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Artificial intelligence (AI) can unveil novel personalized treatments based on

drug screening and whole-exome sequencing experiments (WES). However,

the concept of “black box” in AI limits the potential of this approach to be

translated into the clinical practice. In contrast, explainable AI (XAI) focuses on

making AI results understandable to humans. Here, we present a novel XAI

method -called multi-dimensional module optimization (MOM)- that

associates drug screening with genetic events, while guaranteeing that

predictions are interpretable and robust. We applied MOM to an acute

myeloid leukemia (AML) cohort of 319 ex-vivo tumor samples with 122

screened drugs and WES. MOM returned a therapeutic strategy based on the

FLT3, CBFb-MYH11, and NRAS status, which predicted AML patient response to

Quizartinib, Trametinib, Selumetinib, and Crizotinib. We successfully validated

the results in three different large-scale screening experiments. We believe that

XAI will help healthcare providers and drug regulators better understand AI

medical decisions.
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intelligence, drug repositioning, large-scale screening, ex-vivo experiment,
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1 Introduction

The advance of personalized medicine, and in particular

precision oncology, is partially based on the development of

drug sensitivity studies. These experiments are promoting the

discovery of new drugs, biomarkers of sensitivity, and drug

repositioning. With increasing frequency, these studies have

widened their scope from single drug studies to experiments

involving hundreds of drugs, also known as drug screening. In

recent years, drug screenings are being carried out on hundreds

of cell lines giving rise to large-scale drug screening datasets, e.g.,

GDSC, which includes 130 screened drugs in an average of 368

lines per drug (1). Combining these drug sensitivity studies with

tumor genotypes makes it possible to associate the response to

treatment with genetic alterations (biomarkers), thus promoting

the search for new personalized therapies (2).

Exploring the potential of these experiments, artificial

intelligence (AI) algorithms for personalized medicine focus

on the analysis of such datasets to bridge the gap for drug

discovery. Some studies use machine learning algorithms for

monotherapy prediction (3, 4), other approaches are based on

training deep learning (DL) models from patients’ omics data (5,

6). These methods create black-box predictors that make

agnostic inferences of treatment for a patient based on

complex non-linear relationships. The output is, for these

cases, an individual therapy for a patient, instead of a general

treatment guideline (7). Despite optimizing patient treatment,

this approach has the inherent disadvantages of methods based

on neural networks: they require a huge amount of data, and

therefore experiments are unable to show the criteria that trigger

the decision –since neural networks tend to be black-box

models–. These technical challenges are limiting the

translation of drug screening experiments to clinical practice.

Explainable Artificial Intelligence (XAI) focuses on making

AI understandable to humans by the usage of “white-box”

algorithms that allow end-users to understand why the model

predicts a certain solution (8, 9). The importance of using XAI

models in the finding of new personalized treatments is twofold:

therapeutic pipelines can be more easily adopted in normal

clinical guides (e.g., using a decision tree that does not require a

complex model with a high number of variables) (9) and drug

regulators, such as the Food and Drug Administration (FDA), or

European Medicines Agency (EMA) will have an easier journey

to approve a drug if the companion biomarkers are reasonable

and robust (10, 11). Consequently, XAI opens the door to bridge

the gap between clinical practice and bioinformatics (8, 12).

In this study we have developed a new XAI method, called

multi-dimensional module optimization (MOM) algorithm, to

predict therapeutic strategies based on large-scale drug screening

data. This method systematically associates drugs with

combined sets of genetic biomarkers that can be generalized

and applied to other cohorts of patients. The therapeutic
Frontiers in Immunology 02
strategies provided by MOM can easily be understood by

humans and are easy to implement in the clinical practice

with a process equivalent to a decision tree. The optimization

problem considers the effect of drug toxicity focusing on

providing drugs that are differentially effective to patients with

a specific genotype. MOM’s result is deterministic −this is

important to get regulatory approvals− and guaranteed to be

optimal, each patient is given the best possible treatment.

We selected Acute Myeloid Leukemia (AML) as a disease

model, a highly heterogeneous type of cancer that affects bone

marrow cell precursors. In AML, genomic profiling is essential to

understand its biology, diagnosis, and treatment (13–15).

Unfortunately, 70% of adult people diagnosed with this disease

die within five years of diagnosis (16). The current ELN

(European Leukemia Network) risk stratification is based on

the genetic biomarkers of the disease (17). Although there are big

prognosis differences across these genetic groups, the current

approach for young and fit patients is a standard induction

cytotoxic therapy (“3+7”) (14, 17) with the addition of targeted

therapies, mainly FLT3 inhibitors, to a specific group of AML

patients (14). Despite 8 new drugs have been approved for AML

in the last years, its lethality is still very high. In addition, there

are no targeted treatments directed to FLT3WT patients –70% of

all AML cases (18). A machine learning approach that identifies

the most adequate FLT3 inhibitor as well as the treatment for

other AML genotypes, would allow the discovery of new

indications for other drugs for the AML. As a result, a new

classification guide based on the response to therapy for specific

genetic alterations would be beneficial in clinical practice.

