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Alkaline phosphatase affects 
renal function in never-treated 
hypertensive patients: effect 
modification by age
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Gerardo N. Pititto4, Raffaele Maio1, Sofia Miceli1, Francesco Andreozzi1, Giorgio Sesti5 & 
Francesco Perticone1

Several studies in patients with chronic kidney disease or normal renal function have shown that high 
levels of tissue non-specific alkaline phosphatase (ALP) are associated with an increased risk of all 
cause and cardiovascular (CV) mortality. Considering the independent prognostic role of renal function, 
we investigated the possible association between ALP levels and estimated glomerular filtration rate 
(e-GFR) in a large cohort of hypertensive subjects. We enrolled 2157 never-treated uncomplicated 
hypertensive patients with ALP levels within normal range. In the whole population, e-GFR was strongly 
related to ALP (r = −0.43, P < 0.0001) with similar magnitude in females and in males, resulting ALP 
the second independent predictor of renal function. In a multiple linear regression model, both on crude 
(P < 0.001) and adjusted (P = 0.01) analyses age significantly modified the effect of a fixed increase in 
ALP (20 UI/L) on renal function so that the reduction in e-GFR associated to a 20 UI/L increase in ALP 
was of lower magnitude in younger patients and progressively of higher extent from 20 years of age 
onwards. In conclusion, present data indicate a significant relationship between ALP levels and e-GFR 
in uncomplicated hypertensive patients that is modulated by age and that persisted after adjusting for 
several confounders.

Tissue non-specific alkaline phosphatase (ALP), routinely measured in clinical practice for the diagnosis and 
monitoring of bone and hepatobiliary diseases, is a widely expressed hydrolase enzyme in human tissues, par-
ticularly in the liver, bone and kidney. The main action of ALP is to catalyse the hydrolysis and therefore the 
inactivation of inorganic pyrophosphate (PPi), a potent endogenous inhibitor of calcification1

Several evidences suggest a possible role of ALP as emerging marker of cardiovascular (CV) risk. In particular, 
numerous studies in patients with chronic kidney disease (CKD) have shown that high levels of ALP are associ-
ated with an increased risk of CV and all-cause mortality2–4. In addition, high values of ALP are associated with 
increased risk of kidney disease progression in a heterogeneous population of patients with CKD stages 3-45. 
Moreover, ALP has been demonstrated to be an independent predictor of death and CV events in both the general 
population and patients with coronary artery disease (CAD) with preserved renal function6,7.

Several possible mechanisms have been hypothesized to explain the possible role of ALP in CV risk, including 
subclinical inflammation8,9, vascular calcification10,11, and endothelial dysfunction12,13. Recently, a strong associ-
ation between serum ALP levels and reduced endothelium-dependent vasodilation, an independent predictor of 
CV events, was demonstrated in a large cohort of hypertensive patients12.

It is well known the strong link between renal function and CV outcome across all CKD stages. Indeed, several 
studies have shown that both advanced and subclinical renal damage are independent predictors of CV events 
and hospitalization in different settings of patients14,15. Of interest, experimental evidence suggests that ALP 
may directly affect renal function by increasing adenosine production and enhancing reno-vascular responses 
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to norepinephrine in the kidney16. Moreover, subclinical inflammation and endothelial dysfunction, also pro-
moted by ALP, may furtherly favour renal damage. However, whether serum ALP levels are associated with renal 
function in hypertensive patients without kidney and CV complications as well as the potential effect modifi-
cation of aging on this relationship have not been settled. In the present study, this hypothesis was analyzed in 
a large cohort of never-treated hypertensive subjects participating in the CATAnzaro MEtabolic RIsk factors 
(CATAMERI) Study.

Results
Study population.  Main demographic, clinical and biochemical data of the whole study group as well as 
separately by gender are reported in Table 1. There were no significant differences between males and females 
for ALP as well as for SBP, DBP, LDL-cholesterol and smoking. However, males were significantly older and dis-
played higher values of BMI, PP, fasting glucose, triglycerides, and hs-CRP than females. On the contrary, HDL-
cholesterol values were significantly lower in males than in females. Furthermore, serum levels of phosphorus, 
calcium, and UA were significantly higher in males, so as e-GFR, that resulted normal in both groups (all eGFR 
values>60 ml/min/1.73 m2).

