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Background: Late enhanced cardiac magnetic resonance (CMR) images of the

left ventricular myocardium contain an enormous amount of information that could

provide prognostic value beyond that of late gadolinium enhancements (LGEs). With

computational postprocessing and analysis, the heterogeneities and variations of

myocardial signal intensities can be interpreted and measured as texture features. This

study aimed to evaluate the value of texture features extracted from late enhanced

CMR images of the myocardium to predict adverse outcomes in patients with dilated

cardiomyopathy (DCM) and severe systolic dysfunction.

Methods: This single-center study retrospectively enrolled patients with DCM with

severely reduced left ventricular ejection fractions (LVEFs < 35%). Texture features were

extracted from enhanced late scanning images, and the presence and extent of LGEs

were also measured. Patients were followed-up for clinical endpoints composed of

all-cause deaths and cardiac transplantation. Cox proportional hazard regression and

Kaplan–Meier analyses were used to evaluate the prognostic value of texture features

and conventional CMR parameters with event-free survival.

Results: A total of 114 patients (37 women, median age 47.5 years old) with severely

impaired systolic function (median LVEF, 14.0%) were followed-up for a median of 504.5

days. Twenty-nine patients experienced endpoint events, 12 died, and 17 underwent

cardiac transplantations. Three texture features from a gray-level co-occurrence matrix

(GLCM) (GLCM_contrast, GLCM_difference average, and GLCM_difference entropy)

showed good prognostic value for adverse events when analyzed using univariable Cox

hazard ratio regression (p = 0.007, p = 0.011, and p = 0.007, retrospectively). When

each of the three features was analyzed using a multivariable Cox regression model that
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included the clinical parameter (systolic blood pressure) and LGE extent, they were found

to be independently associated with adverse outcomes.

Conclusion: Texture features related LGE heterogeneities and variations

(GLCM_contrast, GLCM_difference average, and GLCM_difference entropy) are

novel markers for risk stratification toward adverse events in DCM patients with severe

systolic dysfunction.

Keywords: cardiac magnetic resonance, texture features, dilated cardiomyopathy, prognosis, survival

INTRODUCTION

Idiopathic dilated cardiomyopathy (DCM) is one of the most
common non-ischemic cardiomyopathies, which is associated
with a poor prognosis due to sudden cardiac death and heart
failure (HF) (1, 2). Left ventricular systolic function (left
ventricular ejection fraction, LVEF) has been the dominant factor
for risk stratification and survival prognosis in DCM patients
with HF (3–5). However, risk stratification in DCM patients
with severely reduced LVEF remains challenging. Myocardial
fibrosis evaluated by late gadolinium enhancement (LGE) cardiac
magnetic resonance (CMR) imaging showed significant value for
risk stratification in patients with DCM (6). Both the presence
and the extent of LGE are significantly associated with adverse
outcomes in patients with DCM (7, 8). However, recent studies
have demonstrated that different LGE distribution patterns
within the myocardium could also affect prognosis in patients
with DCM (9–11).

Texture analysis is a quantitative imaging-processing method,
which can detect subtle pixel formation features that cannot
be observed by direct visual inspection (12, 13). Following the
application of texture analysis in oncology studies (14, 15),
texture features were also found to provide valuable information
in the diagnosis and prognosis of ischemic and non-ischemic
cardiomyopathies (16–18). We hypothesize that texture features
extracted from late enhanced images may provide incremental
information regarding ordinary LGE analysis for prognosis
among patients with DCM. We focused on DCM patients with
severely impaired systolic function (LVEF < 35%), who had a
high prevalence of LGE presence in the CMR study with an
increased risk of adverse cardiac events. We aimed to evaluate
texture characteristics extracted from LGE–CMR images in DCM
patients with severely reduced LVEF to assess its prognostic value
for further stratifying this subgroup of patients.

MATERIALS AND METHODS

Study Population
A retrospective study was conducted at a local institute on
patients enrolled between June 2014 and April 2020 through
searching the Picture Archiving and Communication Systems
and medical records. Our study was conformed to the principles
outlined in the Declaration of Helsinki and was approved by the
local ethics committee. Due to the retrospective nature of the
study, written informed consent from patients was waived by the
local ethical committee.

