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Abstract

Metabolism is essential for life, and its alteration is implicated in multiple human diseases. The transformation from
a normal to a cancerous cell requires metabolic changes to fuel the high metabolic demands of cancer cells,
including but not limited to cell proliferation and cell migration. In recent years, there have been a number of new
discoveries connecting known aberrations in oncogenic and tumour suppressor pathways with metabolic
alterations required to sustain cell proliferation and migration. However, an understanding of the selective
advantage of these metabolic alterations is still lacking. Here, we review the literature on mathematical models of
metabolism, with an emphasis on their contribution to the identification of the selective advantage of metabolic
phenotypes that seem otherwise wasteful or accidental. We will show how the molecular hallmarks of cancer can
be related to cell proliferation and tissue remodelling, the two major physiological requirements for the
development of a multicellular structure. We will cover different areas such as genome-wide gene expression
analysis, flux balance models, kinetic models, reaction diffusion models and models of the tumour
microenvironment. We will also highlight current challenges and how their resolution will help to achieve a better
understanding of cancer metabolism and the metabolic vulnerabilities of cancers.

Background

The hallmarks of cancer [1] highlight major processes
and mechanisms required for cancer development. They
are divided into core hallmarks, major phenotypes
needed to form a cancer, and the enabling hallmark of
genomic instability, a molecular mechanism driving the
acquisition of the core hallmarks. In the most recent up-
date to this system [2], metabolism is described as an
emerging hallmark because metabolism is commonly al-
tered in cancer. The designation “emerging” reflects a
sense of ambiguity (neither core nor enabling) concern-
ing the role of metabolism in cancer development. In-
deed, the authors note that the metabolic alterations
observed in cancer could simply be a consequence of ac-
quisition of the core hallmarks.

The hallmarks describe the aberrations from a normal
functioning organism that define cancer as a disease.
There is a complementary view based on the physiology
of cancer as a developing tissue ([3], Fig. 1). In this
physiological view, the core hallmarks are interpreted as
the molecular pathways necessary to establish two
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essential requirements for the development of a multi-
cellular structure: cell proliferation and tissue remodel-
ling. In the following, we refer to these as physiological
hallmarks. In a tumour, cell proliferation is required to
expand populations of cells with molecular alterations.
Tissue remodelling is required to form a consolidated
tumour, bringing nutrient supplies, invading nearby tis-
sues and evading the immune system. Both physiological
hallmarks require energy and biosynthetic precursor-
s—albeit in possibly different distributions and total
amounts—and therefore, metabolism becomes an enab-
ling hallmark in this conceptual framework (Fig. 1). In
other words, metabolism is the engine fuelling cell pro-
liferation, tissue development and homeostasis.

Here, we review some attempts to harness this metab-
olism centric framework into mathematical descriptions
and quantifiable metrics. The mathematical models are
divided into five major categories based on the tech-
niques used and their focus on cell or tumour metabol-
ism. First, we discuss genome-wide gene expression
analysis, as our major tool to investigate the heterogen-
eity of metabolism across cancers of different types. Sec-
ond, we focus on flux balance models that aim to
understand cell metabolism at a steady state. This is
followed by a third section reviewing kinetic models of
selected cell metabolic pathways and the path to
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Fig. 1 The hallmarks of cancer. The core hallmarks of cancer are
arranged around the circle. Given their function, the molecular
hallmarks are divided into those promoting cell proliferation (white
background) and those promoting tissue remodelling (grey
background). Genome instability has a special location in between
because it is the molecular mechanism driving the emergence of the
other hallmarks and the same time the potential transition between
the physiological states of proliferation and remodelling. Deregulated
metabolism has also a special location in between because it is a
necessary requirement for both cell proliferation and tissue
remodelling, and at the same time, metabolic alterations may be the

cause or drive transitions between proliferation and remodelling

genome-scale models with kinetics. Fourth, we go over
metabolic models that take into account the spatial di-
mensions of the cell, revealing metabolic phenomena
that could be determined by spatial heterogeneity within
the cell. Finally, we discuss different tumour microenvir-
onment models, focusing on how metabolic interactions
between cancer and stroma cells impact tumour growth,
invasion and metastasis.

Review

Genome-wide gene expression analysis

Gene expression profiles are a unique resource to under-
stand the differential utilization of metabolic pathways
across cancers and genome-wide. As of March 2015, ex-
pression profiles from about 300,000 samples were de-
posited in the Gene Expression Omnibus (GEO)
database. In spite of a number of caveats, gene expres-
sion profiles have the advantage that they have been ob-
tained using a few standard microarrays and that they
interrogate gene expression at a genomic level. Addition-
ally, the abundance of data accumulated by now allows
researchers to interrogate metabolic expression patterns
in a larger context.
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Gene expression analysis can be utilized to identify
metabolic genes associated with cancer. An investigation
of 1981 microarray samples from 19 cancer types identi-
fied metabolic genes whose expression is most com-
monly altered in cancers [4]. Many of the altered
metabolic genes have well-known roles in cell prolifera-
tion, including one-carbon and nucleotide metabolism,
and tissue remodelling, including hypoxia and glyco-
sylation metabolism. Interestingly, the one-carbon me-
tabolism genes SHMT2 and MTHFD2, coding for
mitochondrial ~serine hydromethyltransferase and
methylene-tetrahydrofolate dehydrogenase/cyclohydro-
lase, were identified among the 50 most commonly
overexpressed genes. However, the genes SHMT1 and
MTHFDI coding for the corresponding cytosolic en-
zymes were not. This observation resonates with a
previous report indicating that high expression of the
mitochondrial one-carbon metabolism enzymes corre-
lates with gene signatures of cell proliferation and
Myc activation and is predictive of a good response
to the antiproliferative agent methotrexate [5].