ALP and eGFR: univariate and multivariate analyses.  In the whole group, e-GFR was strongly 
inversely related to ALP (r = −0.43, P < 0.0001, Fig. 1), and the strength of this relationship was identical in 
both females (r = −0.50, P < 0.001) and males (r = −0.50, P < 0.001). Data adjustment for hs-CRP reduced the 
strength of the ALP - eGFR relationship (adjusted r = − 0.38, P < 0.001) suggesting that inflammation lies in the 
causal pathway between high ALP and low eGFR.

In a multiple linear regression model (dependent variable: e-GFR) including traditional and non-traditional 
risk factors, BMI (β = 0.35, P < 0.001), hs-CRP (β = −0.24, P < 0.001), male gender (β = −0.18, P < 0.001), 

All (N = 2157)
Females 
(N = 1100)

Males 
(N = 1057) P

Age, yrs 53.1 ± 13.5 50.3 ± 15.8 53.1 ± 13.5 <0.0001

Smokers, n (%) 425(19.7) 201(18.3) 224(21.2) 0.088

Body mass index, Kg/m2 32.1 ± 9.9 25.8 ± 4.4 32.1 ± 9.9 <0.0001

Systolic BP, mm Hg 137.3 ± 17.1 136.1 ± 18.5 137.3 ± 17.1 0.106

Diastolic BP, mm Hg 85.1 + 10.8 85.1 ± 10.8 85.1 ± 10.9 0.954

Pulse Pressure, mm Hg 52.1 ± 13.9 50.1 ± 14.9 52.1 ± 13.9 0.001

Fasting glucose, mg/dL 99.1 ± 13.4 93.9 ± 12.8 99.1 ± 12.4 <0.0001

LDL cholesterol, mg/dL 122.9 ± 35.7 123.9 ± 36.9 122.9 ± 35.7 0.529

HDL cholesterol, mg/dL 46.9 ± 13.9 53.7 ± 13.9 46.9 ± 13.9 <0.0001

Triglycerides, mg/dL 142.7 ± 82.4 120.4 ± 68.8 142.7 ± 82.4 <0.0001

hs-CRP, mg/L 3.5 ± 2.5 2.9 ± 2.2 3.5 ± 2.5 <0.0001

Phosphorus, mg/dL 3.5 ± 0.6 3.3 ± 0.6 3.5 ± 0.6 <0.0001

Alkaline phosphatase, U/L 81.8 ± 29.4 81.5 ± 34.3 81.8 ± 29.4 0.801

Calcium, mg/dL 9.5 ± 0.5 9.4 ± 0.5 9.5 ± 0.5 0.001

Uric acid, mg/dl 5.7 ± 1.3 4.5 ± 1.4 5.7 ± 1.3 <0.0001

e-GFR, ml/min/1.73/m2 95.9 ± 16.8 96.1 ± 16.9 100.8 ± 13.9 <0.0001

Table 1.  Baseline characteristics of the study population according to gender. BP = blood high sensitivity C 
reactive protein; e-GFR = estimated glomerular filtration pressure; hs-CRP = rate.

Figure 1.  Crude relationship between estimated-glomerular filtration rate (e-GFR) and alkaline phosphatase 
(ALP) in the whole study population.
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age (β = −0.18, P < 0.001), UA (β = −0.15, P < 0.001), phosphate (β = −0.12, P < 0.001), LDL cholesterol 
(β = 0.07, P = 0.03), systolic BP (β = −0.04, P = 0.015) and triglycerides (β = 0.05, P = 0.005) had an independ-
ent relationship with e-GFR whereas smoking (β = 0.02, P = 0.16), and total cholesterol (β = −0.03, P = 0.36) 
did not (Table 2). All these variables explained 38% of the total variance in e-GFR (R2 = 0.38). The inclusion of 
ALP into this model provided a 6% increase in the explained variance in e-GFR (from 38% to 44%) and ALP 
(β = −0.26, P < 0.001) resulted to be the second factor, in rank order after BMI, explaining the variability in 
e-GFR (β = −0.26, P < 0.001).