Patients referred to contrast-enhanced CMR examination for
evaluation of cardiomyopathic etiologies at the local institute
were retrospectively reviewed. By reviewing medical records,
those who had been previously diagnosed with DCM and with
LVEF < 35% were finally included. The diagnosis of DCM
was made according to the criteria of the WHO/International
Society and Federation of Cardiology (19). Exclusion criteria
were as follows: (1) significant ischemic cardiomyopathy, defined
as >50% stenosis of major coronary arteries, previous coronary
revascularization, or myocardial infarction; (2) moderate-to-
severe valvulopathy; (3) hypertrophic cardiomyopathy, amyloid
cardiomyopathy, and other infiltrative heart diseases; (4) evident
artifacts on CMR images due to either arrhythmia, difficulties
with breath-hold, or implanted devices; and (5) patients who
cannot be followed for survival outcome were also excluded.
In keeping with the guidelines, patients showing LGE infarct
patterns on late enhancement images were also excluded.

CMR Examination
Cardiac magnetic resonance was performed at 1.5 or 3.0 T MR
scanners (MAGNETOM Aera or MAGNETOM Skyra, Siemens,
Erlangen, Germany) with 12-channel surface-phased array coils.
The standard acquisition protocol included steady-state free-
precession cine-sequences in 3 long-axis views and continuous
short-axis views, covering the entire LV and late enhancement
sequences after administrating the gadolinium contrast agent.
Typical imaging parameters for cine imaging were as follows:
field of view 415 × 340 mm2, matrix 256 × 256, slice thickness
8mm, slice gap 1.6mm, temporal resolution < 45ms, number
of calculated cardiac phases 25. LGE images were acquired
10–15min (median time interval 12.4min) after cumulative
intravenous administration of 0.2 mmol/kg (median amount
13.0 mmol) of gadopentetate dimeglumine (Magnevist, Bayer,
Germany) or gadobutrol (Gadovist, Bayer, Germany), with the
same positions used for cine-CMR imaging. After selecting an
inversion time for optimal normal myocardium nulling with
an inversion time scout sequence, a phase-sensitive inversion
recovery technique was used to acquire LGE images with the
following parameters: field of view, 400 × 360 mm2; matrix, 256
× 256; slice thickness, 8mm; slice gap, 1.6 mm.

Conventional CMR Image Analysis
The conventional analysis was performed offline using dedicated
commercially available software (CMR42, Circle Cardiovascular
Imaging Inc., Calgary, Canada) following standardized
recommendations by researchers blinded to clinical data.
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FIGURE 1 | Flowchart of textures extraction and selection.

Conventional parameters derived from cine images included EF
of bilateral ventricles, end-systolic and end-diastolic volumes
of bilateral ventricles indexed to body surface area, and LV
mass index. The presence and extent, and LGE distributions
were evaluated by two senior operators with a consensus. An
LGE was defined as an area with a signal intensity >6 standard
deviations above the mean normal myocardial signal intensity
derived in a remote location using the same short-axis slice.
After drawing the contours of the epi- and endomyocardium,
the extent of LGE was calculated as the percentage volume of
enhanced myocardium accounting for the whole left ventricular
myocardium. The LGE distribution was classified into different
patterns, including septal, free-wall, or as involving both septal
and free-wall.

LGE Images Texture Analysis
In late enhanced scanning, the LV myocardium was segmented
and extracted in continuous short-axis views according to the
contours drawn in the conventional analysis process. The process
of texture feature extraction was achieved with a radiomic
python toolbox named pyradiomics (20). The original images
were first normalized by ranging gray pixel values from 0 to
255 and then discretized them (with bandwidth = 5) into 52
gray levels. Texture features were extracted from the processed
images, including features from the categories of histogram,
shape, gray-level co-occurrence matrix (GLCM), gray-level run-
length matrix (GLRLM), gray-level size-zone matrix (GLSZM),
gray-level dependence matrix (GLDM), and neighboring gray-
tone difference matrix (NGTDM). To assess the intra-/inter-
reader agreement of the feature analyses, the segmentation
of myocardial contour was performed again in all cases by
the same researcher and the other researcher 2 weeks later.
After assessing the reproducibility of extracted features, they
were grouped by correlation. Further selection processes were
implemented among each group to generate robust prognostic
texture features (Figure 1).

