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Interleukin-17 in rheumatoid arthritis: Trials and
tribulations
Leonie S. Taams

Interleukin-17A (IL-17A) is a pro-inflammatory cytokine with well-characterized biological effects on stromal cell activation,
angiogenesis, and osteoclastogenesis. The presence of this cytokine in the inflamed joints of patients with rheumatoid arthritis
(RA), together with compelling data from in vitro and experimental arthritis models demonstrating its pro-inflammatory
effects, made this cytokine a strong candidate for therapeutic targeting. Clinical trials, however, have shown relatively
modest success in RA as compared with other indications. Guided by recent insights in IL-17 biology, this review aims to explore
possible reasons for the limited clinical efficacy of IL-17A blockade in RA, and what we can learn from these results going
forward.

Introduction
IL-17 is a term used to refer to either the single cytokine IL-17A
or the IL-17 family of cytokines, which consists of IL-17A, IL-17B,
IL-17C, IL-17D, IL-17E (also known as IL-25), and IL-17F. IL-17A
was the first characterized member of the IL-17 family, and to
date is still the most studied member.

IL-17A was first identified by Rouvier et al. in 1993; they
cloned a rodent cDNA sequence, termed CTLA8, from an acti-
vated T cell hybridoma using a subtractive hybridization ap-
proach (Rouvier et al., 1993). The predicted amino acid sequence
of CTLA8 was found to be 57% homologous to the predicted
amino acid sequence of ORF13 ofHerpesvirus saimiri. In 1995, Yao
et al. termed the protein product of murine CTLA8 IL-17, and
cloned its receptor IL-17R (now known as IL-17RA). They dem-
onstrated that IL-17 exhibited classic pleiotropic activities in-
cluding NF-κB activation and IL-6 production by mouse
fibroblasts (Yao et al., 1995a). The same group cloned human IL-
17 and showed that this cytokine was predominantly produced
by activated CD4+ T cells, although low-level production by CD8+

T cells was consistently observed (Yao et al., 1995b).
The potential biological relevance of IL-17A in inflammatory

arthritis became clear when Miossec and co-workers demon-
strated the presence of IL-17A in synovial tissue from patients
with rheumatoid arthritis (RA; Chabaud et al., 1999). These
findings indicated a potential inflammatory role of IL-17A in the
immunopathology of RA. This concept was rapidly supported

in vivo by various experimental models of arthritis, and through
several human in vitro experiments (reviewed in van den Berg
and Miossec, 2009). As a result, it was not long before clinical
trials aimed at IL-17A blockade in RA were conducted. Unex-
pectedly, despite the strong evidence from the experimental
models and the human in vitro and in situ data, the clinical ef-
ficacy of IL-17A blockade in RA is relatively modest. As a result,
in the United Kingdom, IL-17A blockade has not been recom-
mended as a treatment for RA by the National Institute for
Health and Care Excellence. In contrast, IL-17A blockade has
shown great clinical success in psoriasis, with recent studies also
showing robust clinical efficacy in ankylosing spondylitis and
psoriatic arthritis (PsA), leading to National Institute for Health
and Care Excellence approval for these indications.

In this review, I will summarize the key findings that high-
lighted IL-17A as a therapeutic target in RA, discuss the current
knowledge regarding other IL-17 family members in RA, and
summarize the clinical trial findings. I will then explore possible
reasons for the limited clinical success of IL-17A blockade in RA
guided by recent insights from IL-17 biology research.

Identification of IL-17A as a therapeutic target in RA
IL-17A in RA
The identification of IL-17A–producing T cells in the RA syno-
vium (Chabaud et al., 1999) and the subsequent demonstration
of the degrading effects of IL-17A on RA bone explants (Chabaud
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et al., 2001a) firmly placed IL-17 as a potential therapeutic target
in this disease. A large number of experimental animal studies
showed that inhibition of IL-17A signaling, through treatment
with an IL-17R fusion protein or IL-17A neutralizing antibodies
or using IL-17R–deficient animals, reduced disease in adjuvant
arthritis (Bush et al., 2002), collagen-induced arthritis (CIA;
Lubberts et al., 2004), antigen-induced arthritis (Koenders et al.,
2005b), and streptococcal cell wall–induced arthritis (Koenders
et al., 2005a). Conversely, intra-articular injection of adenoviral
vectors expressing IL-17A was sufficient to boost arthritis in
collagen-induced arthritis or streptococcal cell wall–induced
arthritis (Koenders et al., 2005c; Lubberts et al., 2002).