Effect modification by age on the relationship between ALP and e-GFR: univariate and mul-
tivariate analyses.  On univariate analysis (P < 0.001) as well as in a multiple linear regression model 
(P = 0.01), including the same set of covariates listed in Table 2, age significantly modified the effect of a fixed 
increase in ALP (20 UI/L) on e-GFR, so that such an increase in ALP triggered a decrease in e-GFR which was 
closely dependent on age (Fig. 2). The analysis of the “age-ALP interaction” showed that the reduction in e-GFR 
associated to a 20 UI/L increase in ALP was of lower magnitude in younger patients and progressively of higher 

Model 1 (beta 
and P value)

Model 2 (beta 
and P value)

R2 0.38 (38%) 0.44 (44%)

Male gender -0.18, P < 0.001 −0.18, P < 0.001

Age (years) −0.18, P < 0.001 −0.14, P < 0.001

Smoking (0=no; 1=yes) 0.02, P = 0.16 0.03, P = 0.09

BMI (kg/m2) 0.35, P < 0.001 0.30, P < 0.001

Systolic BP (mmHg) −0.04, P = 0.015 −0.03, P = 0.07

Total cholesterol (mg/dL) −0.03, P = 0.36 −0.04, P = 0.17

LDL cholesterol (mg/dL) 0.07, P = 0.03 0.07, P = 0.02

Triglycerides (mg/dL) 0.05, P = 0.005 0.06, P = 0.001

Uric acid (mg/dL) −0.15, P < 0.001 −0.12, P < 0.001

Phosphate (mg/dL) −0.12, P < 0.001 −0.12, P < 0.001

C-Reactive protein (mg/L) −0.24, P < 0.001 −0.20, P < 0.001

Alkaline phosphatase (UI/L) −0.26, P < 0.001

Table 2.  Multiple linear regression analysis on e-GFR. Data are standardised regression coefficients (beta) and 
P value. e-GFR = estimated glomerular filtration rate; BMI = body mass index; BP = blood pressure.

Figure 2.  Effect modification by age on the relationship between alkaline phosphatase (ALP) and estimated-
glomerular filtration rate (e-GFR). Data are expressed as estimated decrease (and 95% CI) in e-GFR associated 
to 20 UI/L increase in ALP at predefined values of age Equations of both crude and adjusted effect modification 
models: Crude effect modification model: e-GFR = 111.66 + 0.224*ALP_20 (20 units step)+0.041*Age 
(continuous variable)−0.075*interaction; where “interaction” is the product between “ALP_20” and “Age” 
as preliminary calculated. Adjusted effect modification model: eGFR= 115.68-1.070*ALP_20 - 0.032*Age - 
0.029*interaction - 5.782*Gender + 1.111*Smoking +0.561*BMI - 0.025*systolic blood pressure -0.018*Total 
cholesterol + 0.032*LDL + 0.012*triglycerides - 1.229*uric acid -1.995*phosphate - 1.30*C reactive protein 
(see Methods- Statistical Analysis for more details).
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extent from 20 years of age onwards. To put this in perspective, the estimated reductions in eGFR, adjusted for 
risk factors listed in Table 2, associated to a 20 UI/L increase in ALP was 1.7 ml/min/1.73 m2 when patients were 
20 years old and 3.1 ml/min/1.73 m2 when patients were 70 years old (Fig. 2).

Discussion
The results of this study, conducted in a well characterized cohort of non-diabetic, newly-diagnosed, never-treated 
hypertensive patients without CKD or CV complications, showed an association between serum ALP levels and 
renal function. Indeed, an inverse correlation between ALP and e-GFR values has been demonstrated both in the 
whole population and in sub-groups stratified by gender. Moreover, ALP was a strong correlate of e-GFR even 
after adjusting for traditional and non-traditional risk factors for renal impairment.

