branch in ASPP, the feature maps will be processed through a sequence of
atrous convolutional layer, batch normalization, and ReLU activation function. Atrous
convolution resembles the standard convolution operation, except that its kernel will
sparsely be expended by adding zero rows and columns weights. Thus, in each dimension
of the atrous convolutional filter, a gap of r − 1 is formed between two consecutive filter
values, whereby r is the dilation rate. Figure 4 shows a basic ASPP module architecture
with five parallel branches. The atrous convolution is defined by Equation (1), where W[n]
is the output of the atrous convolution, n is the index, k is the location of the index in
the kernel, r is the dilation rate that determines the kernel size of the atrous convolution
layer, and f is the filter weight. Changing the dilation rate can adjust the output size of the
resultant feature maps, which will capture different regions of the micro-expressions.

W[n] =
d

∑
d=1

x[n + r·k] f [d] (1)

There are several variants of the ASPP modules that were developed in this study.
In general, and the difference between the variants can be summarized according to the
following criteria: (1) the number of parallel pathway modules, (2) the dilation rate used in
the atrous convolution layer, and (3) the placement of the ASPP module in the base CNN
architecture. Figure 5 shows the possible placement configurations of the ASPP module in
the base CNN architecture, while Table 4 shows the summary of network characteristics of
the ASPP variants.
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Table 4. List of ASPP module architecture.

ASPP Model Number of Parallel Paths Maximum Dilation Rate Position

I 2 ASPP 2 After Conv1
II 3 ASPP 3 After Conv1
III 4 ASPP 4 After Conv1
IV 5 ASPP 5 After Conv1
V 2 ASPP 2 After Conv2
VI 3 ASPP 3 After Conv2
VII 4 ASPP 4 After Conv2
VIII 5 ASPP 5 After Conv2

3.5. Direct and Waterfall for SPP and ASPP Module

To further optimize the design of both the SPP and ASPP modules, two types of
network flow were experimented with, which are direct and waterfall flows. As a result,
this paper introduces a set of four new architecture variants, namely Direct Spatial Pyramid
Pooling (DSPP-Net), Waterfall Spatial Pyramid Pooling (WSPP-Net), Direct Atrous Spatial
Pyramid Pooling (DASPP-Net), and Waterfall Atrous Spatial Pyramid Pooling (WASPP-
Net). A new branch in the direct network flow derives its input feature map from the
original input source, while a new branch in the waterfall network flow derives its input
from the previous parallel branch that mimics the waterfall flow. The network flow of the
direct scheme for both SPP and ASPP architectures are shown in Figure 6.
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The proposed WSPP-Net and WASPP-Net architectures modify the input source of
the DSPP-Net and DASPP-Net when a new parallel branch is created. For a set of four
parallel branches, DSPP-Net divides the input into four paths through average pooling
operators with a set of kernel sizes of 4 × 4, 6 × 6, 8 × 8, and 10 × 10 kernels, coupled with
a skip connection of the original input source. On the other hand, for a set of four parallel
branches of DASPP-Net, the networks will create four network paths by using a set of
atrous convolution operators with different dilation rates of 2, 3, 4, and 5. However, for the
WSPP-Net and WASPP-Net, the input source for the next parallel branch will be derived
from the previous branch, which acts like a waterfall flow, from which it gets its name, as
shown in Figure 7. The waterfall network flow tries to diversify the input source so that
the features are extracted by utilizing broader fields-of-view (FOV) while maintaining the
same number of parallel branches.
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4. Results and Discussions
4.1. Training Setup

The platform used to execute the experiments was based on an Intel Core i7-4770
coupled with an NVIDIA Titan V video card. In addition to that, the NVIDIA CUDA
10.1 framework and cuDNN 8.0.3 library were used to enable the parallel computation to
speed up the training process. The Leave-One-Subject-Out (LOSO) approach was applied
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in this investigation so that bias among the subjects can be reduced. It is recommended
that one subject from all micro-expression datasets should be set aside for testing, and the
remaining subjects should be utilized for the training purpose. The performance of all
proposed variants will be measured using accuracy and F1 score evaluation metrics. The
equation and explanation of the performance metrics are as follows:

1. Accuracy (Ac): the ratio of correctly predicted results compared to the number of
samples. The formula for calculating the accuracy is shown in Equation (2), where
T(+ve) is the true positive, T(−ve) is the true negative, and Ts is the total number
of samples.