Follow-Up and Definition of Endpoints
All patients were followed-up via telephone in October 2020 by
researchers blinded to the clinical information. The endpoint
was defined as the composite of all-cause death and heart

FIGURE 2 | Flowchart of patients selection.

transplantation. The duration of follow-up was calculated from
the baseline CMR study date to the occurrence of endpoint event
or last contact with the patient. Baseline clinical information for
each patient was retrieved from medical records.

Statistical Analysis
Continuous variables were expressed as medians and
interquartile ranges (IQRs). Categorical data were described as
frequencies and percentages. For assessment-extracted texture
features robustness, inter-/intraclass correlation (ICC) was
analyzed based on different myocardial segmentation groups.
The Spearman correlation coefficient with cluster analysis was
performed to divide the texture features into different groups.
Then, multivariate Cox proportional hazard regression analysis
with backward stepwise selection was performed in each group
to identify the non-redundancy representative features. This
process was implemented again on all identified features to
determine a non-redundant set of prognostic indicators.

Student’s t-test, Wilcoxon–Mann–Whitney test, χ
2 test, or

Fisher’s exact test were used to compare the differences between
patients with and without endpoint events. Kaplan–Meier (K–M)
curves and log-rank tests were used to analyze the association
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TABLE 1 | Baseline clinical characteristics.

All patients

(n = 114)

Patients with endpoints

(n = 29)

Patients without endpoints

(n = 85)

P-value

Clinical demographics

Age, years 47.5 (35.8, 57.0) 56.0 (36.0, 59.0) 47.0 (33.5, 56.0) 0.280

Female, n (%) 37 (32.5%) 7 (24.1%) 30 (35.3%) 0.268

BMI (kg/m2 ) 24.1 (21.0, 26.4) 22.5 (19.3, 25.3) 24.6 (21.4, 26.7) 0.027

Family history 13 (11.4%) 2 (6.9%) 11 (12.9%) 0.51

Hypertension, n (%) 23 (20.2%) 4 (13.8%) 19 (22.4%) 0.426

Diabetes mellitus, n (%) 16 (14.0%) 6 (20.7%) 10 (11.8%) 0.232

Tobacco, n (%) 39 (34.2%) 9 (31.0%) 30 (35.3%) 0.821

Alcohol, n (%) 20 (17.5%) 5 (17.2%) 15 (17.6%) >0.99

Dyslipidemia, n (%) 17 (14.9%) 5 (17.2%) 12 (14.1%) 0.764

SBP (mmHg) 115 (102, 130) 100 (94, 114) 121 (109, 135) <0.001

DBP (mmHg) 72 (64, 88) 65 (60, 74) 77 (67, 88) 0.005

NYHA functional class

I, n (%) 1 (0.9%) 0 (0%) 1 (1.3%) 0.007

II, n (%) 29 (27.1%) 7 (24.1%) 22 (28.2%)

III, n (%) 47 (43.9%) 7 (24.1%) 40 (51.3%)

IV, n (%) 30 (28.0%) 15 (51.7%) 15 (19.2%)

Electrocardiogram

Heart rate (bpm) 89 (72, 100) 76 (67, 97) 89 (74, 101) 0.210

AVB, n (%) 3 (2.7%) 1 (3.6%) 2 (2.4%) >0.99

LBBB, n (%) 15 (13.6%) 4 (14.3%) 11 (13.4%) >0.99

RBBB, n (%) 4 (3.6%) 1 (3.6%) 3 (3.7%) >0.99

QRS duration (ms) 100.0 (91.5, 116.5) 106.0 (100.0, 132.0) 100.0 (90.0, 110.0) 0.021

QTc interval (ms) 438.5 (413.75, 466.5) 450 (420, 485) 436 (412.25, 464.5) 0.163

Cardiac medication

Beta-blockers, n (%) 87 (76.3%) 18 (62.1%) 69 (81.2%) 0.037

ACEI/ARB, n (%) 35 (30.7%) 11 (37.9%) 24 (28.2%) 0.328

Diuretics, n (%) 43 (37.7%) 15 (51.7%) 28 (32.9%) 0.072

Spironolactone, n (%) 74 (64.9%) 21 (72.4%) 53 (62.4%) 0.327

Digoxin, n (%) 37 (32.5%) 10 (34.5%) 27 (31.8%) 0.787

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; NYHA, new york heart association; AVB, atrioventricular block; LBBB, left branch bundle block;

RBBB, right branch bundle block; ACEI, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blockers.

between baseline variables and cardiac events. For continuous
variables, median values were chosen for transforming into
categorical data. Cox proportional hazards regression models
were used to estimate hazard ratios (HR) and 95% confidence
intervals (95% CIs) were used to assess the association between
baseline variables and endpoint events in both univariate and
multivariable analyses. The prognostic abilities of constituted
models were assessed by calculating the concordance probability
(C index). A two-sided value of p < 0.05 was considered
statistically significant. All analyses were performed using SPSS
software (version 22.0, IBM, Armonk, NY, USA).