We applied MOM to the BeatAML project cohort, which

carried outWES (Whole Exome Sequencing) and drug screening

experiments of 122 drugs with ex-vivo AML tumor samples from

319 patients (19). Ex-vivo experiments in hematological cancers

are of great importance since they are performed directly on the

patient’s living tumor cells (19, 20), allowing to correlate drug

sensitivity to the patient’s genotype. The results obtained using

MOM are in-silico validated using K-fold cross-validation and in

three independent large-scale experiments, one based on pan-

cancer drug sensitivity and two referred to pan-cancer gene

essentiality using siRNA and CRISPR-cas9. MOM’s patient

indications require only three different biomarkers, which

makes them to be easily understood by the clinician.
2 Results

2.1 An explainable artificial intelligence
method to predict optimal treatments
based on patient genotype

The implementation of a clinical translational XAI model

requires the development of a robust method to associate
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biomarkers to specific targeted treatments. and, thus, relating

drug sensitivity and patient genetic events -including SNVs,

indels, fusion genes, or even epigenetics. The development of an

AI algorithm in this context requires to solve three important

challenges: (i) proper modeling of the toxicity of screened drugs

(most aggressive drugs are not necessarily better treatments), (ii)

dealing with a high number of statistical hypotheses that

intrinsically increase false discovery rate (FDR), and (iii)

explaining the internal reasoning that the model uses to

propose a decision so that it is easy to approve and implement

in the clinical practice.

We propose an algorithm named Multi-dimensional

Module Optimization (MOM) that addresses each of these

challenges by dividing the problem into three main steps

(Figure 1): preprocessing the input drug sensitivity scores,

associating single biomarkers to drugs with an increased

statistical power and combining individual treatments to

unveil multi-step treatment pipelines to stratify patients based

on drug-response.

MOM is developed to optimally stratify patients following a

decision tree based on simple logical rules, in which each step is

defined by the presence or absence of a certain biomarker and

the recommendation of one drug. In turn, MOM requires

genetic variants information and drug sensitivity screenings as

input data.

To illustrate the steps of the algorithm, let us consider a toy

example with 8 drugs and their corresponding drug-response

scores for 6 patients (Figure 2). In this case, as in every precision

medicine scenario, we want to find robust companion

biomarkers that, associated to drugs allow us to maximize

patient response with minimized toxicity.

In the first step, MOM preprocesses drug sensitivity scores

(Figure 2.1). For which, instead of using the standard measure of

IC50, we proposed an incremental version of the logarithm of the
Frontiers in Immunology 03
IC50, named IC50* (See Methods for more details). The

proposed correction has two main advantages. First, MOM

prioritizes drugs that have a differential effect on different

patients, which are, in turn, better candidates to develop a

personalized treatment based on a companion biomarker.

Second, drugs whose effectiveness does not depend on patient

genotype are more unspecific and, therefore, more prone to be

toxic for different tissues. In the next section, we will illustrate

this fact with a real case scenario.

To exemplify this normalization, let us return to the toy

example with 6 patients, 8 drugs and their corresponding log

(IC50) scores measured in ex-vivo tumors (Figure 2.1).

Considering raw log(IC50) exclusively (left-hand heatmap), it

could be argued that Drug 1 is the most effective drug and,

therefore, it should be indicated to all patients regardless their

genotype. However, since the dose can be adjusted for each

patient, Drugs 1 and 8 will be given at a small and a large dose

respectively balancing their effect. Using IC50* (right-hand

panel) allows MOM to maximize the genetic dependence of

drugs, rather than the absolute cellular death in patient tumors.

In the second step (Figure 2.2), MOM provides single

biomarker-treatment associations by prioritizing the drugs

whose response is associated with patient genotype. The

selected statistical analysis to find the biomarker-treatment

associations is the Independent Hypothesis Weighting (IHW)

algorithm. This algorithm has been proved to increase the power

of tests in several biological scenarios (21, 22).

This algorithm provides also two interesting “by-products”:

i) identifies which biomarkers are related to drug sensitivity, e.

gr. TP53 is usually a source of resistance, ii) identifies drugs

whose efficacy is related to the genetic profile, Olaparib is

effective only for BRCAMut patients (23).

In the third step (Figure 2.3), MOM predicts a sequential

treatment guideline that maximizes the drug effect on the group
FIGURE 1

Overview of MOM’s pipeline. (1) Filter and Normalization. (2) Generate individual Drug-Biomarker Associations using IHW, (3) Multiple-pair
analysis that generates a patient stratification guideline using a novel MILP model (IHW: Independent Hypothesis Weighting, MILP: Mixed-integer
Linear Programming).
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of patients that share the genotype of the selected biomarkers.