Ac =
T(+ve) + T(−ve)

Ts
(2)

2. F1 score: the mean harmonic for recall, Re, and precision, Pr. It captures a balanced
metric between recall and precision metrics with an output range between 0 and 1. If
the model has a perfect recall and accuracy values, then its F1 score is 1, whereas, if
one or both recall and accuracy are 0, then its F1 score will be 0. The F1 score formulas
are shown in Equations (3)–(5), where F(+ve) indicates the false positive detection, and
F(−ve) indicates the false negative detection.

F1 score = 2 × Pr × Re
Pr + Re

(3)

Pr =
T(+ve)

T(+ve) + F(+ve)
(4)

Re =
T(+ve)

T(+ve) + F(−ve)
, (5)

Optimal selection of hyperparameters is essential to control the algorithm during the
training process, which will significantly impact the performance of the tested CNN model.
Hence, Table 5 shows a list of experimental hyperparameters and their role that include
optimizer, learning rate, group size, and number of training samples.

Table 5. List of experimental hyperparameters.

Hyperparameter Type/Value Function

Optimizer Adam [37] Update parameters such as weights and learning
rates to reduce losses

Learning rate 0.0001 Update weights

Batch size 32 Number of samples taken to update
model parameters

Number of training samples Leave-One-Subject-Out (LOSO) The combined number of samples used

4.2. SPP Module Results Based on the Position and Number of Parallel Branches

This section analyses and discusses the outcomes of the suggested SPP module for
classifying emotions based on micro-expression cues. Table 6 lists the classification accuracy
for the base CNN coupled with various variants of the SPP module that differ in the
number of parallel branches used and module placement strategy. The accuracy results
of the modified networks tested on the three databases improved significantly with the
addition of the SPP module. For SAMM and combined datasets, the best performance is
obtained by model VIII, which consists of five parallel branches with a maximum kernel
size of 10 × 10 pixels, which are placed after Conv2. The accuracy performance for the
SAMM database is 73.23%, while the accuracy performance for the combined datasets is
79.59%. Meanwhile, if only the CASME II dataset is considered, the best accuracy of 91.26%
is obtained through models I and VII. The former model uses two parallel branches, placed
after Conv1, while the latter model uses four parallel branches, placed after Conv2. Lastly,
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the accuracy performance tested on the SMIC dataset did not show any improvement when
the SPP module was embedded into the base CNN model.

Table 6. Emotion classification accuracy evaluated based on number of parallel paths and placement
position of the SPP module.

Types of
Datasets

Accuracy (%)

Original
(Without SPP Module)

Types of SPP Model

I II III IV V VI VII VIII

Combined 77.48 77.63 77.32 77.63 77.48 77.93 78.23 77.48 79.59
CASME II 88.51 91.26 87.59 88.51 88.51 89.43 87.13 91.26 89.89

SAMM 67.68 67.17 69.7 71.21 70.2 69.7 72.73 67.68 73.23
SMIC 75.61 73.98 74.39 73.17 73.58 74.39 74.8 73.17 75.61

Table 7 shows the overall classification F1 score findings for the CASME II, SAMM,
SMIC, and combined datasets utilizing the suggested SPP variants that focus on the number
of parallel paths and module placement strategy. With regards to model VIII, it produced
better F1 scores of 0.6939 and 0.5985 tested on the SAMM and the combined datasets,
respectively, which are much higher performance values compared to the original base
CNN model (0.6621 and 0.5152). While F1 score performance for the CASME II dataset is
inconclusive with 0.869, the score performance dropped for all variants when they were
tested on the SMIC dataset.

Table 7. Overall emotion classification F1 score results evaluated based on number of parallel paths
and placement position of the SPP module.

Types of
Datasets

F1 Score

Original
(Without SPP Module)

Types of SPP Model

I II III IV V VI VII VIII

Combined 0.6621 0.6644 0.6599 0.6644 0.6621 0.6689 0.6735 0.6621 0.6939
CASME II 0.8276 0.869 0.8138 0.8276 0.8276 0.8414 0.8069 0.869 0.8483

SAMM 0.5152 0.5076 0.5455 0.5682 0.553 0.5455 0.5909 0.5152 0.5985
SMIC 0.6441 0.6098 0.6159 0.5976 0.6037 0.6159 0.622 0.5976 0.6341

4.3. ASPP Module Results Based on the Position and Number of Parallel Branches

The experimental results of the emotion classification for various configurations of the
parallel paths and placement strategy of the ASPP module are shown in Table 8. As the
findings demonstrate, the base CNN model embedded with the ASPP module consistently
outperforms the original base CNN model for all validation datasets, except for the SMIC
dataset. Model V improves the accuracy of emotion classification with consistent gains
of 6.06% and 1.44%, tested on SAMM and combined datasets, respectively. Then, the
increasing pattern of the result can also be observed for the CASME II dataset using models
VI and VII. However, the models perform poorly for the SMIC dataset, as they do not
produce performance increments in any embedded ASPP model like the other two datasets.