RESULTS

Clinical Demographics and Survival
Outcomes
A total of 114 patients were included after multiple selection
processes (Figure 2). The median age was 47.5 years and the total

number of women was 37. During a median follow-up of 504.5
days, 29 endpoint events were documented, including 12 deaths
and 17 cardiac transplantations. Baseline clinical characteristics
were compared between patients with endpoint events and those
who survived (Table 1). There were no significant differences
between groups with regard to age, sex, family history, and
underlying diseases. In addition, patients having adverse events
had lower blood pressure and worse heart function grades. The
duration of the QRS wave on the electrocardiogram was also
longer in the group with endpoint events. Except for beta-
blockers, there was no difference in drug medications between
the groups.

CMR Characteristics
Baseline CMR parameters of both the groups are shown
and compared in Table 2. The median LVEF in all patients
was severely impaired (14.0%) without a significant difference
between the event and event-free groups (13.7% vs. 14.9%, p =
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TABLE 2 | Baseline cardiac magnetic resonance (CMR) parameters.

CMR parameters All patients

(n = 114)

Patients with endpoints

(n = 29)

Patients without endpoint

(n = 85)

P-value

LV EF (%) 14.0 (10.7, 19.2) 13.7 (11.0, 19.2) 14.9 (10.3, 19.5) 0.873

LV EDVI (ml/m2 ) 175.8 (147.7, 214.2) 161.6 (133.8, 203.1) 185.4 (150.8, 219.0) 0.116

LV ESVI (ml/m2 ) 149.4 (120.5, 191.5) 148.4 (110.8, 176.0) 154.2 (124.5, 195.8) 0.218

LV mass index (g/m2) 88.6 (74.6, 105.8) 89.5 (77.0, 95.8) 88.1 (73.7, 109.0) 0.977

RV EF (%) 18.8 (9.3, 33.3) 29.8 (14.2, 38.1) 16.0 (8.5, 29.0) 0.034

RV EDVI (ml/m2 ) 88.7 (65.3, 114.4) 89.7 (64.3, 115.8) 88.7 (65.6, 113.0) 0.925

RV ESVI (ml/m2 ) 66.0 (46.4, 94.6) 65.7 (43.7, 92.4) 66.2 (51.6, 96.6) 0.382

Presence of LGE, n (%) 95 (83.3%) 27 (93.1%) 68 (80.0%) 0.149

LGE location 0.203

Absent 19 (16.7%) 2 (6.9%) 17 (20%)

Only septal LGE 10 (8.8%) 2 (6.9%) 8 (9.4%)

Only free-wall LGE 4 (3.5%) 0 (0.0%) 4 (4.7%)

Septal & free-wall LGE 81 (71.1%) 25 (86.2%) 56 (65.9%)

LGE extent 2.21 (0.68, 4.86) 3.65 (1.29, 11.13) 1.61 (0.51, 3.09) 0.001

CMR, cardiac magnetic resonance; LV, left ventricle; EF, ejection fraction; EDVI, indexed end-diastolic volume; ESVI, indexed end-systolic volume; RV, right ventricle; LGE, late

gadolinium enhancement.

TABLE 3 | Characteristics of employed texture features for survival analysis.

Intuitive description Median (IQR) P-value

All patients Events group Event-free group

GLCM_contrast It is a measure of the local intensity variation,

favoring values away from the diagonal.

20.923

(16.191, 25.836)

24.719

(19.213, 32.556)

19.881

(15.969, 24.807)

0.007

GLCM_difference

average

It measures the relationship between

occurrences of pairs with similar intensity

values and occurrences of pairs with differing

intensity values.

3.275

(2.825, 3.688)

3.502

(3.187, 4.065)

3.216

(2.786, 3.646)

0.011

GLCM_difference

entropy

It is a measure of the randomness/variability in

neighborhood intensity value differences.