In vitro human model systems further underpinned these
compelling in vivo data by demonstrating the pleiotropic effects
of IL-17A: the addition of hrIL-17A resulted in increased IL-6, IL-
8, CCL2, CXCL1, vascular endothelial growth factor, and matrix
metalloproteinase-1 production by RA synoviocytes (Chabaud
et al., 1998, 1999, 2000; Fossiez et al., 1996; Ota et al., 2015;
Ryu et al., 2006); increased IL-1β, TNF, and CCL20 production by
human monocytes or macrophages (Chabaud et al., 2001b;
Matsumoto and Kanmatsuse, 2003); and enhanced osteoclasto-
genesis (Kim et al., 2015; Yago et al., 2009) and angiogenesis
(Pickens et al., 2010).

The identification of a specific lineage of IL-17A–producing
CD4+ T cells, called T helper (Th) 17 cells (Langrish et al., 2005;
Veldhoen et al., 2006), further stimulated this area of research.
Several studies have documented the increased presence of IL-
17A and/or Th17 cells in the blood and inflamed joints of patients
with RA (Gullick et al., 2010; 2013; Kirkham et al., 2006; Leipe
et al., 2010; Shen et al., 2009), and in some cases have shown an
association with disease activity or joint damage progression
(Gullick et al., 2010; Kirkham et al., 2006; Leipe et al., 2010).

Other IL-17 family members in RA
IL-17A is a member of a larger family of cytokines, consisting of
IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F (recently re-
viewed by McGeachy et al., 2019). While most attention has been
focused on the pro-inflammatory nature of IL-17A, a potential role
in inflammation of the other IL-17 family members is emerging.

An early study inmice showed that in addition to Il17a, mRNA
for Il17b, Il17c, and Il17f was detected in arthritic paws in CIA
mice. Adoptive transfer of CD4+ T cells retrovirally transduced
with the mIL-17A, B, C, or F genes all exacerbated CIA, sug-
gesting a role for these cytokines at least in this experimental
model (Yamaguchi et al., 2007). The same study also showed
that neutralization of IL-17B ameliorated disease. Relatively little
is known regarding the role in RA of IL-17B, which has 29%
homology with IL-17A (Bie et al., 2017). One study showed that
IL-17B mRNA and protein is expressed in RA synovial tissue,
where it is produced by neutrophils. IL-17B and TNF were also
shown to synergistically induce production of IL-6 and G-CSF by
fibroblasts (Kouri et al., 2014). IL-17B can also induce increased
production of TNF and IL-1β in the monocytic cell line THP-1 (Li
et al., 2000), but how this relates to primary monocytes in RA is
not yet known.

IL-17C (23% homology with IL-17A) is preferentially produced
by epithelial cells. It is predominantly involved in regulation of

epithelial function due to the expression of IL-17RE on epithelial
cells, which combines with IL-17RA to make a functional IL-17C
receptor (Pappu et al., 2012). IL-17RE expression is also up-
regulated on Th17 cells, as well as on γδ T cells, at least in
mice (Chang et al., 2011). This may have functional con-
sequences, as Il17c−/− mice showed a reduction in Th17 cell–
mediated experimental autoimmune encephalomyelitis (EAE)
compared with control mice. IL-17C has been shown to have a
role in experimental arthritis (Yamaguchi et al., 2007) and
certain T cell–independent inflammatory disease models in mice
(Yamaguchi et al., 2018). However, it should be noted that the
adoptive transfer of T cells retrovirally transduced with IL-17C
as used in the experimental arthritis model (Yamaguchi et al.,
2007) is rather artificial, and only allows a suggestion that IL-17C
may exacerbate joint inflammation. As yet, very little is known
about the presence and possible function of IL-17C in human RA.