Notably, after adjusting for several confounders, age significantly modified the effect of a fixed increase in ALP 
on e-GFR with a lower magnitude in younger patients, which progressively raise from 20 years of age onwards, 
showing an “age-ALP interaction”. This is clinically relevant because epidemiological studies have shown that even 
a modest impairment of renal function may be associated with CV morbidity and mortality14,15. For instance, in 
the Hoorn study a loss of 5 ml/min/m2 in e-GFR was associated with a 22% increase in the risk of CV death17. 
Taken together, these results may be helpful to improve the stratification of global CV risk in hypertensive 
patients.

Several pathophysiological mechanisms including subclinical inflammation, vascular calcification, and 
endothelial dysfunction may explain these findings. ALP is closely associated with CRP, a commonly used inflam-
matory index, and there is evidence that CRP attenuates the association between ALP and CV outcome in mul-
tivariable regression models8,18,19. According with this, data adjustment for CRP reduced the strength of the ALP 
- eGFR relationship, also in our population, suggesting an involvement in the causal pathway between high ALP 
and low eGFR. Thus, it is possible that low-grade inflammation, characterizing chronic clinical conditions such 
as essential hypertension, may play a role in the association between ALP and renal damage. In addition, vascular 
calcification is now recognized as an active, cell-mediated process linked to an imbalance between promoters and 
inhibitors of mineralization1. ALP is able to affect the Pi:PPi ratio, which plays an undisputed role in promoting 
vascular calcification. According with this, ALP activity has been associated with medial vascular calcification in 
experimental models10,11.

Moreover, the association between ALP and renal damage may be, at least in part, explained by endothelial 
dysfunction, a strong and independent predictor of CV events in different clinical conditions, including essential 
hypertension20. Endothelial dysfunction, characterised by a reduced nitric oxide (NO) bioavailability, may be 
promoted by both inflammation and vascular calcification, thus favouring renal damage. In the kidney, NO exerts 
multiple roles including regulation of renal haemodynamic, maintenance of medullary perfusion, mediation of 
pressure–natriuresis, blunting of tubule-glomerular feedback, inhibition of tubular sodium reabsorption, and 
modulation of renal sympathetic neural activity with the net effect of promoting natriuresis and diuresis21,22. An 
association between acetylcholine (ACh)-stimulated vasodilation and renal function decline after adjustment for 
traditional cardiovascular risk factors has been previously reported in a cohort of never-treated uncomplicated 
hypertensive patients thus pointing to an important pathophysiological mechanism linking vascular dysfunction 
and mild renal impairment23. In addition, it has been shown that endothelial vasomotor dysfunction in the bra-
chial artery is independently associated with progression from normal to early stage of renal dysfunction within 
twelve months of follow-up in patients with CAD. Thus, endothelial dysfunction evaluated in the brachial artery 
reflects a reduction in NO activity also in the renal vasculature with a consequent decline in renal function24 and 
ALP may be an active player in this association.

Mechanisms linking ALP to endothelial dysfunction may include inhibition of tyrosine kinase activity into 
endothelial cells with consequent impairment of endothelial NO synthase function, promotion of high produc-
tion of reactive oxygen species (ROS), and apoptosis due to increased degradation of pyrophosphate promoting 
atherosclerotic lesions in vascular wall12,25–27.

Notably, we found that age acts as modifier of the relationship between ALP and e-GFR. As matter of the fact a 
20 UI/L increase in ALP was associated with 1.7 ml/min/1.73 m2 reduction of e-GFR when patients were 20 years 
old and 3.1 ml/min/1.73 m2 when patients were 70 years old. It is known that ageing is associated with a proin-
flammatory status that is characterized by high levels of pro-inflammatory markers, a condition named “inflam-
mageing”, that represents a potential risk factor for CV and renal diseases28,29. In hypertensive patients, fibrosis, 
perivascular inflammation with increased ROS production, and arterial calcification may be favoured not only 
by ageing but also by ALP activity, thus promoting vascular damage in both the micro- and macro-circulation in 
different organs and tissues, including kidney30,31.