3.260

(3.081, 3.413)

3.361

(3.223, 3.562)

3.235

(3.041, 3.402)

0.007

IQR, Interquartile range; GLCM, gray-level co-occurrence matrix.

0.873). However, the RVEF value was higher in patients with
adverse outcomes. Indexed parameters of ventricular volume and
LVmass showed no differences between the groups. The presence
of LGEs was prevalent in the study cohort (83.3%), and there
was no significant difference between the events group and those
without cardiac events. In addition, the locations of LGE on LV
myocardium did not show a significant difference between the
groups. However, the extent of LGE areas, accounting for the
entire LV myocardium, was much more significant in patients
who experienced adverse events (3.65% vs. 1.61%, p= 0.001).

Texture Analysis
A total of 58 texture features with good reproducibility, defined as
ICCs higher than 0.7, w included in the final analysis. There were
six first-order statistical features, 18 GLCM features, 11 GLRLM
features, 10 GLSZM features, 10 GLDM features, and 3 NGTDM
features. They were divided into 10 different groups by cluster
analysis; all pairs of features within each group had Spearman
correlation coefficients >0.4. According to the prognostic value
of the texture features of adverse outcome, the backward

stepwise Cox method was used to select robust texture features
among each group. A total of 20 texture features was chosen
from 10 different groups. To further minimize the number of
meaningful features and find out more robust markers, backward
Cox analysis was implemented again between these candidate
features, and three features (GLCM_contrast, GLCM_ difference
average and GLCM_difference entropy) were finally selected.
Their basic characteristics are described in Table 3.

Survival Analysis
The baseline clinical variables, conventional CMR parameters,
and texture features derived from late enhanced images were
analyzed to evaluate the association with adverse outcomes
(Table 4). Among the clinical variables, BMI, blood pressure,
heart functional classification, diuretics, and beta-blockers
medications were associated with endpoint events. Regarding
conventional CMR parameters, RVEF, and LGE extent, especially
the latter one, was shown to be significantly associated with
adverse outcome. However, the presence and location of
LGE showed no association with adverse events. All three
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TABLE 4 | Univariable Cox regression analysis of baseline clinical variables.

HR 95% CI P-value

Clinical demographics

Age, years 0.940 0.973–1.030 0.940

Gender (Female) 1.528 0.652–3.582 0.329

BMI (kg/m2 ) 0.892 0.836–0.925 0.001

Hypertension 0.600 0.208–1.725 0.343

Diabetes mellitus 1.533 0.624–3.767 0.352

Tobacco 0.906 0.412–1.991 0.806

Alcohol 0.953 0.363–2.501 0.922

Dyslipidemia 1.263 0.482–3.312 0.635

SBP (mmHg) 0.953 0.930–0.976 0.000

DBP (mmHg) 0.963 0.936–0.990 0.008

NYHA function class 2.03 1.36–3.04 0.000

ECG

Heart rate (bpm) 0.988 0.970–1.008 0.233

AVB 1.531 0.208–11.296 0.676

LBBB 1.123 0.389–3.241 0.830

RBBB 1.235 0.167–9.150 0.836

QRS duration (ms) 1.011 0.998–1.024 0.096

QTc interval (ms) 1.003 0.997–1.009 0.366

Cardiac medication

Beta-blockers 0.393 0.183–0.841 0.016

ACEI/ARB 1.301 0.610–2.779 0.496

Diuretics 2.154 1.038–4.469 0.035

Spironolactone 1.590 0.703–3.594 0.265

Digoxin 1.064 0.494–2.291 0.875

Cardiac MRI

LV EF (%) 0.999 0.945–1.056 0.963

LV EDVI (ml/m2 ) 0.996 0.990–1.002 0.224

LV ESVI (ml/m2 ) 0.996 0.990–1.003 0.257

LV mass index (g/m2) 0.999 0.986–1.012 0.849

RV EF (%) 1.025 1.000–1.050 0.046

RV EDVI (ml/m2 ) 0.998 0.987–1.009 0.752

RV ESVI (ml/m2 ) 0.994 0.983–1.005 0.283

LGE presence 3.247 0.771–13.680 0.109

LGE location 1.513 0.991–2.310 0.055

LGE extent 1.070 1.039–1.102 0.000

Texture features

GLCM_contrast 1.072 1.031–1.114 0.000

GLCM_difference average 2.482 1.424–4.327 0.001

GLCM_difference entropy 12.748 2.692–60.371 0.001

HR, hazard ratio; CI, confidence interval and the rest abbreviations are same as those in

Tables 1, 2.

included texture features have predicted the adverse outcome
in our study cohort (Table 4). Dividing by the median values,
LGE extent, GLCM_contrast, GLCM_difference average, and
GLCM_difference entropy showed significant associations with
adverse events on K–M survival curves (log-rank p < 0.05
for all, Figure 3).