Using Mixed integer Linear Programing (MILP)(see

Supplementary Methods), MOM gets the optimal treatment

guideline (decision tree). MILP is a versatile optimization

method that allows the solution of complex mathematical

problems using integer variables and assures that the drug

assignation is optimal. This solution (i) is explainable (XAI);

(ii) eases the translation into clinical practice; and (iii) assures a

global and deterministic optimum to the problem.
Frontiers in Immunology 04
2.2 FLT3, CBFb-MYH11, and NRAS
variants play a key role in acute myeloid
leukemia sensitivity to quizartinib,
trametinib, and selumetinib

We selected the BeatAML cohort to test MOM as it contains

ex-vivo drug sensitivity screenings of 122 drugs in AML tumors

derived from 319 patients (19), and includes both whole-exome

sequencing experiments (WES) and drug sensitivity for every
FIGURE 2

MOM Pipeline: MOM pipeline is defined by 3 major steps: 1) Drug normalization to reduce drug toxicity. It is performed by removing drug mean
effect in all patients. The blue color represents drug sensitivity for the sample whereas the red color represents drug resistance in the sample. 2)
Individual Drug biomarker associations using IHW. Drugs are matched to biomarkers profile, all individual associations generate a p-value that is
corrected using IHW. IHW selects the candidate biomarkers and treatment and are used as input to the MILP problem. 3) Optimal Patient
Stratification using MILP. The MILP module receives as input the normalized drug information IC50* and the candidate individual associations
and outputs a decision tree for clinical decision-making guidance. Within this module, the treatment is optimized so that each patient receives
the drug for which is more sensitive. (IHW: Independent Hypothesis Weighting, MILP: Mixed-Integer linear Programing).
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patient. This cohort, allows us to measure the impact of genetic

variants on drug sensitivity (Supplementary Figures 13-19). In

addition, AML is a good disease model to develop precision

treatments, as it is a highly heterogeneous disease in which

genomic profiling is essential to understand its biology,

diagnosis, and treatment (13–15). Patients within this cohort

are in different therapeutic stages, e.g., induction, maintenance,

consolidation, or palliative care (among others), there also are 32

de novo patients (Supplementary Figure 12).

The drugs studied in the BeatAML cohort cover a wide variety

of different cancers and diseases: 24% are indicated for AML, 16%

for other leukemias types, 10% for multiple myeloma, and 4% for

lymphomas. This means that 54% of the drugs have been studied

for hematological malignancies. The rest 46% include drugs used

in lung, breast, or renal cancers among other diseases

(Supplementary Figure 20). Focusing on AML, the dataset

provides a total of 11 AML drugs already in clinical use -e.g.

Venetoclax, Quizartinib, or Gilteritinib- and 18 AML

experimental drugs -e.g. Panobinostat, Lestaurtinib, or Pazopanib.

We filtered gene variants to keep the ones that appear in at

least 4 out of 319 patients (1%). This process provides 64

potential single biomarkers. We also removed drugs used in

less than 20% of the patients, and those without a candidate gene

target. After matching samples with ex-vivo and WES

experiments, we finally get the ex-vivo screening of 111 drugs

for 319 patients (see Methods for more details). We then applied

the MOM algorithm to this cohort to unveil groups of AML

patients that share genotype and drug sensitivity. In the first

step, MOM normalizes the IC50 values to define a score that

better defines tumor sensitivity, namely IC50*.

Let us illustrate this with a paradigmatic example. In our

dataset, the median IC50 for Elesclomol is much smaller than the

median IC50 for Quizartinib (Figure 3A, left panel). Consequently,

Elesclomol seems a better option to treat patients with AML.

Figure 3B gives a completely different reading: Elesclomol is more

toxic in almost any tissue if compared with the AML lines. On the

contrary, Quizartinib is more toxic on AML than in most other

tissues. This simple example shows that plain IC50 must not be

used to select the treatment guideline for the patients. The higher

value of IC50 for Quizartinib could be corrected by adjusting the

dose. In Figure 3A, right-panel, after the normalization, the IC50*

for Elesclomol appears less effective, whereas Quizartinib

preserves its sensitivity profile, which, in this example, it is

related to the FLT3 status of the tumor.

