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Sparse pixel image sensor
Lukas Mennel, Dmitry K. Polyushkin, Dohyun Kwak & Thomas Mueller*

As conventional frame-based cameras suffer from high energy consumption and latency, several 
new types of image sensors have been devised, with some of them exploiting the sparsity of natural 
images in some transform domain. Instead of sampling the full image, those devices capture 
only the coefficients of the most relevant spatial frequencies. The number of samples can be even 
sparser if a signal only needs to be classified rather than being fully reconstructed. Based on the 
corresponding mathematical framework, we developed an image sensor that can be trained to 
classify optically projected images by reading out the few most relevant pixels. The device is based 
on a two-dimensional array of metal–semiconductor–metal photodetectors with individually tunable 
photoresponsivity values. We demonstrate its use for the classification of handwritten digits with an 
accuracy comparable to that achieved by readout of the full image, but with lower delay and energy 
consumption.

The Nyquist-Shannon sampling  theorem1 establishes a lower bound for the sampling rate required to capture 
any given signal of finite bandwidth without loss of information. The original signal can then be perfectly recon-
structed from the samples. For many practical signals, however, reconstruction may still be possible from far 
fewer samples—or measurements—than required by the sampling theorem. This can be understood from the fact 
that these signals may contain much redundant information or, more precisely, are sparse when represented in a 
proper domain or basis. Natural images, for example, are known to be sparse in the Fourier or Wavelet domains, 
which is exploited in several types of transform coding schemes, including the JPEG and MPEG  standards2.

Compressed sensing (CS) is a mathematical framework for the recovery of sparse signals from few 
 measurements3–6. In CS, a signal that is incoherently (e.g. randomly) sampled at the encoder side, can be recon-
structed at the decoder by finding the sparsest solution of an underdetermined linear system. Both sampling and 
compression are performed simultaneously to reduce the number of measurements at the expense of increased 
computational cost for signal reconstruction.

By combining CS with statistical learning, the number of required measurements can be further reduced, 
particularly if a given signal only needs to be assigned to one of a few categories, or classes, rather than being 
fully reconstructed. This can be achieved by using a task-specific basis, learned from data, instead of a generic one 
such as Fourier or Wavelet. In the sparse sensor placement optimization for classification (SSPOC)  algorithm7,8, 
the data are not sampled randomly, but a few representative measurement locations are identified from training 
data. Subsequent samples can then be classified with performance comparable to that obtained by processing 
the full signal.

Several new types of image sensors have been developed in recent  years9, targeting lower energy consumption 
and latency than their conventional frame-based counterparts. Many of those devices emulate certain neuro-
biological functions of the retina, either using complementary metal–oxide–semiconductor (CMOS) technol-
ogy (silicon retina)10–13 or emerging device  concepts14–19. CS has likewise led to new types of image acquisition 
systems, such as single-pixel  cameras20, coded aperture  imagers21, and CMOS CS imaging  arrays22,23. SSPOC, 
on the other hand, has inspired applications in dynamics and  control24,25, but has to the best of our knowledge 
not been employed in an imaging device yet. Here, we present a hardware implementation of this algorithm, 
based on a two-dimensional array of tunable metal–semiconductor-metal (MSM) photodetectors. Each of these 
detectors can be addressed individually and their photoresponsivity values can be set by the application of a bias 
voltage. The device is fully reconfigurable and we demonstrate its use for the classification of handwritten digits 
from the MNIST dataset with an accuracy comparable to that achieved by readout of the full image, but with 
substantially lower delay and energy consumption.

Results
Operation principle. Let us first lay out the operation principle of the image sensor (Fig. 1a), exemplified 
by a simple linear classification problem. We restrict ourselves to binary classification, where an optical image, 
that is projected onto the chip, is assigned to one of two possible classes. The image is represented by a vector 
p = (P1, P2, . . . ,Pn)

T in an n-dimensional vector space Rn , where Pk is the optical power at the k-th pixel. Unlike 
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in conventional imagers, the photoresponsivity of each pixel is not fixed, but varies over the face of the chip. We 
aggregate the photoresponsivity values into a vector r = (R1,R2, . . . ,Rn)

T ∈ R
n , where Rk denotes the respon-

sivity of the k-th detector. A linear classifier is a predictor of the  form26

where σ is a threshold function that maps all values of the inner product rTp below a certain threshold (bias) to 
the first class and all other values to the second class (Fig. 1b). Physically, the inner product is implemented by 
simply summing up the photocurrents produced by all n detector elements, Itot =

∑n
k=1 Ik =

∑n
k=1 RkPk = rTp . 

