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The recognition of a new yeast, Candida auris, in 2009 in East Asia, and its rapid global
spread, was a reminder of the threats posed by multidrug-resistant fungal pathogens.
C. auris had likely remained unrecognized for a long time as accurate tests were not
available. The laboratory community responded to the C. auris challenge by publishing
35 new or revised diagnostic methods between 2014 and early 2021. The commercial
sector also modified existing diagnostic devices. These C. auris diagnostic tests run
the gamut from traditional culture-based differential and selective media, biochemical
assimilations, and rapid protein profiles, as well as culture-independent DNA-based
diagnostics. We provide an overview of these developments, especially the tests with
validation data that were subsequently adopted for common use. We share a workflow
developed in our laboratory to process over 37,000 C. auris surveillance samples
and 5,000 C. auris isolates from the outbreak in the New York metropolitan area.
Our preview covers new devices and diagnostic approaches on the horizon based
on microfluidics, optics, and nanotechnology. Frontline laboratories need rapid, cheap,
stable, and easy-to-implement tests to improve C. auris diagnosis, surveillance, patient
isolation, admission screening, and environmental control. Among the urgent needs
is a lateral flow assay or similar device for presumptive C. auris identification. All
laboratories will benefit from devices that allow rapid antifungal susceptibility testing,
including detection of mutations conferring drug resistance. Hopefully, multiplex test
panels are on the horizon for synergy of C. auris testing with ongoing surveillance of
other healthcare-associated infections. C. auris genome analysis has a proven role for
outbreak investigations, and diagnostic laboratories need quick access to regional and
national genome analysis networks.

Keywords: PCR, real-time PCR, MALDI-TOF MS, biosensor, laboratory-developed tests, clinical, surveillance,
healthcare-associated infections
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Candida auris, A NOVEL PATHOGEN

Clinical laboratories made significant progress in the
identification of fungal pathogens with the introduction
of ribosomal RNA gene sequencing and matrix-assisted laser
desorption ionization–time of flight mass spectrometry (MALDI-
TOF MS) (White et al., 1990; Qian et al., 2008; Marklein et al.,
2009). These DNA- and protein-based approaches enhanced
the capacity of many frontline laboratories to recognize new
pathogens, which were previously the province of highly
specialized centers of excellence (Sullivan et al., 1995; Alcoba-
Florez et al., 2005; Sugita et al., 2006; Jensen and Arendrup,
2011; Cendejas-Bueno et al., 2012; Castanheira et al., 2013;
Eddouzi et al., 2013; Tsang et al., 2014). This scenario played
out perfectly when Candida auris was recognized as a new
yeast species by Satoh et al. (2009). The authors studied a single
yeast isolate from the external ear canal discharge of an elderly
patient at a Tokyo metropolitan hospital using biochemical
tests and ribosomal RNA gene sequences (ITS and D1-D2) to
delineate novel C. auris formally (Satoh et al., 2009). Around
the same timeframe, Kim et al. (2009) reported 15 isolates of
a novel Candida species, now confirmed as C. auris, from ear
canals of chronic otitis media patients in South Korea. These
isolates were susceptible to relatively high concentrations of
amphotericin B and fluconazole. A subsequent study from
South Korea by Lee et al. (2011) established C. auris as a causal
agent of fatal fungemia with intrinsic and acquired resistance
to fluconazole. The two teams highlighted misidentification
of C. auris by commercial systems. They also emphasized
the value of internal transcribed spacer (ITS) sequencing as
a confirmatory test (Kim et al., 2009; Lee et al., 2011). Teun
Boekhout’s group reclassified Candida haemulonii species
complex to recognize C. haemulonii, C. haemulonii var.
vulnera, Candida pseudohaemulonii, Candida duobushaemulonii,
and C. auris (Cendejas-Bueno et al., 2012). Notably, these
investigators reported that MALDI-TOF MS was as good as the
ITS sequencing for identification purposes (Cendejas-Bueno
et al., 2012). Thus, within a short span of 4 years, a rare
group of yeast species with intrinsic antifungal resistance was
characterized for clinical significance, and the MALDI-TOF MS
test was prescribed for rapid laboratory identification.