In the second step, MOM calculates individual associations

between drugs and genetic alterations using the IHW strategy

(21). This approach sheds light on which drugs can be

influenced by patient genotype (Figure 4A). IHW also

provides a weight for each genetic variant related to the

probability of such variant to be a true positive. Non-zero

IHW weights represent genetic variants that reduce the FDR

and increase the power of tests as demonstrated by IHW

authors (21). IHW estimates that, in our AML cohort, 37
Frontiers in Immunology 05
biomarkers have weights greater than zero. IHW weights can

be therefore used to state the relevance of each biomarker. We

sorted IHW weights confirming that FLT3Mut, NPM1Mut,

NRASMut, TP53Mut, and KRASMut are included in the top 5

biomarkers (Figure 4B), which have already been described in

previous studies (24–29). IHW also provides an adjusted p-

value for each drug-biomarker association. For instance, the

pipeline identified the known relation of FLT3 internal tandem

duplications (FLT3-ITD) patients being more sensitive to

Sorafenib, Quizartinib, or Gilteritinib (Supplementary

Table 1; Supplementary Figure 21).

Interestingly, an indirect output of this second MOM step is

the quantification of the sensitiveness or resistance triggered by a

specific genetic variant. Summarizing this score, gene variants

can be classified by their effect: either sensitive or resistant to the

tested drugs (Figure 4C). For example, variants in FLT3 or

NPM1 are associated with a more sensitive response for the

cohort of drugs in this experiment, whereas genetic alterations in

KRAS, NRAS, or TP53 are more likely resistance-conferring.

Other results include CCND3,WDR52, CELSR2, CBFb-MYH11,

and SMC1A as biomarkers of sensitivity and STAG2 of

resistance. This effect is relative to the studied dataset, Beat

AML, and occurs across 66 different drugs studied or prescribed

for hematological malignancies.

Finally, in the third step, we solved the MILP problem from

MOM using the individual candidate associations. As a result,

MOM returns a decision tree that, depending on the presence or

absence of several biomarkers, recommends a treatment for each

patient. In this case, the patients are divided into four subgroups

(one for each level of the tree) denoted by FLT3Mut, NRASMut,

and inv(16) biomarkers (Table 1; Figure 5).

Following the new therapeutic strategy, the first biomarker is

FLT3Mut-including FLT3-ITD. Patients carrying FLT3Mut would

be treated with Quizartinib a 2nd generation FLT3 inhibitor that

is currently facing several clinical trials showing an increase in

overall survival for AML patients (18). This group of patients

represents 30% of patients (25), in our study, 103 patients out of

319 belong to this group. The second subgroup comprises 15

patients and is characterized by FLT3WT and the inv(16), which

generates the fusion gene CBFb-MYH11. Patients with these

biomarkers are sensitive to Trametinib, a MAPK inhibitor that

prevents cell replication and has been initiated in phase I clinical

trials for hematological malignancies (30). Interestingly, within

this group, the patients with NRASMut (4 out of 16) are the most

sensitive to Trametinib. The third group is defined by the

absence of previous biomarkers and NRASMut. This subgroup

poses special interest in the research as NRAS is one of the

biomarkers most closely related to the general resistance to

treatments of this disease (31). NRAS gene variants are

mutually exclusive with FLT3 variants (p-value<0.05;

Supplementary Figure 16). Patients within this subgroup are

sensitive to Selumetinib, a MAPK inhibitor that has started

clinical trials for acute lymphoblastic leukemia in the UK (32),
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it is a mitogen-activated pathway inhibitor, which could inhibit

RAS pathway functionality (33).

Finally, the fourth subgroup comprises the rest of the

patients with none of the above mutational biomarkers but

with other possible mutated biomarkers, for which the best

treatment is Crizotinib -an ALK and MAPK inhibitor-

approved by the FDA for lung cancer. It has not been enrolled

in clinical trials for AML. Nevertheless, it has been used in

studies of high-risk AML patients, with TP53Mut and obtained

very promising results (34).

To validate the MOM’s algorithm, we first run MOM on the

BeatAML ex-vivo dataset using 10-fold cross-validation and

compare the results that MOM outputs with each fold. This

analysis shows that the MILP optimization returns robust

results as 90% folds share 4 out of 5 biomarkers (Supplementary
Frontiers in Immunology 06
Figure 5). Specifically, FLT3Mut andNRASMut subgroups appear in

10 out of 10 folds and subgroup with inv(16) in 3 out of 10 folds.