Table 9 illustrates the F1 score performances for emotion classification based on the
number of parallel paths and placement strategy of the ASPP module. For model V, its
F1 score surpasses the original base CNN model by 0.025 tested on the combined dataset
and 0.0909 tested on the SAMM dataset. The performance using the CASME II dataset also
improved by 0.0348 when models VI and VII were used, but all variants performed poorly
when tested on the SMIC dataset alone.
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Table 8. Emotion classification accuracy evaluated based on number of parallel paths and placement
position of ASPP module.

Types of Datasets

Accuracy (%)

Original
(Without ASPP Module)

Types of ASPP Model

I II III IV V VI VII VIII

Combined 77.48 76.11 77.02 76.11 78.53 79.14 78.08 77.48 77.63
CASME II 88.51 89.89 89.97 86.67 89.42 88.97 90.8 90.8 87.59

SAMM 67.68 66.16 70.71 70.71 71.21 73.74 69.19 70.2 70.2
SMIC 75.61 71.95 71.54 71.14 74.8 74.8 73.98 71.54 74.8

Table 9. Overall precision of emotion classification F1 score results evaluated based on number of
parallel paths and placement position of the ASPP module.

Types of Datasets

F1 Score

Original
(Without ASPP Module)

Types of ASPP Model

I II III IV V VI VII VIII

Combined 0.6621 0.6417 0.6553 0.6417 0.678 0.6871 0.6712 0.6621 0.6644
CASME II 0.8276 0.8483 0.8345 0.80 0.8414 0.8345 0.8621 0.8621 0.8138

SAMM 0.5152 0.4924 0.5606 0.5606 0.5682 0.6061 0.5379 0.553 0.553
SMIC 0.6441 0.5793 0.5732 0.5671 0.622 0.622 0.6098 0.5732 0.622

4.4. SPP and ASPP Module Using Direct and Waterfall Network Flows

Table 10 compares the emotion classification accuracy of DSPP-Net and WSPP-Net
architectures. The WSPP-Net performance is noticeably higher compared to DSPP-Net.
The highest accuracy is obtained by WASPP-Net when it is tested using CASME II, SAMM,
SMIC, and the combined dataset with performance values of 92.18%, 72.73%, 75.61%,
and 80.2%, respectively. In contrast, the accuracy performance of the WSPP-Net remains
the same as the original base model and hence, the embedded multi-scale unit does
not contribute to the betterment of the network performance. On the other hand, the
accuracy performance of DSSP-Net is slightly lower, by 1.22%, when it is tested on the
SMIC dataset. Figure 8 illustrates the training graph performance between DSPP-Net and
WSPP-Net architectures.

Table 10. Comparison of emotion classification accuracy on DSPP-Net and WSPP-Net architectures.

Types of Datasets
Accuracy (%)

Original
(Without SPP Module) DSPP-Net WSPP-Net

Combined 77.48 77.93 80.20
CASME II 88.51 89.43 92.18

SAMM 67.68 69.7 72.73
SMIC 75.61 74.39 75.61

The overall performance results of the DASPP-Net and WASPP-Net are illustrated in
Table 11. According to these findings, the accuracy of emotion classification using micro-
expression cues has increased compared to the base CNN model through WASPP-Net and
DASPP-Net, for all dataset categories. In general, WASPP-Net returns a better emotion
classification performance compared to the DASPP-Net. Specifically, if CASME II, SAMM,
SMIC, and combined datasets are considered, the WASPP-Net achieves performance in-
crements of 3.67%, 3.58%, 2.03%, and 3.02%, respectively, when it is compared to the base
CNN model. After considering all experiments, it is noticeable that both SPP and ASPP
modules will produce promising results when the waterfall network flow is used, instead
of the direct flow. Figure 9 shows the training graph performance between DASPP-Net
and WASPP-Net architectures. Furthermore, Table 12 illustrates the timing comparison
between the execution time of DASPP-Net and WASPP-Net architectures.
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Table 12. Execution time comparison between DSPP-Net, WSPP-Net, DASPP-Net, and WASPP-Net
architectures.