Gene expression analysis can also be utilized to un-
cover metabolic subtypes. The gene expression pattern
of metabolism genes in a cancer tissue sample should re-
flect its metabolic state. Although there are many regula-
tory mechanisms at the post-translational level, there is
generally a subset of metabolic genes that is regulated at
the transcriptional level. In fact, many transcription fac-
tors with relevance to cancer regulate metabolic genes,
including Myc [6], HIFla [7] and p53 [8]. The analysis
of the expression patterns of metabolic genes across can-
cers should therefore uncover major metabolic subtypes.
An unsupervised clustering analysis of more than 2500
microarray samples from 22 different tumour types re-
vealed that the metabolic gene expression profiles of tu-
mours are in fact closer to their corresponding normal
tissues than to other tumours [9]. This shows that tissue
of origin has a major impact on metabolic gene expres-
sion profiles even under oncogenic transformation.

Additional information can be obtained after correct-
ing for tissue type. We analysed about 4000 microarray
samples from five cancer types that were linked to clin-
ical outcome reports [3]. The signal of tissue type was
removed after subtracting the average log, expression of
each gene across all samples of each cohort. Working
under the hypothesis that cell proliferation and tissue re-
modelling are the physiological hallmarks characterizing
tumour probes on the molecular level (Fig. 1), we inves-
tigated the differential expression of gene signatures as-
sociated with proliferation and remodelling across
cancers. We noted that gene signatures quantifying pro-
liferation exhibit a low but consistently negative correl-
ation with those quantifying remodelling. Next, we
performed a supervised clustering of cancers based on
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their degree of cell proliferation (P) and tissue remodel-
ling (R). This resulted in four distinct subtypes, inde-
pendently of tissue type: P-/R-, P-/R+, P+/R- and P
+/R+. We did not observe significant changes in the per-
centage or occurrence of either subtype with regard to
tissue of origin, suggesting that the physiological hall-
marks are features of all (solid) cancers. The P/R sub-
types also exhibit distinct survival outcomes. The group
with low proliferation-remodelling signatures (P—/R-)
has the best outcome independently of the tissue of ori-
gin. In contrast, the group with high proliferation-
remodelling signatures (P+/R+ group) has the worst out-
come, again independently of the tissue of origin. There
is however a tissue difference regarding the survival of
the intermediate P-/R+ and P+/R- groups. In brain,
breast, lung and prostate cancers, the patients in the P
+/R- group die earlier than those in the P-/R+ group.
In contrast, in colorectal and ovarian cancers, the pa-
tients in the P+/R- group die later than those in the P
—-/R+ group. This shows that the expression of the
physiological hallmarks has a severe impact on the most
global clinical phenotype of the disease, survival.

The existence of large subsets of tumours expressing
predominantly one physiological hallmark may be rooted
in metabolic constraints [3]. Highly vascularized tu-
mours may have sufficient nutrient supply to support
proliferation, while poorly vascularized ones may devote
their limited nutrient resources to remodel the environ-
ment to increase the nutrient supply. Indeed, pathways
required for cell proliferation, including glycolysis, the
pentose phosphate pathway, the TCA cycle, OxPhos,
one-carbon metabolism and ribosomes, are positively
correlated with the signature for cell proliferation
(Table 1). In contrast, a lysosome gene signature is posi-
tively correlated with the tissue remodelling signature
(Table 1), indicating that autophagy is more active in tu-
mours undergoing tissue remodelling. We also noticed
that fatty acid metabolism does not exhibit any specific
pattern (Table), indicating that fatty acid metabolism ei-
ther is a requirement for all proliferative and remodel-
ling subtypes or is associated with a yet unidentified
physiological hallmark.

Cancer cell lines grown in vitro for several passages re-
tain the antagonism between cell proliferation and tissue
remodelling types [10], suggesting that P/R signatures
are indeed quite stable. In fact, cancer cell lines range
from small, highly proliferative cells expressing the epi-
thelial marker E-cadherin but not the mesenchymal
marker vimentin, to another extreme of large, mesen-
chymal cells expressing vimentin but not E-cadherin.
These two groups of cell lines respond differently to an-
ticancer drugs [10]. As expected, the highly proliferative
cell lines are more sensitive to antifolates and other anti-
metabolites. On the other hand, the mesenchymal cells
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Table 1 Association of metabolism with proliferation and
remodelling signatures. The Pearson correlation coefficient
between the listed gene signatures (rows) and the gene
signatures of cell proliferation and tissue remodelling (columns),
as obtained from the analysis of about 4000 samples from five
cancer types [3]. The genes on the tissue remodelling and cell
proliferation and first two groups of signatures were obtained
from gene ontology annotations, and they are reported in ref.
[3]. The genes in the remaining metabolic signatures were
obtained from the KEGG annotations reported in the Molecular
Signatures Database (MSigDB) [16]

