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ABSTRACT
Background Early diagnosis of shock is a predetermining 
factor for a good prognosis in intensive care. An elevated 
central venous to arterial PCO2 difference (∆PCO2) over 
0.8 kPa (6 mm Hg) is indicative of low blood flow states. 
Disturbances around the time of blood sampling could 
result in inaccurate calculations of ∆PCO2, thereby 
misrepresenting the patient status. This study aimed to 
determine the influences of acute changes in ventilation on 
∆PCO2 and understand its clinical implications.
Methods To investigate the isolated effects of changes 
in ventilation on ∆PCO2, eight pigs were studied in a 
prospective observational cohort. Arterial and central 
venous catheters were inserted following anaesthetisation. 
Baseline ventilator settings were titrated to achieve an 
EtCO2 of 5±0.5 kPa (VT = 8 mL/kg, Freq = 14 ± 2/min). 
Blood was sampled simultaneously from both catheters at 
baseline and 30, 60, 90, 120, 180 and 240 s after a change 
in ventilation. Pigs were subjected to both hyperventilation 
and hypoventilation, wherein the respiratory frequency 
was doubled or halved from baseline. ∆PCO2 changes from 
baseline were analysed using repeated measures ANOVA 
with post- hoc analysis using Bonferroni’s correction.
Results ∆PCO2 at baseline for all pigs was 0.76±0.29 kPa 
(5.7±2.2 mm Hg). Following hyperventilation, there was 
a rapid increase in the ∆PCO2, increasing maximally 
to 1.35±0.29 kPa (10.1±2.2 mm Hg). A corresponding 
decrease in the ∆PCO2 was seen following hypoventilation, 
decreasing maximally to 0.23±0.31 kPa (1.7±2.3 mm Hg). 
These changes were statistically significant from baseline 
30 s after the change in ventilation.
Conclusion Disturbances around the time of blood 
sampling can rapidly affect the PCO2, leading to inaccurate 
calculations of the ∆PCO2, resulting in misinterpretation 
of patient status. Care should be taken when interpreting 
blood gases, if there is doubt as to the presence of acute 
and transient changes in ventilation.

INTRODUCTION
For patients in the intensive care unit (ICU), 
measurements of blood gases are used for 
the assessment of acid–base and oxygenation 
status. Many of these patients suffer from 
sepsis, estimated to affect over 30 million 
people each year and contributing signifi-
cantly to the number of hospital deaths.1 One 

of the main factors predetermining the prog-
nosis of a patient with sepsis is the presence 
of septic shock.2 3 In the last decade, much 
research in this area has been focused on the 
early detection of shock.4–6 An elevated CO2 
gap, measured by the difference in central 
venous (‘cv’) and arterial (‘a’) PCO2 (∆PCO2) 
has been used as an early indicator of shock. 
Furthermore, the ratio of ∆PCO2 to the 
arterial- venous difference in oxygen content 
∆PCO2(cv- a)/∆tO2(a- cv) has been used to 
guide and assess the response of fluid resusci-
tation strategies.4 7–10

Previous studies have illustrated that signif-
icant changes in ∆PCO2 can be due to circu-
latory effects,4 6 focussing on how venous 
blood could be modified due to, for example, 
reduced tissue perfusion and the CO2 stag-
nation phenomenon. However, there are 
other situations that could alter the blood 
gas parameters in an ICU setting, including 
spontaneous breathing and/or adjustment of 
ventilator settings.11 12 Disturbances around 
the time of blood sampling could result in 
inaccurate calculations of ∆PCO2 and other 
related parameters. The isolated effects of 
a disturbance in ventilation on the CO2 gap 
have however, not been investigated.

In this study, we hypothesise that acute 
changes in ventilation affects arterial blood 
faster than central venous blood and that this 
may result in clinically significant changes 

Key messages

 ► Can acute changes in ventilation influence the PCO2 
(cv- a) gap?

 ► Acute increases or decreases in ventilation can alter 
the PCO2 (cv- a) gap by as much as 50%, in compar-
ison to the values before the change.