We then evaluated the treatment guideline proposed by

running MOM with BeatAML within three independent AML

datasets: two large-scale loss-of-functionality experiments that

used both RNAi (DEMETER 2 (35)) and CRISPR-Cas9 (CERES

(36, 37)), and an additional large-scale cell-drug sensitivity

analysis (Genomics of Drug Sensitivity in Cancer, GDSC (1,

38, 39)). We characterize cell lines using the Cancer Cell Line

Encyclopedia’s (CCLE (40, 41)) genetic variant files, from which

we clustered the AML cell lines into the four subgroups

predicted by MOM using as input BeatAML. For CERES and

DEMETER 2, we identified the main target and model drug

effects to be proportional to the depletion of their target, which is

the information these databases included.
B

A

FIGURE 3

IC50 Normalization to Avoid Drug Toxicity. (A) Drug Sensitivity Heatmap in BeatAML cohort. The left panel shows the IC50 values for AML tumors
of BeatAML. Effectiveness of a drug in a patient is plotted in blue color, and resistance is represented in red color. The right panel shows the
sensitivity in IC50* score. (B) Drug sensitivity of Quizartinib and Elesclomol across different tissue types using GDSC. IC50 values relative to
different tissues are shown in the graph. In yellow color are plotted the sensitivity values of AML cell lines, in blue color are plotted the drug
sensitivity values for the Hematological cell lines, and finally in grey color, are plotted the sensitivity values for the non-hematological tissues
from GDSC. Dotted grey lines represent the second IC50 quantile for AML cell lines (GDSC: Genomics of Drug Sensitivity in Cancer). IC50* is the
name of our new sensitivity score.
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For each subgroup, we compared each experiment’s sensitivity

(CERES score, DEMETER 2 score, and GDSC-IC50) dividing

patients according to the presence of the biomarkers predicted by

MOM in BeatAML and summing their sensitivity scores of the
Frontiers in Immunology 07
other three databases. We compute the sensitivity scores for the 4

subgroups, and the 3 datasets independently DEMETER2 (n=18

AML cell lines), CERES (n=14 AML cell lines), and GDSC (n=23

AML cell lines) (Figure 5). For the GDSCdataset, we compared the
TABLE 1 MOM Output: Patient stratification based on drug response to guide clinical decision-making.

Name Biomarkers Drug Patients Treated

Subgroup 1 FLT3Mut Quizartinib 103

Subgroup 2 FLT3WT & inv(16) Trametinib 15

Subgroup 3 FLT3WT & no inv(16) & NRASMut Selumetinib 42

Subgroup 4 FLT3WT & no inv(16) & NRASWT Crizotinib 159
B C

A

FIGURE 4

Analysis of single interactions biomarker-drug. (A) Overall score of 122 drugs whose IC50* is related or non-related to cell genotype according to our
model. A drug is related to a relevant variant (those whose IHW weight is greater than zero) if its adjusted p-value is below 0.05. (B) Global effect of AML
gene variants in AML drug sensitivity. The x-axis shows the logarithm of the minimum adjusted p-value of the biomarker with any of the drugs. Only
those biomarkers whose IHW weight is greater than zero are shown. (C) One-tail p-value histograms comparing drug sensitivity according to the
biomarker status in AML. If a histogram has a strong peak near zero, patients with the biomarker are sensitive to many drugs. On the contrary, if a
histogram has a strong peak near one, patients with the biomarker are resistant to many drugs. A genetic variant is considered to confer sensitiveness if
the number of drugs whose p-value<0.2 is twice the number of p-values >0.2. Similarly, a variant confers resistance if fulfills that the number of p-
values>0.8 is twice the number of p-values<0.8. (IHW: Independent Hypothesis Weighting).
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IC50 value from the cell lines with the selected biomarker and

without the biomarker for a given subgroup drug. Finally, we

performed an additional validation using DEMETER RNAi

dataset (n=15 AML cell lines; Supplementary Figures 7-8).
Frontiers in Immunology 08
The change in sensitivity for the selected treatments is

strongly significant using the MOM’s predicted biomarkers in

the three experiments (p-values of 5.5e-05, 6.8e-06, and

5.5e-04 for CERES, DEMETER2, and GDSC, respectively;
FIGURE 5

Decision Tree for the Proposed Patient Stratification using MOM. MILP fromMOMobtained a hierarchical clinical guideline for patient stratification
consisting of 4 different subgroups. Each of them is denoted by a biomarker and represented by color (blue, turquoise, orange, and grey). These subgroups
were validated in the BeatAML ex-vivo cohort, CERES, DEMETER2, and GDSC. Boxplots show the results of the validation. The y-axis represents the
essentiality score from the different experiments and the x-axis represents the biomarker presence-absence of the samples. The validation was performed
sequentially, already treated samples from previous subgroups were excluded in the following subgroups i.e. samples with FLT3Mut (blue) from the first
boxplot are not plotted in the non-biomarker (grey) in the second boxplot. CERES and DEMETER2 do not have experiments with cell lines having inv(16).
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Supplementary Figures 9-11). Remarkably, inv(16) is difficult to

be validated using cell lines, as commercial cell lines mostly lack

this alteration. The ME-1 cell line is an exception to that, but

GDSC is the only dataset that includes the translocation.

Although this comparison is not statistically significant due to

the lack of data, the GDSC-IC50 of ME-1 is 30 times lower than

the average of cells without inv(16).