Considering that a limited number of patients experienced
endpoint events, and after assessing collinearity and

evaluating clinical interpretability, systolic blood pressure
(SBP) and LGE extents were included in multivariable
Cox regression analysis with selected texture features.
When incorporated into the multivariable Cox regression
model, each texture feature was identified as a significant
independent predictor of adverse events (p < 0.05 for
all three features, Table 5). All three multivariable Cox
regression models containing SBP, LGE extent, and one of
the selected texture features showed favorable prognostic
value indicated by high C-indices (0.778, 0.774, and 0.775 for
three models).

DISCUSSION

Novel features derived from CMR images can provide prognostic
value for adverse events in patients with severe DCM. These
features are of significant use in improving the outcomes among
high-risk patients. In this preliminary study, we found that
some texture features related to myocardial heterogeneities and
variations were strongly associated with adverse events in DCM
patients with severely reduced LVEF. Along with the LGE extent
and other clinical variables, these novel markers offered a new
method to evaluate adverse events in patients with DCM.

Fibrosis replacement of normal myocardial tissue is an
important cause of progressive ventricular dysfunction and
arrhythmic events in non-ischemic cardiomyopathic patients
(21, 22). In histological studies, LGE detected on CMR imaging
has been validated to correspond to myocardial fibrosis in
patients with DCM (23). Previous studies demonstrated that the
presence and the extent of LGE showed a significant value in
predicting adverse events (7, 24). Recently, Halliday et al. found
that, in addition to presence and extent, the location and pattern
of LGE distribution also provided prognostic value for endpoint
events (9). Similar to previous studies, our study reported that the
extent of LGE was muchmore significant in patients with adverse
outcomes. It showed a significant value in predicting the adverse
events in DCM patients with severely reduced LVEF. However,
visual classification of LGE distribution based on their location
had minimal value in differentiation and prognostication in our
study. The location pattern of LGE in LV myocardium neither
showed any difference between groups nor provided a prognostic
value for adverse events.

Microscopically, the myocardial interstitial fibrosis pattern is
highly heterogeneous in non-ischemic cardiomyopathic patients.
More than three types of myocardial fibrosis: diffuse microscars,
perivascular fibrosis, perimysial, and endomysial fibrosis could
exist in various patients or the same patient at different
stages of the disease (25, 26). The microscopic differences
between multiple myocardial fibrosis patterns may contribute
to different myocardial structural abnormalities with varying
extent of risk for adverse events (27). Thus, novel markers
that assess heterogeneities of myocardial fibrosis detected as
LGEs on CMR imaging, will be of significant value for risk
stratification in patients with DCM (28). In a retrospective study,
Muthalaly et al. found that a first-order texture feature, LV
entropy, showed significant value for risk stratification toward
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FIGURE 3 | Kaplan-Meier curves for late gadolinium enhancement (LGE) extent (A), gray-level cooccurrence matrix (GLCM)_contrast (B), GLCM_difference average

(C), and GLCM_difference entropy (D). For each texture feature, median value was chosen to divide the entire patient population into two parts. Statistical difference

between curves was measured using the log-rank test.

TABLE 5 | Multivariable Cox regression analysis incorporating texture features.