 ► This novel study examines the effect of simulated 
hyperventilation and hypoventilation on the PCO2 
(cv- a) gap, with rapid simultaneous arterial and cen-
tral venous sampling (every 30 s).
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in the ∆PCO2. The aim of this study was, therefore, to 
determine and quantify the influences of acute changes 
in ventilation on the ∆PCO2, concluding on the clinical 
significance of these changes when interpreting values of 
∆PCO2.

METHODS
This study was designed to investigate changes in ventila-
tion on ∆PCO2 without the concurrent effects of modifi-
cation of this gap due to altered tissue perfusion, inclusive 
of microcirculatory functional shunting. As such, it was 
decided to study animals (pigs) without cardiovascular or 
respiratory disease, thus reflecting a more normal physi-
ology. This study was conducted from June 2019 to April 
2020 in the Biomedicine Laboratory at Aalborg University 
Hospital North, Aalborg, Denmark. Eight female Danish 
Landrace pigs were used for the study. The methods were 
in line with the Utstein recommendations for uniformity 
in animal studies.13

Protocol
All pigs were anaesthetised for the duration of the study. 
The anaesthesia was performed according to local proto-
cols, with total intravenous anaesthesia for the duration 
of the study, and the presence of indwelling arterial and 
central venous catheters for blood sampling. The loca-
tion of the catheters was checked by measurement of 
the respective blood pressures. Each pig was subjected to 
both hyperventilation and hypoventilation, with the order of 
the change in ventilation being randomised.
1. Blood sampling

Simultaneous blood sample pairs were taken by two 
trained individuals from the arterial and central ve-
nous catheters. Samples were taken at baseline, and 
at 30, 60, 90, 120, 180, 240 s after the acute change 
in ventilation. Syringes were capped and air bubbles 
removed, immediately after sampling. A third person 
helped ensure synchronisation of the sampling and as-
sisted with the capping of the syringes. All samples were 
analysed immediately after, in the order they were tak-
en, arterial before venous, on the same ABL800 blood 
gas analyser (Radiometer, Copenhagen, Denmark).

2. Ventilator settings
Mechanically ventilated patients are often on assist 
mode of ventilation, with spontaneous breathing.14 
For these patients, a sudden increase or decrease in 
respiratory rate is not uncommon,15 the former if 
the patient becomes stressed and the latter if ventila-
tor support levels are increased and respiratory drive 

suppressed.16 This study was designed to reflect simi-
lar sudden changes in ventilation by varying respira-
tory frequency. Ventilator settings at baseline and for 
hyperventilation and hypoventilation are detailed in 
table 1. Baseline ventilator settings were titrated to 
achieve a baseline end tidal CO2 (EtCO2) of 5±0.5 kPa. 
The changes in ventilation corresponded to modi-
fications of respiratory frequency to a high level (28 
breaths/min), or a low level (7 breaths/min) which 
corresponded to an increase of 100% and a decrease 
of 50% in alveolar ventilation (a dead space of 150 mL 
was assumed for calculations). The first ventilatory 
change lasted for 4 min after which it was reverted to 
baseline for at least 30 min before the pig was subject-
ed to a second change in ventilation. EtCO2 and SpO2 
were measured throughout the study.

Patient and public involvement
It was not appropriate or possible to involve patients or 
the public in the design, or conduct, or reporting, or 
dissemination plans of our research

Statistical analysis
Eight pigs were studied with each one being subjected 
to both hyperventilation and hypoventilation. The data 
from the two changes in ventilation are presented as a 
change from baseline for pH and PCO2. ∆PCO2 was calcu-
lated using the difference between PCO2cv and PCO2a. 
Normality of data was tested using Shapiro Wilk’s test and 
data were found to be normally distributed. Statistical 
comparisons of the timed arterial blood samples were 
compared using a repeated measures analysis of variance 
(ANOVA) followed by a post- hoc analysis comparing 
the average at each time point to the average at base-
line using Bonferroni’s correction. Similar analyses were 
conducted for central venous blood and ∆PCO2 following 
hyperventilation and hypoventilation changes. All results 
are presented as mean±SD, with p<0.05 considered statis-
tically significant. Statistical analysis was conducted on 
SPSS V.25 (SPSS IBM Corp.).