Signature Tissue remodelling  Cell proliferation
G1/S transition -0.07 0.85
DNA replication -0.12 0.87
Telomere organization -0.14 0.75
DNA packaging -0.17 0.81
Chromosome segregation -0.15 0.81
G2/M transition -0.15 0.80
Cell division -0.06 0.87
Cell junction organization 0.66 —0.05
Cell adhesion 0.81 -0.15
Cell migration 0.86 —-0.05
Angiogenesis 0.77 -0.04
Cytokine production 0.62 -0.02
Inflammatory response 0.67 -0.07
Response to wounding 0.82 —0.05
Glycolysis 0.08 037
Pentose phosphate pathway 0.02 037
Oxidative phosphorylation -0.22 0.34
TCA cycle -0.12 041
Serine, glycine, 1C metabolism  —0.16 048
Ribosome -0.13 0.14
Lysosome 0.38 0.09
Fatty acid metabolism -0.02 -0.02

are more sensitive to treatment with cholesterol synthe-
sis inhibitors (statins) and mammalian target of rapamy-
cin (mTOR) inhibitors. This is a surprising observation.
One would expect that the highly proliferative cells
would be more dependent on most biosynthetic path-
ways. While this is indeed the case for one-carbon me-
tabolism (targeted by antifolates) and nucleotide
metabolism (targeted by antimetabolites), it seems to be
the opposite for protein synthesis (targeted by mTOR in-
hibitors) and cholesterol synthesis (targeted by statins).
Mesenchymal cells are actually dependent on de novo
cholesterol synthesis while epithelial cells can scavenge
cholesterol from the media [11]. E-cadherin expression
to the membrane is required for resistance to statin
treatment, but it is not clear whether this localization is
required for cholesterol transport into the cells.
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Gene expression analysis can further be utilized to in-
terrogate the activity of specific metabolic pathways and
relations between the activities of different pathways.
Pathway analysis is based on the annotation of genes
that are related to specific pathways and some measure
of pathway activity based on the expression of genes an-
notated for each pathway. Most pathway annotation da-
tabases such as Gene Ontology [12] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) [13] con-
tain categories associated with metabolism. Several mea-
sures of pathway activity based on gene expression can
be used, going from simple quantities like mean or me-
dian expression to more sophisticated quantifications
from median polish analysis (MPA) [14, 15] or Gene Set
Enrichment Analysis (GSEA) [16]. The outcome is a
quantification of the activity of each metabolic pathway
considered on each sample analysed. A study in the con-
text of one-carbon metabolism in cancer cells shows that
pathway activity, as quantified from gene expression, is a
good predictor of metabolic flux, as estimated from '*C
tracing experiments [17]. Thus, pathway activity can be
used as a surrogate of pathway metabolic flux.

The discussions above about metabolic signatures as-
sociated with tissue of origin, cell proliferation and tissue
remodelling are examples of pathway analysis applica-
tions to investigate the differential utilization of meta-
bolic pathways across cancer subtypes. There have been
several other studies using metabolic pathway analysis to
generate hypotheses about the use of specific metabolic
pathways in specific contexts. Examples include the de-
pendency of p53 tumours on the mevalonate pathway
[18], the increased activity of mitochondrial serine, one-
carbon and glycine metabolism in cancer [17, 19, 20]
and the regulation of serine biosynthesis by p73 [21].

There are currently other high-throughput platforms
besides gene expression microarrays to interrogate me-
tabolism genome-wide. The development of next-
generation sequencing technologies has lowered the
costs of DNA sequencing (DNAseq), providing the
means to investigate the patterns of DNA alterations
genome-wide across several cancer samples. Next-
generation sequencing can also be applied to interrogate
the whole or subsets of expressed RNAs (RNAseq), and
it is replacing microarrays for the quantification of RNA
expression. DNAseq and RNAseq, together with micro-
RNA (miRNA) and methylation arrays, have been de-
ployed to characterize the samples collected by The
Cancer Genome Atlas (TCGA) project as well as the
International Genome Consortium (IGC) project. This
provides a unique opportunity to investigate cancer me-
tabolism across multiple cancer subtypes and multiple
genomic platforms. The analysis of RNAseq data linked
to the TCGA samples corroborates the gene expression
microarray analysis: the expression of metabolism genes
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is primarily dominated by tissue of origin [22]. It is
worth noticing that the dominance of the tissue of origin
signals extends beyond metabolism-related genes and
beyond gene expression. An unsupervised clustering
analysis of the TCGA samples revealed that whether it is
RNAseq gene expression quantification, DNA sequen-
cing, DNA methylation or all profiles together, the sam-
ples cluster by tissue type [23]. At the same time,
RNAseq provides more detailed and more accurate data
that produces high-throughput information in better
alignment with low-throughput experimental techniques
such as PCR. Thus, it is much more suitable particularly
for in-depth mechanistic analyses within tissues or tissue
classes.

Current challenges

RNAseq is rapidly replacing gene expression arrays as
the standard technique for gene expression profiling.
RNAseq provides a better quantification of transcript
abundance, and the technology can be tailored to inter-
rogate specific RNA subsets such as miRNAs and long
non-coding RNAs. On the other hand, current estab-
lished methods for gene signature analysis were tailored
for gene expression arrays. They assume that the expres-
sion distribution for each probe across samples is close
to a normal distribution or at least symmetric. RNAseq
data violates these assumptions and may require new
methodologies to conduct pathway analysis. The capabil-
ity of RNASeq to resolve the expression of different gene
isoforms together with the fact that different isoforms
may have different enzymatic activities indicates that fur-
ther developments are also required from the point of
view of gene annotation. This could imply changes to
commonly used databases like Gene Ontology, KEGG
and other pathway annotation systems.

Most published cancer gene expression analyses focus
on a snapshot and cell population average sampling of
cancer tissue, potentially missing the dynamics and
spatial heterogeneity of metabolism. Single-cell expres-
sion analysis and collection of samples at multiple time
points could overcome this limitation, albeit with a dra-
matic increase in cost and effort. Therefore, statistical
models are needed to infer the expression patterns of
mixed cell types in a cancer sample, their metabolic state
and their stage of progression.