Finally, recent evidence supports the notion that ALP is capable to modulate renal function and haemody-
namic parameters. ALP has been involved in the regulation of renovascular and blood pressure responses to nor-
epinephrine by modulating adenosine production in the kidney16. Endogenous adenosine, through the activation 
of A1-receptors highly expressed in the pre-glomerular microcirculation, is able to modulate the renovascular 
responses to renal sympathetic nerve stimulation as well as to exogenous norepinephrine. In the renal vascula-
ture, in fact, adenosine and norepinephrine synergistically activate phospholipase C, contributing to renal vaso-
constriction induced by sympathetic stimulation32,33. On the other hand, ALP is able to catalyse the conversion 
from ATP to adenosine in various organs including the kidney as evidenced by studies with isolated, perfused rat 
kidneys showing that the use of ALP specific inhibitors can attenuate the renovascular response to both exoge-
nous and endogenous norepinephrine16.

The study strengths include the large number of patients enrolled with a complete clinical and laboratory 
assessment. Moreover, we included only never-treated patients without liver, bone, or renal disease, diabetes or 
excessive alcohol intake thus excluding potential confounding conditions. In addition, measurements of ALP and 
other biomarkers were made in a single laboratory using fresh collected blood samples. However, there are some 
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limitations that should be considered. First, the cross-sectional design of the study does not allow to conclude a 
causal relationship between ALP and renal function and to define which pathophysiological mechanism plays a 
main role in this association. Furthermore we can not exclude that e-GFR could act also as determinant of ALP, 
so as evident in the advanced stages of CKD. In addition, even if our study population shows a relatively normal 
renal function, another important limitation is that we did not measure fibroblast growth factor (FGF)−23 and 
parathyroid hormone levels. These represent two well-known biomarkers of CKD and bone metabolism, thus 
they could affect ALP increase.

Further prospective and interventional studies are needed to confirm the observed relationship. Additionally, 
the present results were obtained in hypertensive patients and further studies in different patients’ settings are 
necessary to validate our observations. Finally, data on isoforms of ALP and measurements of mineral balance 
regulating factors such as vitamin D and parathyroid hormone were not available.

In conclusion, the present data indicate, in a large cohort of never-treated hypertensive patients with relatively 
normal renal function, a significant relationship between ALP levels and e-GFR that is modulated by age and 
that persisted after adjusting for several confounders. Thus, a potential involvement of ALP in the development 
of renal damage may be envisioned. However, further studies are needed to confirm our findings in the general 
population, to determine the pathophysiological mechanism, and to appraise the cause-effect relationship.

Methods
Study population.  In this cross-sectional study, the enrolled group includes 2157 uncomplicated hyper-
tensive outpatients (1057 males and 1100 females; mean age, 53.1 ± 13.5 years) participating in the Catanzaro 
Metabolic Risk Factors Study (CATAMERIS)34,35. All patients were Caucasian and underwent physical examina-
tion and review of their medical history. Causes of secondary hypertension were excluded by appropriate clinical 
and biochemical tests according to a standard diagnostic protocol. Other exclusion criteria were as follows: his-
tory or clinical evidence of CV complications, diabetes mellitus, history of any malignant disease or liver failure, 
calcium-phosphorus metabolism disorders, alcohol or drug abuse, and use of drugs interfering with ALP con-
centrations. All subjects showed a normal renal function and none of them had ever been treated with antihyper-
tensive drugs. They underwent anthropometrical evaluation with measurement of weight, height, and body mass 
index (BMI). The local Ethical Committee (Comitato Etico Azienda Ospedaliera “Mater Domini”) approved the 
protocol and informed written consent was obtained from all participants. All the investigations were performed 
in accordance with the principles of the Declaration of Helsinki.

Blood pressure measurements.  Measurements of clinic blood pressure (BP) were obtained in the left 
arm of the supine patients, after 5 min of quiet rest, with a validated sphygmomanometer. A minimum of three 
BP readings were taken on three separate occasions at least 2 weeks apart. Systolic and diastolic BP was recorded 
at the first appearance (phase I) and the disappearance (phase V) of Korotkoff sounds. Baseline BP values were 
the average of the last two of the three consecutive measurements obtained at intervals of 3 minutes. Patients with 
a clinic systolic BP (SBP) > 140 mmHg and/or diastolic BP (DBP) > 90 mmHg were defined as hypertensive36. 
Clinical pulse pressure (PP) was measured as the difference between SBP and DBP.