IL-17D (25% homology with IL-17A) is the most enigmatic
cytokine of the IL-17 family. It was cloned in 2002 and shown to
be expressed highly in skeletal muscle, brain, adipose tissue,
heart, lung, and pancreas, with some expression also by resting
CD4+ T cells (Starnes et al., 2002). IL-17D increased expression of
IL-6, IL-8, and GM-CSF by HUVEC cells but had an inhibitory
effect on myeloid progenitor cell proliferation. Recent studies
indicate that IL-17D expression is regulated by the transcription
factor nuclear factor erythroid-derived 2-like 2, a known sensor
for oxidative and xenobiotic stress, and that IL-17D deficiency
may predispose animals to cancer and viral infection (Saddawi-
Konefka et al., 2016). Thus far, no studies have investigated the
potential contribution of IL-17D to RA.

IL-17E has the least homology with IL-17A (17%) and is also
known as IL-25. It is mostly studied in the context of Th2 cell
responses as it induces the production of IL-4, IL-5, and IL-13,
thereby protecting the host against parasitic infections while
contributing to the development of allergic disease. Interest-
ingly, IL-17E was found to protect mice from EAE by suppressing
Th17 cells (Kleinschek et al., 2007) and to inhibit IL-17A, IFN-γ,
and TNF production by stimulated CD4+ T cells from patients
with inflammatory bowel disease while promoting IL-10 pro-
duction (Su et al., 2013). IL-17E levels were shown to be in-
creased in the serum and synovial fluid of patients with RA, and
to correlate with clinical parameters of disease (Liu et al., 2016).
Furthermore, addition of recombinant IL-17E suppressed human
and mouse Th17 cell responses and attenuated CIA in mice (Liu
et al., 2016). IL-17E/IL-25 may thus contribute to limiting in-
flammation in RA.

IL-17F has the highest homology with IL-17A (~50%). It has a
similar but less potent inflammatory function as IL-17A, al-
though nonredundant functions have been reported in mouse
models (Yang et al., 2008). The presence of IL-17F in RA is still
debated. Some studies show the presence of IL-17F in RA plasma
or synovial fluid (Jain et al., 2015), and of IL-17F–producing cells
in RA synovial tissue (Zrioual et al., 2009), albeit at highly
variable levels (van Baarsen et al., 2014). Other studies did not
detect IL-17F protein in culture supernatants from PMA/ion-
omycin-stimulated synovial fluid mononuclear cells (SFMC)
from patients with RA (Sarkar et al., 2014). We recently inves-
tigated the presence of IL-17F and IL-17F–producing cells in the
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RA joint but did not detect IL-17F levels in the synovial fluid,
nor IL-17F–expressing CD4+ T cells in SFMC ex vivo. IL-
17F–producing CD4+ T cells were, however, readily detected
upon in vitro stimulation of SFMC, suggesting that cells with IL-
17F–producing potential exist in the inflamed joint (Burns et al.,
2019). We also found that IL-17F synergizes with TNF to potently
induce IL-6 and IL-8 by RA synovial fibroblasts, in support of
previous work (Zrioual et al., 2009). While further research
certainly still is required, the existing data suggest a potential
role for IL-17F in RA.

IL-17A blockade in RA
Clinical trials aimed at targeting IL-17A
The compelling evidence for the pro-inflammatory nature of IL-
17A and its presence in the inflamed RA joint led to several
clinical trials aimed at investigating the therapeutic effect of IL-
17A inhibition in RA. The first phase I studies on the effects of IL-
17A blockade were published in 2010. In one trial, 26 patients
were treated with two infusions of 10 mg/kg AIN457 (now
known as secukinumab). American College of Rheumatology
(ACR) 20% (ACR20) response rates at week 6 (primary end-
point) were higher in AIN457-treated patients than placebo (47%
vs. 27%, P = 0.12; treatment difference was a priori considered
statistically significant if P < 0.2; Hueber et al., 2010). In the
other trial, a total of 77 patients with RA were treated with es-
calating doses of LY2439821 (now known as ixekizumab). Sig-
nificantly greater percentages of patients achieved ACR20 or
ACR50 responses upon treatment with LY2439821 compared
with placebo (Genovese et al., 2010).