Genome-scale flux balance models

The metabolic pathway analyses described above are
based on pathway annotations and gene expression alone.
Further elements are required to move from qualitative
predictions (active/inactive) to quantitative predictions of
the metabolic pathway rates. In principle, the pathway an-
notations, combined with a quantification of the cell bio-
mass composition and metabolic objectives, could be used
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to determine which metabolic pathways should be active
and at what rate, under specified culture conditions [24]
(Fig. 2). Any attempt to model the system dynamics will
require kinetic parameters characterizing the kinetic
models for each reaction. Given that kinetic parameters
are not available for most reactions, we first focus on me-
tabolism at a steady state. By a steady state, we mean that
the concentration of metabolites and the rate of biochem-
ical reactions remain constant in time. The metabolic
models that are constructed under the steady-state as-
sumption are often called flux balance models.

The steady-state rate of biochemical reactions (change
in concentration per unit of time) is often called flux, al-
though it is not a flux as defined in physics and chemis-
try (rate of flow per unit area). The collection of steady-
state rates of all reactions is called flux vector. At a
steady state, the rate of production and consumption of
every metabolite balances (flux balance constraint).
Bound constraints on individual metabolic fluxes can be
applied whenever available. For example, exchange
fluxes of nutrients between the culture media and cells
can be estimated from changes in the media metabolite
concentrations and the cell number, also known as con-
sumption and release (CORE) profiles [25]. Using the
flux balance and bound constraints, we can attempt to
identify the metabolic flux distribution that satisfies the
cell metabolic objective at the specified rate and make
use of the specified nutrient composition of the extracel-
lular media. However, because cell metabolism is highly
redundant, there are several flux distributions satisfying
the typical metabolic objectives of mammalian cells (e.g.
energy, proliferation) for the typical composition of the
extracellular media (glucose, amino acids, etc.).
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From an evolutionary point of view, we hypothesize
that redundancy evolved to “efficiently” cope with differ-
ent environmental conditions and constraints acting on
cell metabolism. For example, cells with a metabolic flux
vector that minimizes nutrient consumption while
achieving a specified metabolic objective will be able to
carry on that metabolic objective for longer times. In the
context where only one nutrient is limiting the metabolic
rate, minimizing the nutrient uptake given the metabolic
objective rate is equivalent to maximizing the metabolic
objective rate given the nutrient uptake rate. In one of the
earlier applications of flux balance modelling to study
mammalian cell growth, Savinell and Palsson investigated
the flux distributions that satisfied a specified growth de-
mand while minimizing the nutrient uptake [26, 27]. The
minimization of nutrient uptake was implemented as a
linear optimization objective with non-zero coefficients
for every nutrient. They considered two scenarios of nutri-
ent cost, molar cost where all the nutrient coefficients
were set to 1 and mass cost where the nutrients cost were
set to their molar masses. Some differences were noted re-
garding the differential utilization of glucose and amino
acids depending on whether the molar or mass cost was
applied. In either case, the energy requirements were satis-
fied by OxPhos in the mitochondria [26]. It is well known
that for most nutrients, energy can be generated only
through OxPhos. Although glucose has anaerobic fermen-
tation to lactate as a second alternative, OxPhos has a
higher yield of ATP per molecule of glucose than glycoly-
sis to lactate. Therefore, the prediction of OxPhos as the
main pathway for energy generation under aerobic condi-
tions is in agreement with our intuition of efficiency per
unit of nutrient.

Genome scale model of human cell metabolism

Maintenance: ATP, Protein, RNA

Energy: ATP

the cells under study and the cell metabolic objective

Nutrients Metabolism Objective
Glucose Maintenance
Amino acids ~3,000 reactions Proliferation
Vi i q
itamins ~1,000 metabolites Energy
lons Secretion
Oxygen
Byproducts
co,
Objectives Lactate
Ammonia

Proliferation: ATP, Protein, Lipid, DNA, RNA

Secretion: hormones, cytokines, collagens

Fig. 2 Core schema of genome-scale flux balance models. The construction of a core genome-scale flux balance model requires the specification of
three major ingredients: the nutrients that are present in the extracellular media, the set of biochemical reactions that are encoded by the genome of
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However, most cancer cells generate a significant
amount of energy from the metabolism of glycolysis to
lactate even when growing in aerobic conditions (aerobic
glycolysis, Warburg effect [28]). The failure to recapitu-
late the Warburg effect using flux balance and
minimization of nutrient uptake alone indicates that a
key ingredient is missing. It has been observed that the
respiration rate remains approximately constant at high
proliferation rates in spite of the increased energy re-
quirements of biosynthesis [29]. This observation can be
translated to the model adding a constraint to the oxy-
gen consumption rate. As expected, when an upper
bound is imposed in the oxygen consumption rate, aer-
obic glycolysis is predicted to become active when the
oxygen consumption of OxPhos exceeds the imposed
threshold (in E. coli [30] and unpublished data for mam-
malian cells).

The observed saturation in the oxygen consumption
rate could be due to a limitation in the oxygen supply or
a limitation in the oxidative phosphorylation capacity.
Work in the context of muscle cell metabolism has
shown that a further increase in the oxygen supply dur-
ing aerobic conditions does not alter the respiration and
aerobic glycolysis rates [31, 32], ruling out a limitation
in the oxygen supply. Regarding the other alternative, a
limitation in the oxidative phosphorylation capacity, cells
could in principle increase their mitochondrial content
to satisfy their higher energy demands. The crucial point
is however that there is a limit on mitochondrial
content.

The cell volume is crowded with cytoskeletal fila-
ments, ribosomes, metabolic enzymes and organelles.
Overexpression of any component is only possible at the
expense of degradation of others. This macromolecular
allocation constraint is analogous to the concept of solv-
ent capacity in chemistry, reflecting the limited amount
of solute that can be dissolved in a solvent. It was origin-
ally introduced under the name of molecular crowding
[33] or solvent capacity constraint [34, 35]. We would
like to introduce the name macromolecular capacity
constraint because it reflects the limited amount of mac-
romolecules that can be allocated in the cell volume.