Laboratory determinations.  All laboratory measurements were carried out after at least 12 hours fasting. 
Serum ALP (normal range, 40–129 IU/L) and calcium (normal range, 8.5–10.3 mg/dL) levels were measured 
with standard assays implemented on the COBAS C501 Roche auto-analyzer. The quantitative concentration of 
inorganic phosphate (normal range, 2.3–4.5 mg/dL) was measured by spectrophotometric determination based 
on the formation of ammonium molybdophosphate with subsequent reduction to molybdenum blue, using the 
diagnostic assay COBAS INTEGRA Phosphate 2 (Roche diagnostics). Plasma glucose was measured by the glu-
cose oxidase method (Beckman Glucose Analyzer II; Beckman Instruments, Milan, Italy). Triglyceride, total, low- 
(LDL) and high-density lipoprotein (HDL) cholesterol concentrations were measured by enzymatic methods 
(Roche Diagnostics GmbH, Mannheim, Germany). High-sensitivity C-reactive protein (hs-CRP) was measured 
by a turbidimetric immunoassay (Behring).

Markers of renal function.  Serum creatinine and uric acid (UA) were measured by an automated 
technique based on the measurement of Jaffe chromogen and by the URICASE/POD method (Boehringer 
Mannheim, Mannheim Germany) implemented in an auto-analyzer. Values of e-GFR were calculated by the 
CKD-Epidemiology Collaboration proposed equation that is more accurate in subjects with e-GFR > 60 ml/
min/1.73 m2,37.

Statistical analysis.  Normally distributed variables were expressed as mean ± SD and non-normally dis-
tributed variables as median and interquartile range. Categorical data were summarised as absolute numbers 
and percentage. Comparisons between two groups were performed by unpaired Student’s t-test, Mann Whitney 
U test, or Chi Square Test, as appropriate. The association between two continuous variables considered simul-
taneously was investigated by Pearson product moment correlation coefficient (r) and P values. The relationship 
between the key risk factor (ALP) and e-GFR was investigated by univariate (crude) analysis as well as by a mul-
tiple linear regression model including age, male gender, smoking (0=no; 1=yes), BMI (kg/m2), SBP (mmHg), 
total cholesterol (mg/dL), LDL-cholesterol (mg/dL), triglycerides (mg/dL), UA (mg/dL), phosphate (mg/dL), and 
hs-CRP (mg/L). To assess at what extent the inclusion of ALP into a multiple linear model (including standard 
risk factors – Model 1) increases the proportion of explained variance of eGFR (dependent variable), two mul-
tiple linear models were constructed: Model 1, not including ALP and Model 2, including ALP. The explained 
variance in the dependent variable (e-GFR) provided by tested covariates (before and after the inclusion of ALP) 
was assessed by the squared of the coefficient of determination (R2). In multiple linear regression models data 
were expressed as standardised regression coefficient (beta) and P value. The effect modification38 by age on the 
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ALP/e-GFR relationship was investigated by the standard approach, i.e. by simultaneously introducing ALP, age 
and their interaction (multiplicative) term (age x ALP) into the same linear regression model also adjusting for 
a series of potential confounders. The estimated decrease (and 95% CI) in e-GFR associated to a fixed increase 
(20 UI/L) in ALP at predefined values of age was investigated by the linear combination method. All analyses 
were performed by two standard statistical packages (SPSS for Windows Version 22, IBM, USA; STATA/IC 13.0 
StataCorp P, TX, USA).

Data availability
Data are available upon reasonable request from corresponding author.

Received: 2 January 2020; Accepted: 6 April 2020;
Published: xx xx xxxx

References
	 1.	 Schoppet, M. & Shanahan, C. M. Role for alkaline phosphatase as an inducer of vascular calcification in renal failure? Kidney 

International 73, 989–991 (2008).
	 2.	 Regidor, D. L. et al. Serum alkaline phosphatase predicts mortality among maintenance hemodialysis patients. J. Am. Soc. Nephrol. 