We carried out a functional enrichment analysis to unveil

the patient genotype according to the stratification proposed by

MOM. We calculated the differentially expressed genes that are

representative of each subgroup (Supplementary Tables 2-5) and

computed the enriched biological functions of patients that

belong to each group. The first subgroup, defined by FLT3Mut,

is characterized by downregulation in Myeloid Leukocyte

Migration (adjusted p-value< 5e-3; Supplementary Figure 23,

Supplementary Table 7), this result is present in other functional

enrichment studies involving FLT3 mutated subgroup (42, 43).

This subgroup has been repeatedly mentioned in literature and

FLT3 inhibitors are being implemented in the clinic (18). The

second subgroup, defined by samples with inv(16) and FLT3WT

shows upregulated cell proliferation (adjusted p-value< 1e-3)

including angiogenesis and endothelial cell migration

upregulated among others (Supplementary Figure 24,

Supplementary Table 8), also described in other studies

concerning this genetic aberration (44–46).

We also found that the NRASMut subgroup is related to the

downregulation of alternative splicing (AS; adjusted p-value<

0.2; Supplementary Figure 27, Supplementary Table 11). This

subgroup has an upregulation of the transforming growth

factor-beta (TGF-b) signaling pathway (adjusted p-value< 5e-

03; Supplementary Figure 26, Supplementary Table 10), which is

mentioned in other studies concerning AS, especially in

myelodysplastic syndromes (47, 48). Furthermore, several

studies have attempted to address the relationship between

AML and AS, with promising results (49–51).

Finally, patients who do not have the previous biomarkers,

have a downregulation in the amino acid catabolism process

(adjusted p-value< 0.05; Supplementary Figure 29,

Supplementary Table 13), i.e. they are less able to metabolize

amino acids than the rest of the subgroups (52). A study

demonstrates that for a subpopulation of AML leukemia stem

cells the metabolism of amino acids from the medium is

essential, and its absence leads to cell death (52). Further

description of the enriched functions for each subgroup, as

well as their relationships and statistical significance, can be

found in the supplementary material (Supplementary

Figures 22-29, Supplementary Tables 6-13).
3 Discussion

Despite the advances in drug ex-vivo screening and

computational methods for precision medicine, there are
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technical issues that limit their translation to clinical practice.

Some of these issues are the influence of drug toxicity, the

enormous number of statistical hypotheses, the complexity of

developing algorithms understandable by the clinician, and the

difficulty of proposing an effective treatment guideline that

assigns the best drug for each patient. MOM faces and solves

each of these challenges.

These statements are not yet covered by current AI

strategies, which are focused on increasing accuracy and

sensitivity regardless of the complexity of the end model (7,

53). In these AI methods, the absence of interpretability of the

feature used for classification prevents further research and

downplays the need for clinically defined subgroups (54–56).

Indeed, the need of developing XAI algorithms is not only

related to easing the diagnosis pipeline in cancer but also to

increase and facilitate that the pharma industry brings new drugs

and biomarkers to market. Drug regulators -such as the Food

and Drug Administration- value that the process to unveil novel

biomarkers is robust and transparent (10). In contrast, the

patient stratification guideline provided by MOM has the

following characteristics, i) allows treatment assignment by

using a simple genetic panel, ii) the results are non-stochastic,

they are the same for all possible re-runs of the model, iii) the

algorithm outputs a decision tree for treatment guidance.

IC50, EC50, and AUC (used for example in (1, 6, 38)) are

reasonable metrics to determine the efficacy of a drug. None of

them, however, considers the overall toxicity of the drug. Using

IC50* in the optimization problem, we focus on the differential

effectiveness of a drug among different patients, and therefore,

drugs that are toxic for most samples will not be included in

the solution.

IHW provides us with the ability to increase the power of

tests and reduce the FDR. With this strategy, we are also able to

identify the direction of the influence of genetic events in drug

response, i.e., whether it defines sensitivity or resistance. With

this approach, we successfully detected FLT3 as highly influential

in terms of sensitivity to treatment, which is coherent with other

studies (25). NRAS, instead, showed as a mutation associated

with treatment resistance also coherent with literature (26, 31).

One promising conclusion for this study is that we managed to

find a drug for which NRAS correlates to drug sensitivity.

XAI defined by MILP ensures that the subgroups obtained

are optimal. This feature is not common to other classification

methods. However, it also presents two main limitations. The

first one is computational resources, which increases

exponentially with the number of possible biomarkers, drugs,

or patients (on a standard desktop, the presented work required

2.5 hours of computing time). In addition, the incorporation of

new non-binary diagnostic markers requires the redefinition of

the model. However, once the optimization problem is solved,

assigning a treatment to a novel patient is immediate.