The impact of the macromolecular capacity constraint
is determined by the size of the macromolecules of
interest. In this context, metabolic efficiency aims to
minimize the impact of molecular crowding or, equiva-
lently, to maximize metabolic rate per unit of volume
occupied by the metabolic machinery. Based on data for
in vitro reconstituted glycolysis at 30 °C, aerobic glycoly-
sis can produce 0.73 mol ATP/min/(liters of glycolysis
enzymes), calculated as 0.58 mmol lactate/min/(grams of
glycolysis enzymes) [36] divided by a protein specific
volume of 0.79 mL/g [37]. For cancer cell mitochondria,
we obtain values equal or below 0.042-0.049 mol ATP/
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min/(liters of mitochondria), calculated as 0.11—
0.13 mmol ATP/min/(grams of mitochondria protein)
[38, 39], divided by a mitochondria specific volume of
2.63 mL/(grams of mitochondria protein) [40]. In this
sense, aerobic glycolysis is 10 times more efficient than
cancer cell mitochondria.

A mathematical model of energy metabolism based on
flux balance, the minimization of nutrient utilization to-
gether with the macromolecular capacity constraint, is
sufficient to explain the Warburg effect [41]. At low en-
ergy demands, the macromolecular capacity is irrelevant
and energy is generated from OxPhos, the pathway with
the highest yield of ATP per molecule of glucose. In con-
trast, at high energy demands, when the required mito-
chondrial content would exceed the macromolecular
capacity, aerobic glycolysis must become active, producing
ATP with a low requirement of intracellular space at ex-
penses of a low yield of ATP per molecule of glucose.

The flux balance modelling approach described above
has been applied to genome-scale reconstructions of the
human metabolic network. Most of the work has been
based on the human metabolic network reconstruction
from the Palsson group (Recon 2, [42]), although alter-
native reconstructions have been reported [43]. Simula-
tions of genome-scale flux balance models of human
metabolism demonstrate that the macromolecular cap-
acity constraint implies metabolic changes beyond en-
ergy metabolism [44—46] (Fig. 3). In addition to
increased glucose consumption (Fig. 3a), the genome-
scale models predict the activation of glutamine uptake
as cells increase their proliferation rate [44, 45] (Fig. 3c).
At low proliferation rates, when glutamine uptake is
predicted inactive, pyruvate carboxylase is predicted
to satisfy the anaplerotic requirements of the TCA
cycle [46] (Fig. 3d). This prediction agrees with the
requirement of pyruvate carboxylase in glutamine-free
media [47]. These additional metabolic changes are a
consequence of another feature of synthesis of bio-
mass precursors (e.g. amino acids, AcCoA) from glu-
cose: NADH production [48]. The biosynthesis of
biomass precursors from glucose involve some NAD
“-dependent dehydrogenases resulting in a net pro-
duction of NADH. The generated NADH can be used
via OxPhos to generate energy. However, once again,
when the OxPhos capacity is exceeded, cells should
find other means to synthesize precursor metabolites
without NADH generation. This can be achieved by
importing non-essential amino acids from the media
and by synthesizing AcCoA for alternative sources.
Among amino acids, only glutamine, glutamate,
phenylalanine and tyrosine can be used to produce
AcCoA without NADH generation [48].

The genome-scale models also predict an increase in
the rate of serine, one-carbon and glycine (SOGQG)
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metabolism [45] (Fig. 3f, e). The rate of the SOG path-
way is predicted to further increase when the pyruvate
kinase reaction is removed from the model or when the
pyruvate kinase activity is uncoupled from ATP produc-
tion [45]. That prompted us to postulate the SOG path-
way as a novel pathway for ATP generation. The ATP
generation step is given by the reverse activity of 10-
formyl-tetrahydrofolate synthase (FTHFL, Fig. 3f). ATP
production by FTHFL is supported by kinetic analysis of
C. cylindrosporum FTHFL [49] and by kinetic modelling
of mammalian FTHFL [45]. Treatment of cancer cells
with the antifolate methotrexate induces an energy
stress, providing indirect evidence of energy production
by folate metabolism [20]. However, further experimen-
tal evidence is required to ascertain the contribution of
SOG pathway to ATP generation in mammalian cells.

The SOG pathway also contains dehydrogenase steps
that could contribute to NADPH production (Fig. 3f).
The importance of this observation was not recognized
until recently [20, 50]. It has been experimentally vali-
dated that NADP" dehydrogenases from one-carbon me-
tabolism contribute to NADPH generation in the cytosol
and the mitochondria [50].

Flux balance models can be further constrained to take
into account metabolic enzyme expression patterns that
are specific to a given tissue or that are the consequence
of molecular alterations present in cancer cells. For ex-
ample, a given cancer may have a homozygous deletion
of a genomic region containing one or more genes cod-
ing for metabolic enzymes. A more accurate metabolic
model of these cancer cells should have the correspond-
ing biochemical reactions removed. Furthermore, as
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shown above, the analysis of gene expression patterns
across cancers and normal tissues reveals that the me-
tabolism of cancer cells closely resembles the metabol-
ism of the tissue of origin [9]. These molecular
alterations and tissue of origin biases may have a signifi-
cant impact on the cancer cell metabolism.

