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Abstract: Biodegradable nanofibers are extensively employed in different areas of biology and
medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are
attracting growing interest due to their good mechanical properties and a low-cost structure similar to
the extracellular matrix. However, the unmodified PCL nanofibers exhibit an inert surface, hindering
cell adhesion and negatively affecting their further fate. The employment of PCL nanofibrous scaffolds
for wound healing requires a certain modification of the PCL surface. In this work, the morphology
of PCL nanofibers is optimized by the careful tuning of electrospinning parameters. It is shown that
the modification of the PCL nanofibers with the COOH plasma polymers and the subsequent binding
of NH2 groups of protein molecules is a rather simple and technologically accessible procedure
allowing the adhesion, early spreading, and growth of human fibroblasts to be boosted. The behavior
of fibroblasts on the modified PCL surface was found to be very different when compared to the
previously studied cultivation of mesenchymal stem cells on the PCL nanofibrous meshes. It is
demonstrated by X-ray photoelectron spectroscopy (XPS) that the freeze–thawed platelet-rich plasma
(PRP) immobilization can be performed via covalent and non-covalent bonding and that it does not
affect biological activity. The covalently bound components of PRP considerably reduce the fibroblast
apoptosis and increase the cell proliferation in comparison to the unmodified PCL nanofibers or
the PCL nanofibers with non-covalent bonding of PRP. The reported research findings reveal the
potential of PCL matrices for application in tissue engineering, while the plasma modification with
COOH groups and their subsequent covalent binding with proteins expand this potential even further.
The use of such matrices with covalently immobilized PRP for wound healing leads to prolonged
biological activity of the immobilized molecules and protects these biomolecules from the aggressive
media of the wound.

Keywords: polycaprolactone; nanofibers; COOH plasma; cell adhesion and spreading; cell viability;
freeze–thawed platelet-rich plasma immobilization
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1. Introduction

During the last decade, a lot of effort was focused on the research and development of biodegradable
polymer materials for medical applications. The advantage of synthetic biodegradable polymer matrices
is the lack of immunogenicity, the numerous possibilities for their modification, the controllability of
their mechanical properties, and the rate of decomposition. This allows the creation of materials with
the necessary properties for a wide range of applications in regenerative medicine. Both cellular and
cell-free materials are being developed. Cell matrices demonstrate greater efficacy for the treatment of
deep and chronic wounds [1–4]. Matrices for cell colonization must have the structure of an extracellular
matrix (ECM), which provides structural support and intercellular contact, serves as a reservoir for
signaling molecules, and thereby regulates cell migration, proliferation, and angiogenesis [1,2].

The fibrillary, porous structure of the polycaprolactone nanofibers obtained by the electrospinning
method mimics the ECM structure [5,6]. However, their surface is hydrophobic and unsuitable for
cell viability. In order to increase the bioavailability of polycaprolactone (PCL) nanofibers, plasma
treatment [7,8], the deposition of plasma coatings [9], biomineralization [10,11], and the grafting of silk
fibroin [12] are used. It is worth noting that the electrospinning of PCL nanofibers is very versatile and
the addition of nanoparticles into the electrospinning solution can induce antibacterial properties [13].

The effectiveness of cell matrices depends on the functional activity of the cells used, which in
turn depends on the initial processes of adhesion and spreading on the matrix. Cell adhesion to a
functionally well-founded substrate is characterized by a well-defined time, as well as mechanical and
energy-dependent processes, determining further cell proliferation, cell migration, cell differentiation,
and gene expression [14–17]. It should be noted that the spreading of cells on the surface of substrates
is a complex process and it is controlled by the matrix–integrin interactions that form adhesion
sites [15,18–21]. The co-spinning of PCL with collagen [22,23], gelatin [24], chitosan [25], or other
bioactive substances [26,27] enriches matrices by natural adhesion sites, thereby improving the cell
adhesion properties of nanofibers and consequently contributing to the normal cell functioning [17,18].
Platelet-rich plasma is often used in regenerative medicine because it is a naturally balanced ensemble
of growth factors, components of the extracellular matrix including fibronectin (FN) necessary for
dynamic connection with substrate [14,28–32].

Fibroblasts are most often used in tissue engineering [33]. These cells are characterized by
high plasticity and, depending on the conditions, their functionality changes. The secretion of ECM
components (fibronectin, collagens, elastin, laminin, hyaluronic acid, proteoglycans) is one of the main
properties of fibroblasts, and their nature depends on the quality of the substrate.

In this work, the morphology of PCL nanofibers was optimized by tuning the needle-less
electrospinning process parameters, whereas the chemistry of the PCL nanofibers was activated
by the plasma deposition of a COOH layer. This study determined the effect of the modification
of PCL nanofibers by the COOH plasma polymerization and freeze–thawed platelet-rich plasma
immobilization on the adhesion and spreading of fibroblasts, as well as their proliferative potential and
viability. It was shown that the effective immobilization of COOH groups, followed by the covalent
bonding of freeze–thawed platelet-rich plasma, led to a physiological course of adhesion and spreading
processes, resulting in good viability, proliferation, and contact inhibition of proliferation when the
monolayer is reached by the cells.

2. Materials and Methods

2.1. Preparation of Freeze–Thawed Platelet-Rich Plasma

The methodology of preparation of freeze–thawed platelet-rich plasma (PRP) was described in [34].
In brief, platelet-rich plasma was taken from healthy donors and, subsequently, it was activated using
three freeze–thaw cycles. Then, PRP was centrifuged at 12,000× g for 10 min at 4 ◦C. The supernatant
containing growth factors was recovered and kept frozen at −70 ◦C until later steps. The study was
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approved by the Ethics Committee of the RICEL—branch of ICG SB RAS (Identifier: N115 from 24
December 2015).