Candida auris INTERNAL TRANSCRIBED
SPACER (ITS) AND MATRIX-ASSISTED
LASER DESORPTION IONIZATION–TIME
OF FLIGHT MASS SPECTROMETRY

Subsequent notable developments in the C. auris saga involved
reports from outside East Asia. Sarma et al. (2013) described two
C. auris isolates from candidemia cases from a hospital in North
India. These isolates were amphotericin B- and fluconazole-
resistant. The tally was most likely higher than reported, as only
two of 15 isolates tentatively identified as C. haemulonii using a
commercial yeast kit were sent out for re-identification by ITS
sequencing (Sarma et al., 2013). Later, Chowdhury and coworkers

described a series of C. auris cases from North and South
India (Chowdhary et al., 2013, 2014). The authors suggested a
clonal population based on amplicon typing and noted nucleotide
variability in ITS gene sequences from East Asian C. auris isolates
(Chowdhary et al., 2013, 2014). The C. auris isolates in these
series were resistant to fluconazole, voriconazole, caspofungin,
and flucytosine (Chowdhary et al., 2014). An additional case
of fluconazole-resistant C. auris candidemia was reported from
Kuwait in 2014, attesting to broader distribution in South Asia
and Middle East (Emara et al., 2015). Also, in 2014, four cases
of fluconazole-resistant C. auris candidemia were described from
South Africa, and the investigators reported nucleotide variability
in ITS sequences (Magobo et al., 2014). Thus, multiple reports
documented widespread misidentification of C. auris by available
specialized culture media, biochemical test kits, or commercial
systems, highlighting the need for ITS sequencing (Chowdhary
et al., 2013, 2014; Sarma et al., 2013; Magobo et al., 2014;
Won et al., 2014; Emara et al., 2015). Using a more extensive
collection of 102 C. auris isolates, the Chowdhury group also
affirmed an earlier report by Cendejas-Bueno et al. (2012) on
the suitability of MALDI-TOF MS as a more facile approach
for C. auris confirmation (Kathuria et al., 2015; Prakash et al.,
2016). In a preliminary study, VITEK MS instrument was found
to be efficient in identification of eight of twelve reference strains
of C. auris (Girard et al., 2016). Ghosh et al. (2015) and Bao
et al. (2018) created main spectrum projections (MSP) and
an in-house database (CMdb), respectively, to demonstrate it
was possible to identify C. auris using a commercial Bruker
Biotyper MALDI-TOF MS system. Other investigators also
generated in-house databases to improve their Bruker MALDI-
TOF MS reference library (Ceballos-Garzon et al., 2020). Of
note, the US Food and Drug Administration (FDA) approved
the BRUKER MALDI Biotyper CA system (April 20, 2018) and
the bioMérieux Vitek MS (December 21, 2018) for C. auris
identification (Zhu et al., 2020).

Candida auris PCR AND
LOOP-MEDIATED ISOTHERMAL
AMPLIFICATION

Polymerase chain reaction (PCR) in many configurations
remains the technology of choice for newly described laboratory
tests for C. auris (Table 1). Among the most straightforward
applications, a duplex one-tube ITS-PCR assay was developed
to speciate C. auris from C. haemulonii by the size selection of
amplicons (Theill et al., 2018). Another direct PCR application
targeted glycosylphosphatidylinositol (GPI) protein-encoding
genes to speciate C. auris and 18 other Candida species by gel
visualization of different size amplicons (Ruiz-Gaitan et al., 2018).
The Boekhout group described novel tetraplex PCR and 21-
Multiplex PCR for C. auris and other closely related and other
yeast species, and extensive testing with 405 reference strains
and 804 clinical strains of yeasts from three different countries
(Arastehfar et al., 2018, 2019a,b,c). Prospective and retrospective
validations were performed in hospitals that appear not to have
C. auris (Arastehfar et al., 2018, 2019a). Although targeted for
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TABLE 1 | Candida auris culture-independent DNA-based identification and confirmation methods.

Method Target C. auris (No.
isolates)

Closely-Related
Yeasts (No. isolates)

Other Fungi (No.
isolates)

Clinical specimen
(No.)