Our AML patient stratification includes a subgroup defined

by the absence of a genetic mutation, i.e., wild type. It also
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includes patients who have TP53Mut genotype, which are

biomarkers associated with poor prognosis (14). MOM

recommends treating these patients with Crizotinib, a drug

used in other studies with TP53Mut AML patients which in

fact showed very promising results (34). In addition, this

subgroup shows a deficiency in amino acid metabolism which

may lead to alternative treatment therapies based

on metabolomics.

The subgroup defined by the CBFb-MYH11 fusion gene

appears characterized in a very small percentage of AML cell line

cohorts but is nevertheless present in 7% of AML patients (57),

which enhances the relevance of this biomarker. CBFb-MYH11

is a clear indicator of sensitivity to Trametinib, a clinical drug

that inhibits cell replication pathway (58), which, in turn,

appeared as an upregulated biological process in this

subgroup. In the remaining subgroups, FLT3Mut is widely

described in the literature (25). In contrast, NRASMut appears

as a biomarker of sensitivity for Selumetinib and has

downregulated the alternative splicing (AS) process. This

subgroup contains, on balance, effective treatment for a

resistance-associated mutation and a new line of research

linking alternative splicing and AML.

It is remarkable the appearance of three different MAPK

inhibitors in the proposed therapeutic strategy, which is

coherent with the disease behavior. Our biomarker analysis

revealed that the RTK-RAS pathway is the most affected in

our cohort of AML samples (Supplementary Figures 18-19). Of

all drugs suggested as treatment, only Quizartinib is clinically

approved for AML patients (15). This study aims to accelerate

-once the results are validated in cell lines and murine models-

the process of approving these drugs for AML.

The validation of the results is challenging in a real cohort

since most patients are treated with standard induction cytotoxic

therapy (only 7.5% of AML patients in TCGA are treated with

other treatments). We propose a strategy to take advantage of

cell lines loss-of-function datasets. Nevertheless, even using cell

lines -that are quite different from ex vivo samples- we validated

the subgroups and the IC50 of the lines with indication was

significantly better than the IC50 of those without indication.

Therefore, in the absence of clinical data for validation, we

consider the results using cell lines data to sufficiently support

this study.

The concept of MOM is also applicable to other disease types

using ex-vivo experiments as well as to other sensitivity

measurements, leaving an open door for new patient

stratifications based either on drug response or even on any

other experiment to measure the effectiveness of certain drugs in

the future. We believe that XAI will help doctors and regulators

understand AI medical decisions and, therefore, ease the

translations of AI analysis of drug screening experiments to

clinical practice.
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4 Methods

4.1 Filter and normalization

4.1.1 Filtering and imputation
We used data from ex-vivo experiments, WES, and RNA-Seq

from 319 Acute Myeloid Leukemia (AML) patients included in

the BeatAML cohort (19). Data was filtered to ensure all samples

contained the gene variants and drug sensitivity information, the

new dataset containing genomic aberrations and drug IC50 for

the same patients was used as a starting point for the study.

Genetic variant samples were previously pathogenically filtered

by Tyner et al. (19) and we defined as a biomarker a genetic

variant present in more than 1% of the patients (n≥4), leaving a

total number of 64 possible biomarkers.

For missing drug sensitivity information in the ex-vivo

experiments, we imputed the missing data using the k-Nearest

Neighbourhood (kNN) Impute method, from Impute R package

(59) (version 1.68.0). An analysis of the missing values −both

patients and drugs− is included in the supplementary material
4.1.2 Drug normalization: from IC50 to IC50*
Initially, we tried to use as drug sensitivity values the half-

minimal inhibitory concentration, (IC50) i.e., the concentration

of a drug -in micro molar- for which half of the cell from the ex-

vivo experiment die. Instead of using the IC50, we propose the

usage of an incremental version of the IC50, named IC50*. As

described in the results section, the usage of IC50* instead of

IC50 is a convenient way to deal with the different toxicity of the

drugs under study

After imputation, IC50 values were taken the log10 logarithm,

normalized by subtracting the IC50 mean value for each drug,

and these scores were made negative by subtracting an offset to

the normalized IC50 value –the optimization model assumes

negative values of drug sensitivity. The obtained drug sensitivity

values are named IC50*. The transformation from IC50 to IC50*

is represented in equation (1). Despite the formidable aspect of

the formula, IC50* is simply an incremental and version of the

logarithm of IC50 with an offset.