Type of Architecture Training Time Per Subject (s) Execution Time (Frames
Per Second)

Original (Without SPP/
ASPP Module) 520 418

DSPP-Net 431 510
WSPP-Net 370 591

DASPP-Net 548 400
WASPP-Net 447 460

Apart from the classification performance, we also analyzed the timing performance
for each proposed method. Table 12 compares the execution time between DSPP-Net,
WSPP-Net, DASPP-Net, and WASPP-Net architectures. From this result, the execution
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time for WSPP-Net architecture is the fastest compared to other architecture, which can
be processed with up to 591 frames per second (fps) during the training phase. We used
the “Time” library to measure the execution time, which is processed using a high-end
GPU of Nvidia Titan X. In general, the waterfall flow configuration for both SPP and
ASPP architectures is the faster version compared to the direct flow configuration. The
execution time for WASPP-Net is faster than DASPP-Net, whereby the training time for
WASPP-Net consumes only 447 s compared to DASPP-Net, which consumes 548 s. The
slowest architecture among them is DASPP-Net, which can process a relatively lower
timing performance of just 400 fps.

4.5. Benchmark to the State-of-the-Art the Algorithms

Table 13 shows the performance comparison between the proposed method, WASPP-
Net, and the state-of-the-art CNN models. The results show that WASPP-Net produced the
highest accuracy of 80.50% and an F1 score of 0.7075 compared to the other state-of-the-art
CNN methods. The second-best method is OffApexNet, in which WASPP-Net shares
a lot of base architecture similarities. Hence, we can also deduce that the performance
increment is due to the addition of an optimized multi-scale unit, which improves the
accuracy from 78.38% to 80.50%. However, a simple application of VGG-M without any
network modification will produce a low accuracy, as the size of the feature maps is too
small for the latter layers, which results in low accuracy and an F1 score of 72.34% and
0.5850, respectively. It is observable that the third, fourth, and fifth layers do not really
carry much information, as the feature maps are at most 3 × 3 pixels.

Table 13. Performance comparison to the state-of-the-art CNN models.

Method Accuracy (%) F1-Score

VGG-M 72.34 0.5850
DualInception 73.09 0.5964

AlexNet 75.51 0.6327
STSTNet 77.48 0.6621

OffApexNet 78.38 0.6757
WASPP-Net 80.50 0.7075

In addition to that, it is interesting to note that the increment in the number of parame-
ters or network size does not always produce a better emotion recognition performance.
This is proven in the previous subsections, whereby more parallel paths will not produce a
better performance. In fact, for WASPP-Net, three parallel branches are a better configu-
ration compared to the five parallel branches. Table 14 lists the total number of network
parameters for each proposed architecture model. Even though DSPP-Net has higher
parameters of 8,378,659 compared to WASPP-Net with 8,117,794 parameters, WASPP-Net
still produced the best emotion classification among them.

Table 14. Number of network parameter for each architecture model.

Types of Models Number of Parameter

DSPP-Net 8,378,659
WSPP-Net 8,231,203

DASPP-Net 8,378,659
WASPP-Net 8,117,794

5. Conclusions

This work proposed multiple variants of multi-scale deep learning models for emotion
classification using micro-expression cues. Two main network strategies either using Spatial
Pyramid Pooling or Atrous Spatial Pyramid Pooling (ASPP) were shown, where both of
them are optimized according to the number of parallel branches as well as the module
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placement scheme. The proposed methodologies were evaluated using three publicly
available spontaneous micro-expression databases (CASME II, SMIC, and SAMM), which
are readily downloadable online. As demonstrated in the experiments, the suggested
techniques have the potential to greatly improve the accuracy of micro-expression-based
emotion classification. However, it is also noticeable that the multi-scale module does not
improve the classification performance when it is tested on the SMIC dataset. The main
reason for this abnormality is due to the absence of an annotated apex frame index by
the dataset provider, which makes it impossible to provide representative information
on the subject matter. Furthermore, this paper also concludes that the WASPP-Net that
utilizes waterflow network flow with the ASPP module produced the best classification
performance compared to the original base CNN model, with an overall accuracy of 80.5%.
For future works, attention-based mechanisms and feedforward paths can be embedded
into the base CNN model to increase network capability in locating the regions of interest
as well as improving the carry-over information from the early layers.
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