Two phase II placebo-controlled studies with secukinumab
have been conducted in patients with RA with inadequate re-
sponse to methotrexate. In both studies, the primary efficacy
endpoints, predefined as percentage of ACR20 responders at
week 16 (Genovese et al., 2013) or week 12 (Tlustochowicz et al.,
2016), were not met. Significant changes in some secondary
endpoints including disease activity score in 28 joints (DAS28)
were observed. A 1-yr follow-up study of the former study re-
vealed that patients with improved responses at week 16 sus-
tained these responses through to week 52, with the greatest
improvement seen in patients receiving 150 mg, although this
was not placebo-controlled at this stage (Genovese et al., 2014a).
A further randomized study of biological-naive subjects with
tender/swollen joint (each six or more) counts and high-
sensitivity C-reactive protein (CRP; >10 mg/liter) showed that
secukinumab was significantly more effective than placebo in
reducing DAS28-CRP and producing ACR20 and ACR50 re-
sponses at week 12 (Burmester et al., 2016). A phase II ran-
domized placebo-controlled study of subcutaneous ixekizumab
in 260 biological-naive patients with RA or 188 patients with
inadequate response to TNF inhibitors showed significant
ACR20 responses at week 12 (Genovese et al., 2014b). In con-
trast, a recent phase II study with a fully human anti–IL-17A
mAb (CNTO6785) in patients with RA with inadequate re-
sponse to methotrexate did not demonstrate clinical efficacy
(Mease et al., 2018).

Two phase III studies with secukinumab showed a significant
increase in ACR20 responses compared with placebo at week 24

in patients with active RA who had an inadequate response to or
intolerance of TNF inhibitors (Blanco et al., 2017; Tahir et al.,
2017). No incremental benefit was observed as compared with
treatment with abatacept (CTLA-4-Ig; Blanco et al., 2017). A
third phase III study in TNF nonresponders reported that ACR20
response rates at week 24 were not statistically superior to
placebo (Dokoupilová et al., 2018).

These collective data indicate that while there is clinical ef-
ficacy of IL-17A blockade comparedwith placebo in patients with
RA (Kunwar et al., 2016), effects (mostly measured as ACR20
responses) are relatively modest. Some of these trials were con-
ducted in patients who were anti-TNF nonresponders, and con-
sideration should be given to the possibility that it may be more
challenging to achieve clinical efficacy in this patient group.

More recently, dual blockade of IL-17A and TNF has been
investigated using ABT-122, a dual variable domain Ig that tar-
gets human TNF and IL-17A (Fleischmann et al., 2017). A phase II
study demonstrated that while dual inhibition of IL-17A and TNF
was clinically efficacious, there was no meaningful difference in
the ACR20 response at week 12 compared with treatment with
anti-TNF (adalimumab) alone (Genovese et al., 2018). A recent
phase IIa proof-of-concept study tested dual blockade of IL-17A
and IL-17F using bimekizumab as add-on treatment in patients
with RA who had an inadequate response to TNF. A greater
reduction in DAS28-CRP at week 20 (primary endpoint) was
observed in the anti-TNF inadequate response plus bimekizu-
mab group compared with the anti-TNF inadequate response
plus placebo group (Glatt et al., 2019).

Finally, studies have also investigated IL-17RA blockade in RA
using brodalumab. IL-17RA is part of the receptor for IL-17A, IL-
17F, IL-17C, and IL-17E, and thus, IL-17RA blockade may affect
signaling from all these cytokines (Gaffen, 2009). However, in
RA, no clinical efficacy of IL-17RA blockade was observed
(Martin et al., 2013; Pavelka et al., 2015).