By thresholding Itot , a binary output is obtained that is representative of the two classes. r is learned from a 
set of labeled training data. A generalization to multi-class problems can be achieved by splitting pixels into 
 subpixels14,27 which allows for a physical implementation of a responsivity matrix R.

In Fig. 1c we plot r for a linear support vector machine (SVM) that is trained to classify handwritten zeros 
(“0”) and ones (“1”) from the MNIST dataset. 90% of randomly picked images are used for training and the 
remaining 10% for assessment. Almost all photodetectors are active, with varying responsivity values, and a 
classification accuracy of 99.8% is reached.

We now aim to obtain a comparable performance by selecting a small, optimal subset of detectors, or pixels. 
Figure 1d provides a geometrical interpretation of the  algorithm7,8. A d-dimensional feature space, that spans 
the d ≪ n most significant variations among the training data, is calculated using principal component analysis 
(PCA)26 and the principal component vectors u are assembled in a matrix � = (u1 u2 . . . ud) . The choice of 
d is a tradeoff between the number of relevant pixels and accuracy for a specific classification task, as shown in 
Supplementary Figure S1. For categorical decisions, a measurement p is projected into this low-dimensional 
subspace ( �T : Rn → R

d ) and a linear classifier, described by the weight vector w ∈ R
d , is then applied therein: 

y = σ
(

wT
�

Tp
)

 . In image space coordinates, this expression resembles Eq. (1) with a photoresponsivity vector 
r = �w . Note, however, that there exists an infinite number of solutions for r , because adding any vector v in 
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Figure 1.  Theoretical background and operation principle. (a) Schematic illustration of the setup. An optical 
image p is projected onto the face of the image sensor with photoresponsivity values r that vary from pixel to 
pixel. (b) A binary linear classifier assigns an image to one of two possible classes I or II, depending whether or 
not the inner product rTp is larger than some threshold. In our implementation, the inner product is realized by 
summing up the photocurrents produced by all detector elements. (c) Photoresponsivities for a sensor that has 
been trained as a linear SVM for the classification of zeros and ones from the MNIST dataset. Almost all pixels 
exhibit non-zero photoresponsivity values. (d) Natural images have low-dimensional structure. This allows to 
construct a sparse photoresponsivity vector r for classification. (e) Results for the same binary classification task 
as in c. Comparable performance is achieved with 99.2% of the detector elements having zero responsivity.
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the null space (kernel) of �T projects to the very same w in feature space. We seek the sparsest solution for r , that 
is the one that has at most d nonzero elements: �r�0 ≤ d . As shown by the CS  community3–6, ℓ1-minimization 
leads to a convex optimization problem that can be efficiently solved with standard methods (here, orthogonal 
matching pursuit):

Figure 1e presents the results for the same binary MNIST classification task as before. Here, the data are 
projected into a six-dimensional PCA subspace ( d = 6 ) in which a SVM is trained for classification. The pho-
toresponsivity vector r is calculated by ℓ1-minimization of (2) using the PySensors  package28 in Python (see 
source code in Supplementary Figure S9) and is plotted in Fig. 1e. The result is intuitive: Four of the six active 
pixels are located in the center of the image, where they spatially overlap with handwritten “1”s and thus produce 
a positive photocurrent due to their positive responsivity values. The remaining two pixels are located more to 
the right and overlap mostly with handwritten “0”s. Their responsivities are negative, so is their output current. 
The sign of the sum over all photocurrents hence allows to discriminate between the two digits. Geometrically, 
r can be interpreted as the spatial locations of pixels that matter most.