Let IC50 be a T x P matrix, with T the total number of drugs

and P the total number of patients, for which each element ic50t,

p is a value contained in (0,10] µM.

ic50*t,p = ( log10 (ic50t,p) − 1) −
1
Po

P

p=1
( log10 (ic50t,p) − 1)

−−max ( log10 (ic50t,p) − 1) −
1
Po

P

p=1
( log10 (ic50t,p) − 1)

 !
(1)

The obtained IC50* is a T x P matrix containing the new

drug sensitivity values.
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4.2 Drug-biomarker association

Following with MOM’s second step, we implemented a two-

tailed Wilcoxon test to assess whether a biomarker influences the

sensitivity of each the treatment. Each biomarker is tested against

each drug and these associations were ranked according to the p-

value. The p-values were adjusted following the methodology

described by Gimeno et al. (22), using the R package IHW (21)

(version 1.22.0). The package provides (given the p-values and the

covariates –in our study genetic alterations–) a weight for each

covariate related to its influence on the p-value significance.

Using these results, we included two consecutive filters.

Firstly, we selected the biomarkers whose relative importance

(the weight outputted by IHW) is larger than zero. IHW assigns

a strictly positive weight to biomarkers relevantly correlated to

the potency of a drug. Afterwards, we removed the drugs with no

statistically significant relationship to the selected biomarkers

(IHW p-value >0.05).

After this analysis, 122 treatments (biomarker-drug

associations), with DIC50*>0.2 (including vs lacking the

biomarker) and adjustedp-value<0.05were considered for therapy.
4.3 MOM: MILP Module

Finally, in the third step, we proceed with the treatment

assignation. We developed a MILP module described in the

Results section. This module receives as input the 122 treatments

and solves an optimization problem (described in detail in de

Supplementary Material) MILP results can be directly translated

into a decision tree for guiding clinical decision-making. The

number of levels of the tree was set to four. Each level of this tree

will be defined as one therapeutic AML subgroup and each

subgroup is defined by a biomarker and a recommended drug.

Additional information regarding the algorithm, its in-silico

validation, and its performance can be found in Supplementary

Material (Section Supplementary Methods).
4.4 External cohort validation

For validating the different subgroups, we compared patients

that are given a drug in a specific subgroup against the remaining

non-treated patients. We validated our results using cell lines,

specifically, used 2 different large-scale gene essentiality

experiments including RNAi (DEMETER 2 (35)) and CRISPR-

Cas9 (CERES (36, 37)), and an additional large-scale cell-drug

sensitivity analysis (Genomics of Drug Sensitivity in Cancer,

GDSC (1, 38, 39)). We characterized the cell lines using the

Cancer Cell Line Encyclopedia (CCLE (40, 41)) genetic variants
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files, from which we were able to divide the cells into

different subgroups.

We performed the following test for validation. Cells were

divided into two groups. The first group includes cells with the

biomarker associated to that subgroup, and the other group,

contains the cells without the biomarker that had not been

previously treated. This comparison was computed for the 4

subgroups, and the 2 datasets DEMETER 2, and CERES.

DEMETER 2 and CERES were compared using the viability

score that corresponds to knocking out the corresponding

targets for each drug. For the GDSC dataset, we used the IC50

value provided in the experiments. All tests were one-tailed

Wilcoxon’s test to check that the sensitivity increase in the cells

with the biomarker.
4.5 Functional analysis of the subgroups

Functional analysis of the subgroups was performed using

gene expression data from the BeatAML (19) cohort. We

performed a differential gene expression analysis using limma

R package (60) (version 3.50.3). The contrast matrix compared

one group against all the others, therefore, there was a different

contrast for each group.

Genes differentially expressed were ranked according to its t-

statistic, if t >0, genes were considered overexpressed, if t<0,

genes were considered underexpressed. For each subgroup, we

selected the top 500 over and under expressed genes and

performed a Gene Ontology Enrichment Analysis (GEA) using

Fisher’s Test. We analyzed the biological process ontology.

Enriched functions on the overexpressed genes were

upregulated, and functions obtained from the underexpressed

genes were considered to be downregulated. The statistics were

computed using clusterProfiler R package (61) (version 3.10.1).

We set an adjusted p-value cutoff of 0.2 for considering a

function differentially enriched, adjusted p-values were

computed using the Benjamini-Hochberg procedure.
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41. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov G V., Lo CC, McDonald
ER, et al. Next-generation characterization of the cancer cell line encyclopedia.
Nature (2019) 569:503–8. doi: 10.1038/s41586-019-1186-3

42. Chen S, Chen Y, Zhu Z, Tan H, Lu J, Qin P, et al. Identification of the key
genes and microRNAs in adult acute myeloid leukemia with FLT3 mutation by
bioinformatics analysis. Int J Med Sci (2020) 17:1269. doi: 10.7150/ijms.46441
Frontiers in Immunology 13
43. Lucena-Araujo AR, Souza DL, De Oliveira FM, Benicio MTL, Figueiredo-
Pontes LL, Santana-Lemos BA, et al. Results of FLT3 mutation screening and
correlations with immunophenotyping in 169 Brazilian patients with acute myeloid
leukemia. Ann Hematol (2010) 89:225–8. doi: 10.1007/s00277-009-0817-4
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