RESULTS
The eight pigs weighed an average of 34.0±8.7 kg, 
and had mean values of pH and PCO2 at baseline of 
7.478±0.050 and 5.34±0.61 kPa (40.1±4.6 mm Hg) for 
arterial blood, and 7.440±0.048 and 6.10±0.70 kPa 
(45.8±5.3 mm Hg) for central venous blood, respectively.

Table 1 Ventilatory settings during baseline, hyperventilation and hypoventilation

Parameters Baseline Hyperventilation Hypoventilation

Tidal volume (VT) 8 mL/kg 8 mL/kg 8 mL/kg

Respiratory frequency 14±2 breaths/min 28±4 breaths/min 7±1 breaths/min

Criteria for termination EtCO2 <1.5 kPa SpO2 <88% EtCO2 >6.5 kPa
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Responses to hyperventilation and hypoventilation
Changes in pH and PCO2 from baseline at each sampling 
time are depicted in figure 1 for both arterial and 
central venous blood. Following acute hyperventilation 
(figure 1A,B), values of arterial pH and PCO2 changed 
faster than venous and were significantly different 
from baseline at 60 s (p<0.005). The maximum arte-
rial difference was observed at 120 s with pH=0.059 and 
PCO2=−0.74 kPa (5.5 mm Hg). There was no statistically 

significant response observed in the central venous blood 
over the 4 min.

Following acute hypoventilation (figure 1C,D), there 
was a similar response in the arterial blood as with 
hyperventilation, with a rapid and statistically significant 
difference in values of pH and PCO2 seen 60 s after the 
change in ventilation (p<0.005). Central venous blood 
was significantly different from baseline at 120 s for PCO2 
(p<0.05), while there appeared to be a statistically signifi-
cant response in pH at 240 s (p = 0.035). Oxygenation did 
not change for the duration of the study, where the pigs 
also had a stable and constant FiO2 and SpO2.

Effects on ∆PCO2

Figure 2 illustrates the average changes in ∆PCO2 following 
acute changes in ventilation. The average ∆PCO2 at base-
line was 0.76±0.29 kPa (5.7±2.2 mm Hg). Following acute 
hyperventilation, there was a rapid increase in the ∆PCO2, 
with a maximal change of 1.35±0.29 kPa (10.1±2.2 mm 
Hg). There was a corresponding decrease in the ∆PCO2 
following an acute hypoventilation, decreasing maximally 
to 0.23±0.31 kPa (1.7±2.3 mm Hg). Changes in ∆PCO2 in 
response to both changes in ventilation achieved statis-
tical significance 30 s following an acute change in venti-
lation (p<0.05).

DISCUSSION
The insertion of a central venous and arterial catheter is 
common practice for patient management in the inten-
sive care setting, be it for monitoring, fluid and drug 
administration or blood sampling. Circulatory status 
of the patient can be assessed by calculation of various 
parameters using central venous and arterial blood gases, 
commonly ∆PCO2.

17 However, especially on assisted venti-
lation, acute changes in respiratory frequency and/or 
tidal volume can influence blood acid–base parameters. 
Previous studies have assessed the effects of circulatory 
changes on ∆PCO2.

4 6 This study is the first to assess the 
isolated effects of changes in ventilation on ∆PCO2. The 
study has demonstrated that ∆PCO2 responds rapidly to 
acute changes in ventilation, with these changes due to 
the influences of ventilation on arterial blood, which are 
observed without delay, in comparison to central venous 
blood.