Although less than 0.8% of the total pixels (6 out of 784) exhibit a responsivity R  = 0 , the classifier performs 
nearly as well as the SVM applied to the full image, and an accuracy of 99.1% is achieved. Energy consumption 
and delay, however, are substantially reduced, as both scale linearly with the number of detector elements being 
read out. We stress that it is not possible to obtain this result by merely thresholding r in Fig. 1c, as can be seen 
from Supplementary Figure S2. Similar performance is obtained for the (more complex) Fashion-MNIST dataset, 
as demonstrated in Supplementary Figure S3.

Device implementation. In Fig. 2a we present the actual device implementation. The sensor is fabricated 
on a semi-insulating gallium arsenide (SI-GaAs) wafer, with two metal layers for routing of the electrical signals, 
using standard technology and without high temperature process steps. Details are provided in the Methods 
section. GaAs is preferred over silicon (Si) because of its shorter absorption and diffusion lengths, which both 
reduce cross-talk between neighboring pixels and allow for a relatively simple planar device structure. However, 
with some minor modifications, the sensor concept can be transferred to the Si platform, which also provides the 
opportunity for low-cost monolithic integration of the electronic driver circuits, that are currently implemented 
off-chip. Our sensor consists of a two-dimensional array of n = 14× 14 = 196 pixels, each containing an MSM 
 photodetector29 that converts incident light into photocurrent. Each detector comprises interdigitated metal 
fingers on the SI-GaAs semiconductor. Photoexcited electrons and holes drift under an electrical field applied 
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Figure 2.  Image sensor architecture and characterization. (a) Microscope image of the sensor, with schematic 
illustrations of the external row/column decoders and integrating output (left). Scale bar, 200 µm. The chip 
size is 2.75  mm2. A detailed view of one of the MSM photodetectors is presented in the inset and a schematic 
illustration is in the picture to the right. Each of the detector elements is 90 × 90 µm2 in size. Details regarding 
the electrical measurement setup can be found in Supplementary Figure S5. (b) Bias voltage dependent device 
currents for all 196 detectors with (red lines) and without (blue lines) optical illumination (~ 160 W/m2). The 
detectors are operated in the range ± 5 V to ± 10 V.
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between the fingers, giving rise to an external current. The photoresponsivity of the device can be controlled 
by application of a bias voltage in the range ± 5 V to ± 10 V, as shown in Fig. 2b, where the negative sign of the 
responsivity indicates a reversed current flow direction. A less conservative design of the gap between the metal 
fingers (currently ∼ 2 µm) could be considered to reduce the operation voltage. The low background carrier 
concentration of the SI-GaAs wafer ( ∼ 8× 106  cm−3) ensures full depletion of majority carriers. As a result, the 
electric field drops homogeneously in the space-charge region between the metal fingers, so that photogenerated 
carriers are efficiently swept out of the device. Low residual doping is also required to suppress dark current and 
reduce cross-talk between neighboring detectors. Under 10 V bias, the photoresponsivity reaches values as high 
as ∼ 5 A/W, exceeding 100% quantum efficiency (0.52 A/W at 650 nm wavelength). Such photoconductive gain 
is often observed in MSM  photodetectors30 and can be attributed to Schottky barrier lowering due to trapping 
of photoexcited holes in localized surface or bulk trap states. The sensor is hence well suited for applications that 
require high sensitivity. Finally, we verified an approximately linear illumination intensity-dependence of the 
photocurrent (Supplementary Figure S3), as required by Eq. (1).

As in CMOS sensor technology, detectors are addressed by row and column decoders. The readout is per-
formed one pixel at a time, with relevant pixel locations k and corresponding photoresponsivity values Rk being 
determined from Eq. (2). Pixel-to-pixel variations and the nonlinear Rk-versus-VB,k behavior in Fig. 2b are 
accounted for as discussed in Supplementary Figure S4. For details regarding the optical apparatus used for 
image projection, we refer to the Methods section.