Possible reasons for the limited clinical success of IL-17A blockade
in RA
A key question emerges: Why was IL-17A blockade not as suc-
cessful in RA as could reasonably be expected from experimental
and in vitro models? Several nonmutually exclusive reasonsmay
underlie its limited success.

First, we should consider the possibility that IL-17A is not
involved at all in the pathogenesis of RA. However, as high-
lighted at the beginning of this review, the presence of IL-17A in
the RA joint and its clear in vitro effects on pro-inflammatory
cytokine production, angiogenesis, and osteoclastogenesis
strongly suggest that IL-17A at least contributes to the overall
inflammatory milieu that is present in the RA joint. It should be
noted, though, that IL-17A expression in patients with RA is
heterogeneous, and not all patients exhibit high IL-17A levels or
Th17 cell frequencies (Gullick et al., 2010; Kirkham et al., 2006;
Leipe et al., 2010; van Baarsen et al., 2014). It has been shown
that IL-17A expression in the joint correlates with serum CRP
levels (Gullick et al., 2010; Kirkham et al., 2006), and in this
context, it is interesting that one of the phase II secukinumab
studies reported better responses in patients with elevated CRP
levels above 10mg/liter (Burmester et al., 2016). The same study
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also explored whether secukinumab was more clinically effica-
cious in patients with RA who carried the HLA-DRB1*04 allele
(the most commonly associated HLA-DR allele with RA) or the
HLA-DRB1*SE (shared epitope). The shared epitope, a five–amino
acid sequence motif in residues 70–74 of the DRβ chain encoded
by several HLA-DRB1 alleles, is a genetic risk factor for RA and
has been suggested to induce Th17 cell polarization (De Almeida
et al., 2010). However, no meaningful association was observed
between HLA-DRB1 carrier status and DAS28-CRP or ACR20
response at week 12 to secukinumab relative to placebo
(Burmester et al., 2016). None of the clinical trials performed
thus far stratified patients based on IL-17A/Th17 cell or CRP levels,
and thus it cannot be ruled out that stronger clinical efficacy may
have been observed with a precision medicine approach.

It is also possible that IL-17A blockade alone is not sufficient
to effectively disrupt inflammatory signals. While IL-17A sig-
naling has a proinflammatory effect, it is not as potent as TNF.
Thus, neutralizing IL-17A only will not block the continuing
proinflammatory effects of TNF. Furthermore, as noted above,
IL-17A, IL-17B, and IL-17F can all synergize with TNF. Hence,
upon neutralization of IL-17A alone, the synergistic effects of IL-
17F, and possibly IL-17B, with TNF can still induce potent in-
flammatory effects. Results from clinical trials with dual
blocking antibodies such as ABT-122 (blocking IL-17A and TNF)
or bimekizumab (targeting the combination of IL-17A/IL-17F)
will be of interest in this regard.

A third consideration is that IL-17A may play distinct or
differential roles in early versus late disease. It has been shown
in mouse models of EAE that Th17 cells are induced early in
the disease process and that these cells, through expression of
CCR6, can migrate into the uninflamed central nervous system
(Reboldi et al., 2009; Ronchi et al., 2016). This first wave of
migratory T cells is required for the recruitment of a second
wave of T cells, including Th1 and Th17 cells, which then cul-
minates in full immunopathology. It has also been shown in the
same experimental model that Th17 cells can lose their IL-17A
expression and “convert” into IFN-γ–only producing T cells
during the disease course (Hirota et al., 2011). Evidence from
experimental arthritis models suggests that while Th17 cells may
be present even before onset of disease, IL-17A may play a more
prominent role in the erosive stages of disease (Joosten et al.,
2008; Koenders et al., 2005b). These findings suggest that
IL-17A–producing T cells may not be consistently present
throughout the disease course, and that IL-17A blockade may be
more efficacious in certain subsets of patients, for example,
those with early RA or patients with aggressively erosive dis-
ease. Temporal effects of cytokine function are generally not
considered in clinical trial design, and this again may have
influenced the trial outcomes.