A recent community-driven effort has combined the
annotation of the human metabolic network together
with protein expression data to obtain 65 cell-type-
specific metabolic models (Recon X, [24]). Several meth-
odologies have been developed to tailor a reconstruction
of the human metabolic network to a specific cell type
(personalized model), using as input expression profiles,
proteomics or other genomic data [51-55]. Personalized
flux balance models have been tailored to investigate the
metabolism of cancer cells with specified alterations. In
the simplest case scenario, one can model metabolism in
the context of inactivation of one or more enzymes, sim-
ply removing the corresponding reaction from the
model. This approach led to the identification of heme
oxygenase as an essential reaction in cancers with fu-
marate hydratase deficiency [56]. Moving to a genome-
wide approach, gene expression profiles can be used to
personalize generic genome-scale flux balance models
and obtain a more accurate representation [57, 58].
These personalized flux balance models find flux distri-
butions that satisfy the constraints of generic flux bal-
ance models (as described above) and that are more
consistent with the expression patterns of genes coding
for the enzymes catalysing the corresponding reactions.
Personalized metabolic flux balance models have been
used to investigate tissue-specific metabolism [57], to
predict cell line-specific metabolic vulnerabilities [58]
and to identify putative oncometabolites [59].

Current challenges

It is becoming evident that a realistic flux balance model
of cell metabolism should incorporate the macromolecu-
lar capacity constraint. However, a precise implementa-
tion of the molecular capacity constraint requires
reliable estimates of kinetic parameters. Current imple-
mentations sample the kinetic parameters from a speci-
fied distribution [30], reporting typical fluxes and
confidence intervals (see for instance Fig. 3). However,
there are intracellular pathways with a high degree of re-
dundancy, where the model predictive power is dramat-
ically reduced. For example, the complementarity
between cytosolic and mitochondrial folate metabolism
results into confidence intervals as wide as the average
flux values for folate metabolism reactions [20]. This re-
dundancy can be also linked to the existence of alterna-
tive pathway for the formation of an end product. For
example, aerobic glycolysis and the putative SOG path-
way can both generate ATDP, resulting in wide confidence
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for the lactate by-product of aerobic glycolysis (Fig. 3b)
and the FTHFL reverse flux (Fig. 3f).

Personalized flux balance models can be also limited
by the lack of relevant data to constraint the model. In
the path from gene expression, protein expression and
enzyme activity to reaction rate, there are regulatory
points. Post-transcriptional regulation may result in the
lack of proportionality between gene expression and re-
action rate. This caveat is in part corrected by the fact
that the flux balance model searches for solutions with
the best consensus agreement between all reaction rates
and the expression of genes coding for the correspond-
ing enzymes. In fact, inconsistency between gene expres-
sion and predicted reaction flux can be used to infer
reaction steps where post-translational regulation may
be taking place [57]. Future work should address this
point in further detail by using as input proteomics and
phospho-proteomic data [60].

The application of personalized flux balance models to
cancer samples extracted from animal models or pa-
tients is subject to the additional caveat of cells with
mixed metabolic phenotypes. The gene expression pro-
files, or proteomic profiles, represent an average over all
cells present in the extracted sample. This average ex-
pression is informative only if most cells exhibit a dom-
inant expression pattern. However, in the context of two
or more population of cells in significant proportions
and metabolic differences, any prediction based on
population averages can be misleading. To tackle this
scenario, we need mathematical methodologies to infer
the different cell subtypes and disentangle their expres-
sion profiles or to deploy experimental protocols to sep-
arate and profile the different cell populations.

Genome-scale flux balance models with kinetics
Whenever available, the kinetic model of biochemical re-
actions and estimates of the corresponding kinetic pa-
rameters can significantly improve model predictions.
Kinetic models have been used extensively in the past to
investigate selected metabolic pathways. Some examples
are highlighted in Table 2. The next step is to bring a
kinetic description to genome-scale models. This prob-
lem can be divided in two major challenges: kinetic an-
notation and model solution.

For the kinetic annotation, we can start compiling all
reported kinetic models and parameters in studies like
those highlighted in Table 1. For reactions with no anno-
tations, we can deploy generic kinetic models. Generic
kinetic models of biochemical reactions aim to capture
the key features of enzyme kinetics [61-65]. The key fac-
tors are the enzyme turnover rate, the enzyme concentra-
tion, a substrate saturation term and a thermodynamics
term associated with the enzyme properties at
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Table 2 Kinetic models. Selected kinetic models of metabolic pathways, focusing on reaction kinetics and parameters for

mammalian cells

Pathway Tissue Major conclusion Reference

Glycolysis Cancer cells Glycolysis has different control steps depending on cell line [88]

Glycolysis Cancer cells GAPDH is the rate limiting step of glycolysis [89]

Pentose phosphate pathway Hepatocytes G6P dehydrogenase controls the oxidative rate and transketolase the non-oxidative rate  [90]

One-carbon metabolism Hepatocytes Mitochondrial formate is the major source of cytosolic one-carbon units in proliferating  [91]
hepatocytes

H,0, elimination Endothelial cells  GSSG reductase controls the NAPDH dependent H,O, elimination [92]

Mitochondria Hepatocytes

Central metabolism Cancer cells

The rate of superoxide generation is a function of the proton electrochemical potential ~ [93]

Repression of transaldolase and succinyl-CoA ligase and the synergistic combination of ~ [94]

transaldolase and serine hydromethyltransferase significantly reduce growth rate

equilibrium. Even these generic kinetic models contain
kinetic parameters that must be estimated. To address
that problem, we first need to discuss how to solve
genome-scale kinetic models.

Flux balance models can be generalized to include kinetic
data and improve the estimation of steady-state metabolic
fluxes. As before, a metabolic objective (e.g. proliferation),
metabolic constraints (e.g. available nutrients, macromol-
ecular capacity) and an efficiency principle (e.g. minimize
nutrient uptake) are specified. But now we take into ac-
count that the amount of enzyme needed to maintain a
specified reaction rate depends on the concentration of
substrates and products via the corresponding kinetic
model. With this, the optimization problem searches not
only for the optimal steady-state fluxes but also for the opti-
mal metabolite concentrations.