19, 2193–2203 (2008).
	 3.	 Drechsler, C. et al. Bone alkaline phosphatase and mortality in dialysis patients. Clin. J. Am. Soc. Nephrol. 6, 1752–1759 (2011).
	 4.	 Beddhu, S., Ma, X., Baird, B., Cheung, A. K. & Greene, T. Serum alkaline phosphatase and mortality in African Americans with 

chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1805–1810 (2009).
	 5.	 Taliercio, J. J. et al. Prognostic importance of serum alkaline phosphatase in CKD stages 3-4 in a clinical population. Am. J. Kidney 

Dis. 62, 703–710 (2013).
	 6.	 Park, J. B. et al. Serum alkaline phosphatase is a predictor of mortality, myocardial infarction, or stent thrombosis after implantation 

of coronary drug-eluting stent. Eur. Heart J. 34, 920–931 (2013).
	 7.	 Li, J. W., Xu, C., Fan, Y., Wang, Y. & Xiao, Y. Bin. Can serum levels of alkaline phosphatase and phosphate predict cardiovascular 

diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One 9 (2014).
	 8.	 Kunutsor, S. K. et al. Serum alkaline phosphatase and risk of incident cardiovascular disease: Interrelationship with high sensitivity 

C-reactive protein. PLoS One 10 (2015).
	 9.	 Wannamethee, S. G., Sattar, N., Papcosta, O., Lennon, L. & Whincup, P. H. Alkaline phosphatase, serum phosphate, and incident 

cardiovascular disease and total mortality in older men. Arterioscler. Thromb. Vasc. Biol. 33, 1070–1076 (2013).
	10.	 Sheen, C. R. et al. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J. Bone 

Miner. Res. 30, 824–836 (2015).
	11.	 Savinov, A. Y. et al. Transgenic overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in vascular endothelium results 

in generalized arterial calcification. J. Am. Heart Assoc. 4 (2015).
	12.	 Perticone, F. et al. Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naïve hypertensive patients. 

Hypertension 66, 874–880 (2015).
	13.	 Schutte, R. et al. Alkaline phosphatase and arterial structure and function in hypertensive African men: The SABPA study. Int. J. 

Cardiol. 167, 1995–2001 (2013).
	14.	 Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular 

events, and hospitalization. N. Engl. J. Med. 351 (2004).
	15.	 Schillaci, G., Reboldi, G. & Verdecchia, P. High-normal serum creatinine concentration is a predictor of cardiovascular risk in 

essential hypertension. Arch. Intern. Med. 161, 886–891 (2001).
	16.	 Jackson, E. K., Zhang, Y. & Cheng, D. Alkaline phosphatase inhibitors attenuate renovascular responses to norepinephrine. 

Hypertension 69, 484–493 (2017).
	17.	 Stam, F. et al. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild 

renal insufficiency: The Hoorn study. J. Am. Soc. Nephrol. 17, 537–545 (2006).
	18.	 Webber, M., Krishnan, A., Thomas, N. G. & Cheung, B. M. Y. Association between serum alkaline phosphatase and C-reactive 

protein in the United States National Health and Nutrition Examination Survey 2005-2006. Clin. Chem. Lab. Med. 48, 167–173 
(2010).

	19.	 Cheung, B. M. Y. et al. Association between plasma alkaline phosphatase and C-reactive protein in Hong Kong Chinese. Clin. Chem. 
Lab. Med. 46, 523–527 (2008).