Sensitivity
(%)

Specificity
(%)

LOD
(CFU/reaction)

References

PCR

GPI 139 18 ND (Not Done) ND 98 100 ND Ruiz-Gaitan
et al., 2018

ITS2 20 30 ND ND 100 100 ND Theill et al.,
2018

Multiplex PCR

26S 138 34 9 Mouse blood and
tissue (21)

100 100 ND Arastehfar
et al., 2018

26S 3 297 ND ND 100 100 ND Arastehfar
et al., 2019a

26S 35 1149 47 ND 100 100 ND Arastehfar
et al., 2019c

Real-time PCR

ITS2 44 92 5 ND 100 100 10 Kordalewska
et al., 2017

ITS2 17 40 31 Swab (365) 89 99 1 Leach et al.,
2018

58 Sponge (258) 100 89 1 Leach et al.,
2018

ITS2 47 Swab (110) 96 92 1 Leach et al.,
2019

ITS2 73 Swab (247) 93.6 97.2 1 Ahmad et al.,
2019

ITS1/2 10 103 13 Simulated sputum,
Urine, Wound

swabs, and Serum
(11)

100 100 1 Lima et al.,
2019

ITS2 32 18 54 Simulated urine,
Blood, and Swab

(30)

93.3–100 96 4–54 Walchak et al.,
2020

GPI 155 18 ND Simulated serum (1) 100 100 5 Alvarado et al.,
2021

GPI 8 62 2,123 Stool and water
samples (2073)

100 100 13 Ibrahim et al.,
2021a

ITS 4 113 8 ND 100 100 1 Jafarian et al.,
2020

LAMP Pyruvate
synthase

20 32 13 ND 100 100 20 Yamamoto
et al., 2018

(Continued)
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21 resource-poor settings, direct PCR methods appear not to be
widely adopted either due to the potential for contamination,
the difficulties of recording minor variations in the gel bands
or the unavailability of validation data needed for a laboratory-
developed test (LDT) (Bockstahler, 1994; Millar et al., 2002;
Hoorfar et al., 2004). A commercial multiplex nucleic acid test
panel that includes C. auris, received FDA approval on March
18, 2020; we did not find any independent evaluation of this
product in peer-reviewed publication (BioFire R© Blood Culture
Identification 2 (BCID2) Panel, FilmArray R© 2.0 or FilmArray R©

Torch systems, bioMérieux, Inc., Durham, NC, United States).
Yamamoto et al. (2018) developed a loop-mediated isothermal

amplification (LAMP)-based approach to detect C. auris.
LAMP forward/reverse primers targeting C. auris the pyruvate:
ferredoxin oxidoreductase domain from uncharacterized protein
(NCBI CJI97_003625, Gene ID 40028770) were tested in PCR at
56◦C for 90 min and the product visualized with a turbidimeter
(Yamamoto et al., 2018). The assay had an excellent limit of
detection (LOD) (20 copies/reaction) and specificity (100%) with
a large panel of C. auris and other fungi, positive C. auris
identification from a clinical swab, and simulated environmental
specimens (Yamamoto et al., 2018). Surprisingly, C. auris LAMP
assay has not seen broader adaptation, perhaps because test kit
manufacturers appear to be unenthused about LAMP technology
(Cantera et al., 2019).

Candida auris REAL-TIME PCR

Kordalewska et al. (2017) described a real-time PCR assay for
C. auris (Table 1). The new assay targeted Candida ribosomal
genes for specific primers used either for direct PCR and
detection of variable amplicon sizes or for real-time PCR and
melting curve analysis of the double-strand-specific dye SYBR R©