Flux balance models with kinetics have been applied to
the study of yeast [35] and E. coli [66, 67] glycolysis. In
these studies, the kinetic models and parameters for every
reaction were specified and the optimal metabolite con-
centrations were determined. In both yeast and E. coli,
there was a good agreement between the predicted opti-
mal metabolite concentrations and the typical reported
values. The optimal metabolite concentrations depend to
a great extent on the reactions equilibrium constant.

Current challenges

The extension of flux balance models with kinetics to
genome scale is on its way. The major challenge is the
estimation of missing kinetic parameters or other infor-
mation. Workflows to address this problem have been
reported and applied to genome-scale models of differ-
ent organisms [65, 68, 69]. An iterative reconstruction
approach has been also proposed for the reconstruction
of the metabolic network, reaction kinetic laws and kin-
etic parameters [70]. Therefore, it seems just a matter of
time for the deployment of those methods to develop a
genome-scale flux balance model with kinetics of a hu-
man cell. In the meantime, an interesting mathematical
result demonstrates that we are walking on solid ground.

Thanks to the macromolecular capacity constraint, the
optimal metabolic flux distributions are elementary flux
modes satisfying the metabolic objective [71, 72]. Elem-
entary flux modes were defined as minimal metabolic
flux distributions that are both stoichiometrically and
thermodynamically feasible [73]. Therefore, the molecu-
lar capacity constraint forces cell metabolism into elem-
entary flux modes. Whether this represented a selective
advantage for the evolution of molecular crowding is an
open question.

Reaction diffusion models

Some metabolites may exhibit significant concentration
gradients within cellular compartments. Accounting for
those concentration gradients can increase the level of
realism of metabolic models, albeit with increased model
complexity. To model metabolism in this context, we
need to resort to reaction diffusion models, characteriz-
ing the spatio-temporal variations of the metabolite
concentrations coupled to the reaction dynamics con-
suming/producing metabolites.

It has been recently proposed that glycolytic enzymes
and mitochondria are located in different cell regions to
satisfy different energetic demands [74]. In this model,
mitochondria localize to the peri-nuclear area where
OxPhos efficiently supplies the sustained energy demand
of biosynthesis, while glycolysis is necessary to supply
rapid energy demands primarily to support membrane
pumps. The mathematical description of this scenario
requires reaction diffusion equations accounting for the
existence of gradients from the cell membrane to the
peri-nuclear area [74]. Although this model may sound
appealing, the reported experimental evidence is not suf-
ficient to prove its validity. Increased glycolysis following
overexpression of a cell membrane ATPase was taken as
evidence that the role of glycolysis is to supply rapid en-
ergy demand at the cell membrane. However, what
“rapid” means is not clear since aerobic glycolysis remained
high after chronic overexpression of the cell membrane
ATPase. More importantly, a control experiment where an
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ATPase is overexpressed at some other cell compartment
was not provided.

Current challenges

The point that subcellular localization of the molecular
machinery producing/consuming energy may result in
concentration gradients should be taken into consider-
ation. Membrane pumps are indeed major sites of en-
ergy consumption during osmotic stress as hypothesized
above [74]. During osmotic stress, there are additional
energy requirements associated with cytoskeleton re-
modelling and biosynthesis of metabolites involved in
cell volume regulation [75]. Patterns of subcellular
localization have been also observed during cell migra-
tion. Mitochondria localize at the leading edge of mi-
grating cancer cells and a causal relation between the
degree of that localization and the migration speed has
been demonstrated [76]. Finally, different hexokinase
isoenzymes localize to the cytosol or the mitochondrial
membrane in a context-dependent manner [77]. Future
work should focus on the development of reaction diffu-
sion models aiming to understand the consequences of
this subcellular localization patterns.

Tumour microenvironment models

Tumour microenvironment models aim to understand
how properties of cancer and tumour stroma cells and
their cellular interactions determine macroscopic param-
eters such as tumour growth rate. The remodelling of
the tumour microenvironment requires cancer and
stroma cells to acquire metabolic capabilities beyond cell
proliferation. Furthermore, cancer cells located in differ-
ent tumour regions may experience different microenvi-
ronments, and they may require different metabolic
strategies to survive, proliferate and disseminate. In the
following, we describe different approaches to model tu-
mours with an emphasis on tumour metabolism.

Reaction diffusion models
In reaction diffusion models, tumour and stroma cells
are represented by spatio-temporal distributions (fields)
quantifying the density of normal and cancer cells. The
evolution in time and space of these distributions is de-
scribed by partial differential equations accounting for
relevant processes and constraints. The processes/con-
straints most commonly considered are cell proliferation,
characterizing the cell population growth, and cell motil-
ity, characterizing the migratory movements depending
on limited resources. Additional partial differential equa-
tions can be added to model different aspects of metab-
olism, including the spatio-temporal variations of
nutrients and excreted by-products.

Using a reaction diffusion model with one type of
stroma cell, one type of cancer cell and a spatio-
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temporal distribution of tumour-secreted protons (a sur-
rogate of acidification), Gatenby et al. were able to re-
produce characteristic features of tumours [78, 79],
including tumour wave front velocity, pH gradient and
crossover from localized to invasive tumour. This work
emphasizes the relevance of acidification due to the
Warburg effect in tumour development.