GLCM_contrast GLCM_difference average GLCM_difference entropy

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

SBP 0.960

(0.936–0.985)

0.002 0.961

(0.936–0.986)

0.002 0.961

(0.937–0.986)

0.002

LGE extent 1.051

(1.016–1.086)

0.004 1.050

(1.015–1.085)

0.004 1.049

(1.015–1.085)

0.005

GLCM_contrast 1.061

(1.014–1.110)

0.010 – – – –

GLCM_difference average – – 2.151

(1.119–4.135)

0.022 – –

GLCM_difference entropy – – – – 7.645

(1.287–45.417)

0.025

HR, hazard ratio; CI, confidence interval.

ventricular arrhythmia in patients with DCM (29). In another
study of hypertrophic cardiomyopathy patients, Cheng et al.
demonstrated that features extracted from the histogram, GLCM,

and GLRLM matrixes could offer incremental value to LGE
extent in predicting the adverse events (30). In our study, the
three selected texture features of late enhanced images, contrast,
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difference average, and difference entropy of the LVmyocardium
GLCM matrix, were positively related to heterogeneities and
variations of myocardial fibrosis. The increase of myocardial
fibrosis, particularly the scattered distributed pattern, increases
the contrast between neighboring voxels and disrupts the
uniformity of regional intensity, thus leading to a higher
difference average and difference entropy values. As shown in our
study, these parameter values were significantly higher in patients
with adverse outcomes. Even after combining with the LGE
extent and other clinical risk factors, they remained independent
risk factors for adverse outcomes and provided incremental value
for risk stratification.

Specifically, we focused on DCM patients with severely
reduced LVEF, in whom LGE is highly prevalent. The extent
of LGE tends to increase dramatically in the end-stage among
patients with DCM, and they are associated with higher rates
of adverse outcomes (31). According to the study of Halliday et
al., the prognostic value of LGE extent is limited when there is
a large amount of LGE (9). The texture features derived from
late enhanced images may act as potential markers for risk
stratification and outcome prognostication in such situations.
The results of this preliminary study demonstrated that texture
features of late enhanced images could be promising predictors
for prognostic assessment.

There are several limitations to our study. First, as it was
a single-center study, the number of included patients was
limited and the follow-up period was short. Additionally,
the research was conducted at a tertiary center with easily
accessible transplantation treatment, which might have
increased the event rate. However, the endpoint-event rates
were low; only 12 deaths and 17 cardiac transplantations
were reported, limiting the creation of a more sophisticated
risk stratification model. Besides, the method of following
patients with telephone calls may introduce systemic
bias since some patients were excluded as they cannot
be contacted.

As for the imaging acquirement, images from scanners with
different static field strengths (1.5 and 3.0 T) and contrast
agents were analyzed together with a normalization process
before feature extraction in our study. Additionally, the
minimal differences during late enhanced image acquisitions
that affect the texture features, such as delay time after contrast
injection and inversion time selection are unknown. In our
study, we compared the texture features between patients
examined with different scanners and patients who received
different contrast agents. We found that the three important
texture features (GLCM_contrast, GLCM_difference average,
and GLCM_difference entropy) that are closely related to

survival outcome showed no differences between the patient
groups. Specifically, there is no significant differences between

patients when performed on 1.5T (n = 66) and 3.0 T
(n = 48) scanners (GLCM_contrast: 3.152 vs. 3.382, p =

0.239; GLCM_difference average: 3.265 vs. 3.402, p = 0.288;
GLCM_difference entropy: 3.227 vs. 3.290, p = 0.216) and
between patients administrated with Magnevist (n = 67) and
Gadovist (n = 47) (GLCM_contrast: 20.703 vs. 22.171, p =

0.338; GLCM_difference average:3.265 vs. 3.406, p = 0.273;
GLCM_difference entropy:3.232 vs. 3.284, p = 0.312). The
median time interval between contrast administration and

image acquisition was 12.40min, and there was no significant
difference between the patients group (12.43 vs. 12.37, p
= 0.838). The median amount of contrast agent used for
whole cohort was 13 mmol and there was no significant
difference between the patients group (13.4 vs. 12.8, p = 0.056).
However, further studies are required to identify factors that
influence the values of these texture features. Besides, though
with fixed slice thickness and gap, the minimal variation in
slice number between patients caused by the length of LV
might also affect the texture values. Finally, as the final three
texture features were selected through a statistical process, the
true meaning of the selected texture features needs further
investigation by correlating these features with histological
results in patients with DCM.

CONCLUSIONS

Texture features related to myocardial fibrosis heterogeneity
(GLCM_contrast, GLCM_difference average, and
GLCM_difference entropy) are novel markers associated
with adverse outcome in DCM patients with severely reduced
systolic function. They demonstrate a promising ability to
predict adverse events beyond conventional LGE parameters in
patients with severe DCM.
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