Green I (Wittwer et al., 2013). The investigators reported
100% accuracy (100% sensitivity and specificity) for C. auris
from closely related species based on a proficiency panel of
44. C. auris and 97 other yeast isolates (Kordalewska et al.,
2017). Further evaluation and modification of the assay by
the Perlin laboratory and CDC investigators allowed direct
detection of C. auris from patient swabs with 93% sensitivity
and 96% specificity (Sexton et al., 2018b). This milestone
marked the availability of a rapid C. auris real-time PCR test
for surveillance purposes with the accompanying validation
data required of an LDT. Within 3 months of the publication
of the new real-time assay, one of us (SC) led a team
that developed and validated a TaqMan-based real-time PCR
assay targeting the ribosomal ITS2 of C. auris (Leach et al.,
2018). The validation study comprised 623 surveillance samples,
including 365 patient swabs and 258 environmental sponges.
We found 49 swabs and 58 sponge samples positive, with 89
and 100% clinical sensitivity vis-a-vis culture-positive results
(Leach et al., 2018). The distinguishing features of our assay
vis-à-vis earlier publication from Perlin laboratory were the
use of TaqMan probe chemistry, higher sensitivity (with an
LOD of 1 C. auris CFU/PCR), the inclusion of all known
clades of C. auris as reported by whole-genome sequencing,
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and direct utilization of the test for detection of C. auris from
large numbers of surveillance samples (Kordalewska et al., 2017;
Leach et al., 2018; Sexton et al., 2018b). We further expanded
our manual assay to an automated sample-to-result real-time
C. auris PCR assay using the BD Max open system (Leach et al.,
2019). The new assay, with culture as gold standard, yielded
96% clinical sensitivity, and 94% clinical accuracy with 110
patient surveillance samples (Leach et al., 2019). The new assay
appeared promising for broader adaptability and availability
of high throughput surveillance testing (Leach et al., 2019).
CDC investigators adapted our manual assay to an even higher
throughput platform by automating the extraction steps and
achieved diagnostic sensitivity and specificity of 93.6 and 97.2%,
respectively (Ahmad et al., 2019). Both manual and semi-
automated C. auris assays developed by our group were adopted
by other laboratories, including the CDC Antifungal Resistance
Lab Network (personal communications) (Caceres et al., 2019;
Malczynski et al., 2020; Pacilli et al., 2020; CDC, 2021a). A few
months before submission/publication of our BD Max assay,
Lima et al. (2019) described a BD Max assay for C. auris.
The authors designed primers to target many fungal ribosomal
genes and tested a collection of fungi and bacteria and 50
contrived clinical specimens to report 100% clinical sensitivity
and specificity (Lima et al., 2019). The authors indicated that their
primer-design strategy was superior to other reported assays, and
the new assay was widely applicable. However, only 10 C. auris
isolates and no C. auris positive clinical or surveillance samples
were tested during the validation steps (Lima et al., 2019). Further
information is awaited about the performance and adoption of
the assay in other laboratories.

In 2020–2021, several additional laboratories described real-
time PCR assays for C. auris (Walchak et al., 2020; Alvarado
et al., 2021; Ibrahim et al., 2021a; Table 1). Commercial
primers and probes, melting curve analysis, and validation
with limited C. auris isolates and contrived clinical samples
allowed ≤100 CFU/reaction sensitivity from blood and urine
(Walchak et al., 2020). A similar melting curve approach using
primers against GPI-modified protein-encoding genes allowed
specific identification and detection of C. auris with an LOD of
5 CFU/reaction for isolates, 20 CFU/reaction from spiked blood
and serum (Alvarado et al., 2021). A TaqMan-chemistry assay
with an ITS2-specific probe achieved LOD 1 CFU/reaction when
four C. auris isolates and other fungal and bacterial strains were
tested (Jafarian et al., 2020). Another study utilizing a GPI-target
probe with TaqMan-chemistry and simulated samples achieved
an LOD of 13 C. auris CFU/qPCR reaction (Ibrahim et al.,
2021a). The number of publications suggests real-time PCR is
a preferred approach for rapid identification of C. auris from
clinical, surveillance, and environmental samples. However, in
the absence of head-to-head comparisons, it is not clear if SYBR R©

Green I or TaqMan chemistry, or a particular real-time machine,
are preferable for C. auris real-time PCR assays. A few studies
not involving C. auris describe the relative merits of various
real-time probes. Moreover, a process was published to compare
in-development real-time platforms; we refer the readers to these
studies to make an informed choice about primers, probes, and a
platform suitable for their laboratory needs (Van Poucke et al.,

2012; Polinski et al., 2013; Ahrberg and Neužil, 2015; Cantera
et al., 2019).