	20.	 Perticone, F. et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 104, 191–196 (2001).
	21.	 Satoh, M. Endothelial dysfunction as an underlying pathophysiological condition of chronic kidney disease. Clinical and 

Experimental Nephrology 16, 518–521 (2012).
	22.	 Mount, P. F. & Power, D. A. Nitric oxide in the kidney: Functions and regulation of synthesis. Acta Physiologica 187, 433–446 (2006).
	23.	 Perticone, F. et al. Endothelial dysfunction and subsequent decline in glomerular filtration rate in hypertensive patients. Circulation 

122, 379–384 (2010).
	24.	 Nakamura, T. et al. Endothelial vasomotor dysfunction in the brachial artery predicts the short-term development of early stage 

renal dysfunction in patients with coronary artery disease. Int. J. Cardiol. 148, 183–188 (2011).
	25.	 Schultz-Hector, S., Balz, K., Bohm, M., Ikehara, Y. & Rieke, L. Cellular localization of endothelial alkaline phosphatase reaction 

product and enzyme protein in the myocardium. J. Histochem. Cytochem. 41, 1813–1821 (1993).
	26.	 Boo, Y. C. & Jo, H. Flow-dependent regulation of endothelial nitric oxide synthase: Role of protein kinases. American Journal of 

Physiology - Cell Physiology 285 (2003).
	27.	 Romanelli, F. et al. Overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in endothelial cells accelerates coronary 

artery disease in a mouse model of familial hypercholesterolemia. PLoS One 12 (2017).
	28.	 Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nature Reviews 

Cardiology 15, 505–522 (2018).
	29.	 Fabbri, E. et al. Aging and the burden of multimorbidity: Associations with inflammatory and anabolic hormonal biomarkers. 

Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 70, 63–70 (2015).
	30.	 Duca, L. et al. Matrix ageing and vascular impacts: Focus on elastin fragmentation. Cardiovascular Research 110, 298–308 (2016).
	31.	 Guzik, T. J. & Touyz, R. M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension 70, 660–667 (2017).
	32.	 Jackson, E. K., Cheng, D., Tofovic, S. P. & Mi, Z. Endogenous adenosine contributes to renal sympathetic neurotransmission via 

postjunctional A 1 receptor-mediated coincident signaling. Am. J. Physiol. - Ren. Physiol. 302 (2012)
	33.	 Jackson, E. K. et al. Role of A 1 receptors in renal sympathetic neurotransmission in the mouse kidney. Am. J. Physiol. - Ren. Physiol. 

303 (2012).
	34.	 Andreozzi, F. et al. Metabolic and cardiovascular risk factors in subjects with impaired fasting glucose: The 100 versus 110 mg/dL 

threshold. Diabetes. Metab. Res. Rev. 23, 547–550 (2007).

https://doi.org/10.1038/s41598-020-66911-z


7Scientific Reports |         (2020) 10:9847  | https://doi.org/10.1038/s41598-020-66911-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

	35.	 Marini, M. A. et al. Metabolically healthy but obese women have an intermediate cardiovascular risk profile between healthy 
nonobese women and obese insulin-resistant women. Diabetes Care 30, 2145–2147 (2007).

	36.	 Mancia, G. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: The Task Force for the management of 
arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart 
J. 34, 2159–2219 (2013).

	37.	 Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).
	38.	 Rothman, K. J. Epidemiology. An introduction. Oxford University Press Madison (2002).

Author contributions
Each author is expected to have made substantial contributions: V.C., G.T., A.S.: conception and design of the 
work; G.T., G.N.P., V.C., A.S., F.A., T.V.F., R.M.: acquisition, analysis, and interpretation of data; A.S., S.M., F.P., 
G.S., M.P.: have drafted the work and substantively revised it; All authors have approved the submitted version.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-66911-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Alkaline phosphatase affects renal function in never-treated hypertensive patients: effect modification by age

	Results

	Study population. 
	ALP and eGFR: univariate and multivariate analyses. 
	Effect modification by age on the relationship between ALP and e-GFR: univariate and multivariate analyses. 

	Discussion

	Methods

	Study population. 
	Blood pressure measurements. 
	Laboratory determinations. 
	Markers of renal function. 
	Statistical analysis. 

	Figure 1 Crude relationship between estimated-glomerular filtration rate (e-GFR) and alkaline phosphatase (ALP) in the whole study population.
	Figure 2 Effect modification by age on the relationship between alkaline phosphatase (ALP) and estimated-glomerular filtration rate (e-GFR).
	Table 1 Baseline characteristics of the study population according to gender.
	Table 2 Multiple linear regression analysis on e-GFR.