We evaluated the sensor performance by the same binary classification task as discussed above. During a 
measurement, a bias voltage VB,k is applied to the k-th pixel via the row select line and the generated photocur-
rent is read out via the respective column line (Fig. 3a). The resulting photocurrent is integrated over a period 
of time ( ∼ ms), before the next relevant detector is addressed by its row and column, and its output is added. 
We conducted this measurement for more than 2000 images of zeros and ones from the dataset. The bundle of 
curves, displayed in Fig. 3b, shows the temporal evolution of the output for each of those samples. Traces in red 
show cases where a zero has been projected onto the chip; traces in blue correspond to a one. Two representa-
tive examples with corresponding images are shown as black lines. With each additional pixel measured, the 
red and blue traces separate further and the classification accuracy improves. At the end of a cycle (here, after 7 
pixels), the output signal is compared to a threshold value and assigned to one of the two classes. Then the next 
cycle commences. Figure 3d shows a histogram of the sensor outputs after each cycle/sample, as determined 
from the measurements in Fig. 3b. From the experimental confusion matrix, presented in Fig. 3c, we determine 

Figure 3.  Image sensor operation and performance evaluation. (a) Relevant pixel locations k (bottom) and 
applied bias voltages VB,k (top) for the binary classification task discussed in the main text. (b) Temporal 
evolution of the sensor output for more than 2000 samples from the dataset. Red (blue) lines show cases in 
which a “0” (“1”) has been projected onto the sensor. The black lines show two representative examples with 
corresponding MNIST digits. (c) Experimental confusion matrix. A classification accuracy of 98.3% is achieved. 
(d) Histogram of sensor output as determined from the measurements in b. The dashed line indicates the 
decision threshold.
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a classification accuracy of 98.3%. The small deviation from the theoretical expectation (99.7%) and the shift of 
the decision threshold to below zero are attributed to device imperfections.

Discussion
In summary, we presented a sensor that can be trained to classify images with an accuracy comparable to that of 
frame-based cameras by reading out the few most relevant pixels. The use of MSM detectors with tunable pho-
toresponsivity values results in a particularly lean and simplistic sensor design. In contrast, conventional imaging 
devices, such as CMOS cameras, employ photodiodes with fixed responsivities, determined by the doping profile 
in the semiconductor. An implementation of the here described algorithm can then be achieved by implemen-
tation of the inner product rTp with additional electronics that is placed on the chip (e.g. a tunable amplifier). 
We propose that such a system could be operated in a low-power mode, running the algorithm outlined above, 
and once a certain scene or gesture is detected, the system switches into a full-frame mode for further analysis.

An extension to multi-class problems can in the simplest case be implemented by treating each class sepa-
rately which, however, results in a c − 1 fold increase of required pixel locations, where c denotes the number of 
categories. In Ref. 7 it has thus been suggested to introduce a regularization term in Eq. (2) that penalizes the 
total number of measurements or – in case of an image sensor – pixels. Results for a three-class problem with 
regularization are presented in Supplementary Figure S8.

Methods
Sensor fabrication. As a substrate we used a semi-insulating gallium arsenide (SI-GaAs) wafer, covered 
by 20 nm atomic layer deposition (ALD) grown  Al2O3. A first metal layer was fabricated by evaporating Ti/Au 
(3/25 nm) through a mask created by electron-beam lithography (EBL). A 30-nm-thick  Al2O3 oxide was then 
deposited using ALD, followed by a second lithography step and wet chemical etching in potassium hydroxide to 
define via-holes that connect the bottom and top metal layers and top metal with the GaAs substrate where nec-
essary. Lastly, a top metal layer was added by another EBL process and Ti/Au (5/80 nm) evaporation. Prior to the 
metal evaporation, we removed the GaAs native oxide by a short dip of the sample in concentrated hydrochloric 
acid. We confirmed the continuity and solidity of the electrode structure by optical microscopy and electrical 
measurements in a wafer probe station. The sample was finally mounted in a chip carrier and wire-bonded.

Optical setup. A collimated, linearly polarized light beam (650 nm wavelength), produced by a semicon-
ductor laser diode, illuminates a spatial light modulator (SLM, Hamamatsu), operated in intensity-modulation 
mode. On the SLM, the MNIST digits are displayed and the polarization of the light is rotated according to the 
pixel value. A polarizer with its optical axis oriented perpendicular to the polarization direction of the incident 
light acts as analyzer. The generated optical image is then projected onto the image sensor with a lens. A sche-
matic illustration of the apparatus is provided in Supplementary Figure S6.

Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable 
request.
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