Candida auris REAL-TIME PCR KITS

AurisID R© is a commercial kit with ready-made reagents
for qPCR to identify C. auris from fungal culture (OLM
Diagnostics, Newcastle upon Tyne, England) (Table 1).
A retrospective evaluation with C. auris positive swab samples
reported 96.6% sensitivity (Mulet Bayona et al., 2021). In a
second study, AurisID R© detected C. auris with an LOD of
1 genome copy/reaction but gave false positives with high
DNA amounts of the C. haemulonii, C. duobushaemulonii,
and C. pseudohaemulonii (Sattler et al., 2021). Fungiplex R©

Candida Auris is a real-time, research use only (RUO) PCR
assay for the rapid detection of C. auris in hospital hygiene
applications including ready-made reagents for qPCR (Bruker
Daltonics GmbH & Co. KG. Bremen, Germany). An independent
evaluation reported the Fungiplex R© Candida Auris kit LOD to
be 9 copies/reaction, much lower than AurisID R© (LOD = one
copy/reaction) and 100% specificity for five C. auris isolates tested
(Sattler et al., 2021). The investigators also tested Fungiplex R©

Candida Auris in “off-label use” with blood samples spiked with
two C. auris isolates to obtain ∼45 viable CFU/reaction (Sattler
et al., 2021). All three commercial ready-to-use real-time PCR
reagent kits do not disclose primer and probe details, which may
or may not impact their future use as new C. auris clades are
discovered. None of these kits have current regulatory approval
for routine use in diagnostic laboratories.

DIFFERENTIAL AND SELECTIVE MEDIA

Differential culture media continue to be widely used in busy
clinical laboratories. CHROMagarTM Candida Plus is a new
chromogenic differential medium (Table 2). A comparative
evaluation with HiCrome C. auris MDR selective agar,
CandiSelect, CHROMagarTM Candida, and Chromatic Candida
commercial media revealed C. auris colonies develop a species-
specific coloration, as do closely related pathogenic species
C. pseudohaemulonii and Candida vulturna (de Jong et al., 2021).
In a similarly designed laboratory evaluation, CHROMagarTM

Candida Plus agar was judged to be an excellent alternative to
conventional mycological media for the screening of patients
with C. auris, as only Candida diddensiae yielded a similar
coloration (Borman et al., 2021). An earlier evaluation of
CHROMagarTM Candida Plus found 100% sensitivity and
specificity for C. auris when 14 surveillance samples were
tested (Mulet Bayona et al., 2020). Even in an off-label
modification, CHROMagar Candida was reported to offer
differentiation between C. auris and C. haemulonii complex
(Kumar et al., 2017). Thus, CHROMagar Candida Plus agar,
and possibly other commercial differential media, hold promise
for presumptive identification of C. auris when the laboratory
confirms the identification with MALDI-TOF MS or another
confirmatory test as per the manufacturer’s recommendation.
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TABLE 2 | Candida auris identification by mass spectrometry and other biochemical methods.

Method C. auris (No.
isolates)

Closely-Related
Yeasts (No. isolates)

Other Yeasts (No.
isolates)

Clinical
specimen

(No.)

Sensitivity (%) Specificity (%) References

Mass spectrometry

Bruker 90 12 ND ND 100 100 Kathuria et al.,
2015

Bruker 82 11 ND ND 100 100 Girard et al., 2016

Bruker, CMdb database 33 62 16 ND 100 100 Bao et al., 2018

MALDI 3 298 ND ND 100 100 Arastehfar et al.,
2019a

MALDI, PXD016387 database 300 8 ND ND 100 100 Ceballos-Garzon
et al., 2020

Autof MS 1000 2 1216 ND ND 100 100 Yi et al., 2021

Vitek MS 2 1216 ND ND 100 100 Yi et al., 2021

Biotyper 61 ND ND ND 75.4–83.6 ND Kwon et al., 2019

Vitek MS 61 ND ND ND 93.4–96.7 ND Kwon et al., 2019

Differential media

CHROMagarTM with Pal’s medium 15 13 ND ND 100 100 Kumar et al., 2017

CHROMagarTM Candida Plus 37 58 ND swab (23) 100 100 Mulet Bayona et al.,
2020

CHROMagarTM Candida Plus 10 52 ND ND ND 98 Borman et al., 2021

CHROMagarTM Candida Plus 9 35 ND ND 90 100 de Jong et al.,
2021

Selective media

Selective Auris Medium 133 446 ND Bactec blood
culture broth

(40)