It is also well-established that not all Th17 cells are patho-
genic, and that IL-10–producing nonpathogenic Th17 cells exist
(Lee et al., 2012; Zielinski et al., 2012). Our own work showed
that increased frequencies of IL-10–producing Th17 cells are
observed upon TNF blockade in vitro and in patients with RA
in vivo (Evans et al., 2014; Roberts et al., 2017). It will be im-
portant to establish if and how IL-17A blockade affects the in-
duction or function of these IL-10–producing Th17 cells.

Finally, in recent years, a vast body of evidence has shown
that IL-17A is not solely produced by CD4+ T cells but can also be
produced by other cellular sources including CD8+ T cells, γδ
T cells, mucosa-associated invariant T cells, and innate lymphoid
cells. We have shown that while IL-17A–producing CD8+ T cells
are not enriched in the inflamed joints of patients with RA, they
are present at increased frequencies in the joints of patients with
PsA and spondyloarthritis (Menon et al., 2014; Steel et al., 2019).
IL-17A–producing CD8+ T cells have also been described in the
inflamed skin lesions of patients with psoriasis (Res et al., 2010).
PsA, spondyloarthritis, and psoriasis are HLA class I–associated
diseases, suggesting a role for CD8+ T cells, while RA has a strong
HLA class II association, implying a role for CD4+ T cells. Pso-
riasis and spondyloarthritides also have various genetic associ-
ations with the IL-17/IL-23 pathway and show good clinical
responses to IL-17A blockade (reviewed in Taams et al., 2018).
This brings forward the fascinating question whether the cel-
lular source of IL-17A may be relevant to the clinical success of
IL-17A inhibition. While it is difficult to envision how neutrali-
zation of secreted IL-17A would be affected by the cellular source
of the cytokine, it is possible that positive pro-inflammatory
feedback loops between specific IL-17A–producing cells and
IL-17RA/RC–bearing target cells could be affected differentially
by IL-17A inhibition. Furthermore, different cellular sources
may have different epigenetic regulation of IL17A expression,
resulting in altered or longer-term stability, or coexpress dif-
ferent inflammatory mediators that influence the downstream
effects of IL-17A. Finally, evidence is accumulating of IL-
23–independent IL-17 production (Cuthbert et al., 2019), which
supports the notion that not all IL-17–producing cell subsets are
the same. Determining the presence and pathogenic role of
different cellular sources of IL-17 in inflammatory arthritis will
help clarify how IL-17 blockade might exert its effects.

Concluding remarks
The identification of IL-17A and IL-17A–producing CD4+ T cells in
the rheumatoid joint together with the biological function of IL-
17A in promoting inflammation, angiogenesis, and osteoclasto-
genesis made this cytokine a prime candidate for therapeutic
targeting in RA. Clinical trials directed at IL-17A blockade,
however, have shown mostly modest effects in RA, especially as
compared with the clinical efficacy observed in psoriasis, PsA,
and spondyloarthritis. While the limited clinical success in RA
may understandably prompt pharmaceutical industries to focus
their efforts on those indications in which the strongest clinical
response is demonstrated, one should take care not to throw out
the baby with the bathwater. As highlighted here, there are
some plausible potential reasons for the limited clinical success
of IL-17A blockade in RA. Using this knowledge together with
our growing understanding of precision medicine, it may be
possible, perhaps even prudent, to design investigator-led trials
to assess the effect of IL-17A blockade in specific groups of pa-
tients with RA, e.g., those with high levels of IL-17A or Th17 cells
in synovial fluid/tissue, those with rapidly progressing erosive
disease, or those with early RA and high CRP. Testing newly
emerging drugs such as dual cytokine blockade of IL-17A/TNF or
IL-17A/IL-17F, again in stratified patient groups, may be an
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additional avenue to pursue. While these approaches may not
provide added value for the majority of patients with RA over
and above the existing treatment options, they may benefit
those patients for whom current therapies are not sufficient.
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