Soft matter models of tumours

The properties of tumours can be investigated focusing
on their mechanical behaviour, building on soft matter
models of developing tissues [80]. The major challenge
here is to identify relationships between properties char-
acterizing cells and cell-cell interactions to the tumour
mechanical properties [81, 82]. Using soft matter
models, it has been shown that tumours behave like
viscoelastic fluid [83]. Following quick small perturba-
tions, the tumour reacts as an elastic material but it be-
haves like liquid for steady and/or large stresses.
Interestingly, soft matter models predict that the fluidity
of the tumour increases with increasing rate of cell
proliferation [83], connecting a mechanical property
(tumour fluidity) with a metabolic one (cell
proliferation).

Homeostatic pressure is an interesting concept emer-
ging from soft matter models [84]. The homeostatic
pressure is defined as the pressure that needs to be ap-
plied to keep the tumour volume constant. If the applied
pressure is smaller than the homeostatic pressure, then
the tumour will continue growing; if it is larger, then the
tumour will start shrinking. The homeostatic pressure
may have some advantage over tumour growth rate as a
measure of tumour malignancy. The tumour growth rate
is determined by the difference between the tumour
homeostatic pressure and the pressure being applied by
the surrounding tissue. In that sense, the tumour growth
rate is not an intrinsic property of the tumour; it also de-
pends on its surrounding. In contrast, the homeostatic
pressure is an intrinsic tumour property. However, there
is currently no protocol to measure homeostatic pres-
sure in vivo.

Current challenges

Future work is required to understand how cancer me-
tabolism influences the mechanical properties of tu-
mours. This relation will be in part dictated by the
influence of metabolism on cell proliferation and the re-
lation between cell proliferation and the tumour fluidity
described above. In addition, it is well documented that
metabolic by-products, most notably lactate and pro-
tons, play a role in the remodelling of the tumour micro-
environment. The translation of these relationships to
models and laws will allow us to use tumour mechanical
properties as indirect surrogates to investigate cancer
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metabolism in vivo, using non-invasive techniques such
as ultrasound.

When speaking about the tumour environment, we
tend to focus on the tissue that is in close spatial prox-
imity to the cancer cells (microenvironment). However,
we should not forget that the blood circulation system
connects the metabolism in the cancer tissue with the
organism metabolism (macroenvironment). In other
words, a complete mathematical description of the
tumour microenvironment should take into account the
interaction between cancer cells and distant organs via
the circulatory system and, by extrapolation, with nutri-
tion. The manifestation of the muscle-wasting syndrome
of cachexia in cancer patients is a demonstration of
these distant interactions [85]. Therefore, a definitive
model of cancer metabolism should account for the in-
teractions between cancer cells and distant organs. From
the technical point of view, this will require to link
metabolic models for the cancer cells, the stroma cells
and the relevant distant organs such as the liver. The
good news is that the community efforts in the recon-
struction of the human metabolic network have already
provided the first drafts of tissue-specific metabolic
models [24], and some advanced refinements are already
available for liver metabolism [86].

Conclusions
We have reviewed five major areas in mathematical
models of metabolism, each addressing specific ques-
tions at different scales. First, pathway expression ana-
lysis is probably the best means to understand the
heterogeneity of metabolism across cancers and to create
hypotheses about major cancer metabolism subtypes.
Second, flux balance models are a flexible framework to
investigate the selective advantage of different metabolic
pathways depending on the environmental conditions
and the metabolic objective. Gene expression and other
genomic information can be used to tailor flux balance
models to specific cancer metabolic subtypes, allowing
us to make predictions of their specific metabolic vul-
nerabilities. Third, kinetic modelling is required to ob-
tain an accurate model of cell metabolism, and it is
essential to understand the relationships between meta-
bolic fluxes and metabolite concentrations. Fourth, there
is experimental evidence of patterns of spatial
localization of energy metabolism-related enzyme and
mitochondria. The relevance of this spatial heterogeneity
can only be addressed with reaction diffusion models of
cell metabolism. Finally, tumour microenvironment
models will help us to understand how metabolic alter-
ations can impact the remodelling of the tumour tissue.
Pathway expression analysis indicates that the tissue of
origin is the first dominant signature in the genome-
wide and metabolism-specific gene expression profiles of
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cancers. After correcting for the tissue of origin, cell
proliferation and tissue remodelling emerge as secondary
major signatures. Gene signatures associated with key
metabolic pathways such as glycolysis, the pentose phos-
phate pathway, oxidative phosphorylation and one-
carbon metabolism are correlated to a great extent with
the degree of proliferation. In contrast, a gene signature
representing autophagy manifests the strongest expres-
sion in cancers with a high degree of tissue remodelling.
Other parts of the metabolic system, such as fatty acid
metabolism, are not generally associated with these
major factors. This could be due to high levels of redun-
dancy and feedback obscuring the pathway analysis;
however, there could also be other factors associated
with the utilization of these metabolic regimes. More de-
tailed studies within individual tissues and tissue classes
are needed to gain a better understanding of the vari-
ation and dependencies of metabolic pathways.

The evolution of flux balance models is getting closer
to the development of genome-scale flux balance models
with kinetics. It is an exciting time in this area. The in-
crease in model complexity and burden in parameter es-
timation is balanced by a significant reduction of the
space of possible flux distributions to elementary flux
modes. The next step is to develop methods to estimate
large sets of kinetic parameters from proteomic,
phospho-proteomic and metabolomic profiles. Once
these methods have been applied, we will be in a better
position to address open questions regarding the select-
ive advantage of metabolic phenotypes of cancer cells.

The investigation of tumour metabolism using tumour
microenvironment models is in its early days, as it is the
case in the experimental field as well. However, these
models are required to understand the selective advan-
tage of metabolic interactions between cancer cells and
the stroma. There are reports of both glycolytic cancer
cells feeding lactate to the stroma and glycolytic stroma
feeding lactate to the cancer cells [87]. It remains to be
elucidated in which context these opposite metabolic
phenotypes are selected for.
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