100 100 Das et al., 2021

Specific C. auris (SCA) Medium 7 128 50 stool (200) 100 100 Ibrahim et al.,
2021b
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Welsh et al. (2017) described the first selective medium when
they reported C. auris growth at an elevated temperature
(40◦C) and salinity (10% wt/vol) in the Sabouraud or yeast
nitrogen base broths with dulcitol or mannitol as the carbon
source. The high salt medium had an excellent performance
in the selective enrichment of C. auris cells from patient and
environmental surveillance samples (Zhu et al., 2020; Sexton
et al., 2021). A modified Selective Auris Medium (SAM) was
recently described with YPD agar comprising 12.5% NaCl and
9 mM ferrous sulfate and incubation at 42◦C (Das et al., 2021).
Another variation of selective medium described by Walsh is
termed SCA (specific C. auris) medium, incorporating crystal
violet to prevent the growth of Candida tropicalis (Ibrahim et al.,
2021b). Both SAM and SCA are reported to improve the original
C. auris selective medium, but independent confirmations are
not yet available.

In laboratories without access to ITS sequencing and MALDI-
TOF MS, it is convenient to use manual or automated
biochemical panels and systems to confirm the identification
of yeast isolated from culture. Earlier reports and recent re-
evaluations found incomplete or incorrect identifications of
C. auris by the API ID 32 C system (version 4.0 database),
AuxaColorTM 2 (Bio-Rad Laboratories, Marnes-la-Coquette,
France), Vitek 2 (bioMérieux, Marcy l’Étoile, France), BD
Phoenix (BD Diagnostics, Sparks, MD, United States), and
RapID Yeast Plus (Remel, Thermo Fisher Scientific, Lenexa, KS,
United States) (Won et al., 2014; Kathuria et al., 2015; Kim
et al., 2016; Ruiz Gaitan et al., 2017; Iguchi et al., 2018; Sharp
et al., 2018; Snayd et al., 2018; Ambaraghassi et al., 2019; Tan
et al., 2019; CDC, 2021b; Du et al., 2021; Table 2). A recent
report on API ID 32 C concluded that C. auris could be
identified if the percentage of positive reactions is registered in
the database or calculated manually (Du et al., 2021). It appears
these panels and systems need further refinements and evaluation
to assess their utility for the identification of rare yeasts, including
C. auris (Du et al., 2021). It might also be prudent for the end
users to promptly install the latest product updates from the
manufacturers and review any new information on approvals
and evaluations.

Candida auris ANTIFUNGAL
RESISTANCE TESTING

Antifungal susceptibility testing (AFST) of C. auris is performed
with CLSI or EUCAST methods and commercial devices
(Chowdhary et al., 2014, 2018; Arendrup et al., 2017; Bidaud et al.,
2019; Escandon et al., 2019; Kwon et al., 2019; O’Brien et al., 2020;
Zhu et al., 2020; CDC, 2021a). Several new drugs in development
were also tested for their efficacy against C. auris using standard
AFST (Arendrup et al., 2018; Ghannoum et al., 2020). A few
studies describe antifungal combination testing for C. auris using
LDTs (Fakhim et al., 2017; Bidaud et al., 2019; O’Brien et al.,
2020). The literature on C. auris antifungal testing is voluminous,
and discussion of these publications is not possible here. The
focus is on the evaluation of established or new laboratory
tests. Nevertheless, it is incumbent upon laboratories to perform
both identification and antifungal testing for C. auris as part of

their diagnostic service. The drug-resistance pattern in C. auris
remains variable. Also, regional patterns have been observed for
fluconazole and other triazoles, echinocandins, and amphotericin
B (Chowdhary et al., 2018; Escandon et al., 2019). There is
emerging evidence about the utility of susceptibility testing in
selecting appropriate antifungal drugs in the management of
patients (Alatoom et al., 2018; Chen et al., 2018; Dewaele et al.,
2020). Lessons learned from C. auris outbreak investigations
included a vital role for antifungal susceptibility data for
surveillance purposes, including monitoring emerging drug
resistance patterns in the community (Mulet Bayona et al., 2020;
Ostrowsky et al., 2020; Zhu et al., 2020; Tian et al., 2021). AFST
test innovations for C. auris remain sparse, with just one report
describing same-day identification and echinocandin-resistance
testing using MALDI-TOF MS (Vatanshenassan et al., 2019).
Further confirmations and correlation of the new test approach
with standard AFST are not yet available. The phenotype based
CLSI, EUCAST, and commercial AFST tests are slow. Ideally,
phenotype tests should be preceded by rapid DNA tests for
drug-resistant C. auris, ensuring timely treatment of infected
patients and effective pathogen control measures. In promising
developments, Perlin laboratory described a molecular beacon-
based platform for detecting FKS1 (echinocandins) and ERG11
(azoles) mutations in C. auris isolates and patient swab samples
(Hou et al., 2019; Kordalewska et al., 2019). The molecular tests
for drug resistance are desirable as surrogates for standard AFST
tests standalone or multiplexed with rapid ID tests for C. auris.
Molecular platforms offer flexibility to target new mutations
encountered in drug-resistant C. auris.