This study shows that acute changes in ventilation can 
result in ∆PCO2 changes of ±0.6 kPa. Normal values of 
∆PCO2 have previously been shown to be 0.8 kPa, with 
patients considered to have insufficient perfusion of the 
tissues if ∆PCO2 is above this value.18 Values of ∆PCO2 
have shown to be elevated to the range of 1.6 to 2 kPa 
(12–15 mm Hg) for patients with septic shock.19 The 
PCO2 gap has been used in the intensive care depart-
ments as a surrogate to identify the onset of anaerobic 
metabolism, a measure of microcirculatory perfusion 
and to gauge fluid responsiveness during resuscita-
tion for patients in shock.20 A measurement of ∆PCO2 
concomitant with hypoventilation or hyperventilation 

Figure 1 Changes in arterial and central venous pH 
and PCO2 (kPa) following an acute change in ventilation. 
Changes from baseline in arterial (red, ‘a’) and central 
venous (blue, ‘cv’) pH and PCO2 (kPa) in response to acute 
hyperventilation (A, B) and hypoventilation (C, D). Presented 
as mean and SD (one sided error bars). n=8. *Statistically 
significant when compared with baseline using a repeated 
measures analysis of variance and a post- hoc analysis with 
Bonferroni’s correction (p<0.05).

Figure 2 Response of ∆PCO2 to acute changes in 
ventilation. Changes in ∆PCO2 (kPa) in response to acute 
hyperventilation (black) and hypoventilation (grey). n=8. 
*Statistically significant when compared with baseline using 
a repeated measures analysis of variance and a post- hoc 
analysis with Bonferroni’s correction (p<0.05).
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resulting in ∆PCO2 changes of ±0.6 kPa is therefore 
clinically significant, and may result in misclassification 
of patient state. A clinical example for this could be in 
the event of hyperventilation in response to metabolic 
acidosis secondary to tissue hypoxia21 in patients with 
intact respiratory drive, which could acutely affect the 
∆PCO2, causing even higher values than the low flow state 
of tissue hypoxia itself, leading to misinterpretation of 
patient prognosis.3 The interpretation of this parameter 
becomes particularly tricky when narrow cut- off values of 
∆PCO2 or similar indices, for example, the ∆PCO2/∆tO2 
ratio, are used. The ∆PCO2/∆tO2 ratio has been shown to 
be a good marker for global anaerobic metabolism and 
fluid responsiveness.8 10 A high ∆PCO2/∆tO2 ratio, with 
cut- offs of ≥1.8, ≥1.6 or ≥1.68 mm Hg/mL have been asso-
ciated with a worse prognosis.8–10 Although the routine 
use of this ratio in critical care is controversial,22 the 
narrow difference in the cut- offs make it imperative to 
understand the various influences on blood gas parame-
ters, to be applied during clinical interpretation.

In interpreting these results, it is important to under-
stand the degree to which transient changes in ventila-
tion are seen in these patients, and of what magnitude. 
Around 80% of sepsis patients admitted into an ICU 
require ventilatory support, primarily due to the develop-
ment of acute lung injury and acute respiratory distress 
syndrome.23 For these patients, an initial short period 
of deep sedation, muscle paralysis and full ventilator 
control, typically less than 48 hours, is usually followed 
by the onset of assisted ventilation to preserve respira-
tory muscle function.14 Spontaneous breathing with too 
little support or asynchrony often results in rapid shallow 
breathing with high respiratory frequency, similar to that 
applied in this study.15 In contrast, over assistance from 
the mechanical ventilator has been shown to supress 
drive and reduce respiratory frequency, with over assis-
tance associated with values of respiratory frequency 
lower than 12 breaths/min.16 It is therefore possible that 
the rapid changes in ∆PCO2 of ±0.6 kPa shown here are 
present in the usual treatment of critically ill patients.

Limitations
Due to the differences in measurement of oxygen 
saturation in this animal model, it was not possible to 
measure oxygenation and therefore calculate changes 
in ∆PCO2/∆tO2. As inspired oxygenation levels were 
not changed in this study, and oxygenation is relatively 
insensitive to ventilation volume, it is likely that ∆tO2 was 
constant, and that these results apply similarly to that 
ratio.

CONCLUSION
This study has shown that important clinical variation in 
∆PCO2 can be due to acute changes in ventilation, which 
may result in patient misclassification. Care should be 
taken when measuring ∆PCO2 to ensure that ventilation 

is stable, particularly in patients ventilated with assist 
modes of ventilation.
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