Candida auris DIAGNOSTIC ALGORITHM

Candida auris colonization and infection among hospitalized
patients and long-term care residents have become a global
problem, with localized outbreaks reported from several
countries. Several laboratory modes of operation are possible
regarding pathogen isolation, rapid identification, susceptibility
testing, and genotyping. Figure 1 provides a conceptual
illustration of testing method differences between low-
complexity and moderate- to high-complexity laboratories.
A significant challenge for specialized diagnostic mycology
laboratories concerns supporting C. auris surveillance and
outbreak investigations. Such a service is available in large
bacteriology laboratories but seldom needed for fungal
pathogens. Consequently, many clinical recommendations
and guidelines were published for laboratories that work with or
want to expand their services for C. auris (Lockhart et al., 2017;
Tsay et al., 2018; Caceres et al., 2019; Kenters et al., 2019). In the
United States, the latest versions of the CLSI M-54 document
and the Manual of Clinical Microbiology, peer-recommended
guidelines for diagnostic microbiology laboratories, do not
have C. auris-specific guidelines for isolation and identification
(Carroll et al., 2019; CLSI, 2021). Early in 2017, we devised
an algorithm which has been modified regularly since then
to cope with an unprecedented volume of surveillance and
clinical samples of C. auris. Alternate laboratory approaches are
shown with dotted lines. We share the scheme hoping it will
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FIGURE 1 | A conceptual illustration of testing method differences between
low-complexity and moderate- to high-complexity laboratories.

help other laboratories to modify their workflows to suit local
needs (Figure 2).

Candida auris DIAGNOSTICS ON THE
HORIZON

Among commercial products likely to be available soon, T2MR
(T2 magnetic resonance) is a portable system that detects
candidemia by measuring signals from PCR-amplified Candida
nanoparticle clusters in the blood directly within 3 h (Neely
et al., 2013; Mylonakis et al., 2015). In 2018, CDC investigators
evaluated a T2Cauris panel (T2 Biosystems, Lexington, MA,
United States) with axilla/groin swab samples and reported 89%
sensitivity and 98% specificity for detecting C. auris (Sexton
et al., 2018a; Table 2). The T2Biosystems R© website states that
T2Cauris is not cleared for diagnostic testing and is available
for research use only (RUO). MONODOSE dtec-qPCR C. auris
is a commercial ready-to-use qPCR kit for pathogen detection
(Genetic PCR SolutionsTM, Alicante, Spain). The manufacturer
completed a validation study with academic partners according
to UNE-EN ISO/IEC 17025:2005 standard (Martinez-Murcia
et al., 2018). The investigators reported MONODOSE dtec-qPCR

C. auris passed validation in two independent laboratories and
is ready to undergo clinical evaluation (Martinez-Murcia et al.,
2018). Among new sample-to-answer systems, ePlex BCID-FP is
an investigational use only proprietary reagent test panel for 15
Candida species used with a proprietary ePlex System (GenMark
Diagnostics, Inc., Carlsbad, CA, United States). A multi-
laboratory evaluation with 3 C. auris isolates and 49 contrived
blood samples obtained 100% sensitivity and specificity (Zhang
et al., 2020). Another sample-to-answer approach based on an
oligonucleotide-functionalized gated nanosystem for C. auris
achieved 85% sensitivity and 100% specificity in limited testing
with 22 blood samples (Pla et al., 2021). Mass spectrometry
systems from manufacturers other than Bruker are also available
and in use in clinical laboratories. A minimal evaluation with
two C. auris isolates reported equal efficacy of Vitek MS and
Autof MS 1000 systems (Yi et al., 2021). It is safe to say that any
MALDI-TOF MS machine will provide identification of C. auris
provided enough representative isolates encompassing all known
clades are included in the database to train the decision algorithm
(van Belkum et al., 2017). Limited but promising results are
also being published on sample processing and machine learning
applications to MALDI platforms, which will benefit C. auris
diagnostics eventually (Muthu et al., 2018; Weis et al., 2020; De
Bruyne et al., 2021).

Candida auris BIOSAFETY,
DISINFECTANTS, AND ADVISORIES

Candida auris poses unique occupational risks for laboratory
personnel due to potential exposure to multidrug-resistant
organisms. The reported persistence of C. auris on
inanimate objects requires focused efforts at environmental
decontamination. No C. auris-specific guidelines are available
in the latest edition of BMBL Biosafety in Microbiological
and Biomedical Laboratories (DHH, 2020). CDC and many
state and local jurisdictions in the United States have issued
C. auris advisories for healthcare professionals. The guidance
information is regularly updated online for easy consultation.
The United States EPA’s (Environmental Protection Agency) List
P includes 23 disinfectant products with claims about their ability
to kill C. auris (EPA, 2021). We follow institutional biosafety
guidelines for BSL 2 laboratories. Our additional precautions
include frequent changes of hand gloves and disposable lab
apparel. The laboratory work surfaces are decontaminated
pre- and post-procedure with freshly prepared 10% bleach
solution, followed by 70% ethanol. We secure fungal cultures
in secondary containers for transfer and incubation within the
laboratory. Periodic sampling of space and instruments are
done by C. auris real-time PCR and culture to check for any
inadvertent fungal contamination.

Candida auris TEST WISH LIST

The availability of rapid C. auris DNA tests onsite remain severely
restricted, especially in resource-poor settings. The results are
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FIGURE 2 | Workflow algorithm for high-volume surveillance and clinical sample testing of C. auris. Dotted lines indicate alternate laboratory approaches.

available only after 24–72 h, assuming samples are sent out for
reference testing. DNA tests are challenging for many frontline
laboratories and long-term care facilities due to a lack of
equipment and trained personnel. MALDI-TOF MS assays work
best with isolated C. auris colonies, but the time required delays
diagnosis by 3–7 days on average (Zhu et al., 2020). Frontline
laboratories need rapid and facile onsite testing of C. auris
to inform their efforts at identification, surveillance, patient
isolation, admission screening, and environmental control
(Durante et al., 2018; Wang et al., 2020). Thus, there is an
unmet, urgent need for simple C. auris tests, especially for
surveillance samples. Lateral flow assays (LFAs), also known
as lateral flow immunoassay or immunochromatographic assay,
could be a good choice as they are rapid, cheap, stable, and
easy-to-implement for presumptive identification of microbes
(Koczula and Gallotta, 2016; Boutal et al., 2018). At the other end
of the service spectrum, many hospital laboratories already use
multiplex test panels for Clostridioides difficile and carbapenem-
resistant Enterobacterales (CRE), and synergy of such panels
with C. auris testing would be welcome (Binnicker, 2015;
Crobach et al., 2016; Kost et al., 2017; McDonald et al., 2018;
Bogaerts et al., 2020; CDC, 2021c). Current AFST services
are inadequate as turnaround time is woefully inadequate,
and new test formats/devices are needed for faster reporting
and AFST-directed treatment of C. auris infections. Laboratory

surveillance is crucial for monitoring and control of C. auris
outbreaks. C. auris genome analysis has a proven role in the
control of hospital outbreaks by pinpointing the common source
(Eyre et al., 2018; Theodoropoulos et al., 2020). However, fungal
genome sequencing and analysis remain beyond the capabilities
of most diagnostic laboratories. Therefore, local outbreak
investigations require diagnostic laboratories to quickly access
regional and national collaborative networks with standardized
C. auris sequencing tools (Ladner et al., 2019; Mintzer et al., 2019;
NIHR Global Health Research Unit on Genomic Surveillance of
AMR, 2020).
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