2.2. Electrospining of Nanofibers

The electrospun nanofibers were prepared by the electrospinning of solution with different
concentrations of PCL. A description of the processing of samples can be found elsewhere [5].
The granulated polycaprolactone (80,000 molecular weight (mw)) was dissolved in a mixture of acetic
acid (99%) and formic acid (98%). All compounds were purchased from Sigma Aldrich (Darmstadt,
Germany. The weight ratio of acetic acid (AA) to formic acid (FA) was 2:1. The concentration of
PCL was varied from 7 to 12 wt.%. The PCL solutions in AA and FA were stirred for 24 h at 25 ◦C.
The PCL solution was electrospun with a 20-cm-long wired electrode using a Nanospider™NSLAB
500 machine (ELMARCO, Liberec, Czech Republic). The applied voltage was in the range from 30 to
60 kV. The distance between the electrodes was set at 100 mm. The as-prepared PCL nanofibers are
referred to as PCL-ref throughout the text.

2.3. Deposition and Characterization of Plasma Polymer Layers

The COOH plasma polymer layers were deposited using the vacuum system UVN-2M equipped
with a rotary and oil diffusion pumps. The residual pressure of reactor was below 10−3 Pa. The plasma
was ignited using a radio frequency (RF) power supply Cito 1310-ACNA-N37A-FF (Comet, San Jose,
CA, USA) connected to the RFPG-128 disc generator (Beams & Plasmas, Zelenograd, Russia) installed
in the vacuum chamber. The duty cycle and the RF power were set to 5% and 500 W, respectively.

CO2 (99.995%), Ar (99.998%), and C2H4 (99.95%) were fed into the vacuum chamber. The flows of
the gases were controlled using a Multi Gas Controller 647C (MKS, Andover, MA, USA). The flow rates
of Ar, CO2, and C2H4 were set to 50, 16.2, and 6.2 sccm, respectively. The pressure in the chamber was
measured by a VMB-14 unit (Tokamak Company, Oxfordshire, UK) and D395-90-000 BOC (Edwards,
Heinenoord, The Netherlands) controllers. The distance between the RF electrode and the substrate
was set to 8 cm. The deposition time was 15 min and it led to the growth of ~100-nm-thick plasma
coatings. The plasma-coated PCL nanofibers are referred to as PCL-COOH throughout the text.

The surface of the samples was imaged by scanning electron microscopy (SEM) Tescan LYRA3
(Tescan, Brno, Czech Republic) in secondary emission mode (5–10 kV acceleration voltage, working
distance 8–10 mm). The samples were coated with a 10-nm-thick gold film deposited by RF magnetron
sputtering prior to the imaging in order to avoid charging of surface. The Gwyddion 2.29 software
(Brno, Czech Republic) was used for the determination of the diameter of polymer nanofibers from
SEM micrographs. The diameters were determined by averaging of values obtained for 30 single
independent filaments present in the micrographs taken at the magnification of 10,000×.

The chemical composition of sample surfaces was determined by X-ray photoelectron spectroscopy
(XPS) using an Axis Supra spectrometer (Kratos Analytical, Manchester, UK) equipped with a
monochromatic Al Kα X-ray source. The maximum lateral resolution of the analyzed area was 0.7 mm.
The spectra were fitted using the CasaXPS software after subtracting the Shirley-type background.
The binding energies (BE) for all carbon and nitrogen environments were taken from literature [5,9,35]

The water contact angle (WCA) of the nanofibers surface was determined by a contact angle
analyzer (KRÜSS EasyDrop DSA20, Hamburg, Germany). Plasma-treated and untreated samples were
cut into 1-cm2 mats. Then, 5-µL droplets of deionized water were deposited in random locations on the
surface and the water contact angle was measured. All the measurements were completed in triplicate.
The infrared spectrum in the range from 370 to 4000 cm−1 was measured using a Fourier-transform
infrared (FTIR) spectrophotometer (Bruker Vertex 80v, Billerica, MA, USA) using attenuated total
reflectance mode (ATR-FTIR).
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2.4. Coating of Scaffolds with PRP

Prior to immobilization of PRP, all samples were sterilized under ultraviolet (UV) light for 45 min.
At first, the adsorption of PRP by PCL-ref was investigated. The PCL-ref was immersed in the PRP
solution at 25 ◦C for 15 min and then it was thoroughly washed with phosphate-buffered saline
(PBS). The sample was denoted as PCL-PRP. Then, the ionic bonding of PRP to the plasma-coated
PCL nanofibers (PCL-COOH) was investigated. The PCL-COOH was immersed in the solution of
PRP for 15 min and then it was washed with PBS. This sample was denoted as PCL-COOH-PRP1.
In order to achieve covalent bonding of PRP to the PCL-COOH surface, the latter was immersed in a
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) (Sigma Aldrich, St. Louis, MO, USA, 98%)
solution in water (2 mg/mL) for 15 min. The sample was carefully washed with PBS and then incubated
with PRP for 15 min at room temperature. After the reaction, the sample was thoroughly washed with
PBS. The samples were denoted as PCL-COOH-PRP2.

2.5. Cell Tests

Human fibroblast cells (MRC-5 line) were purchased from the State Research Center of Virology
and Biotechnology VECTOR (Novosibirsk, Russian). Cells were cultured in Dulbecco’s modified Eagle
medium (DMEM, Sigma Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum
(Gibco) under standard culture conditions (humidified atmosphere, 5% CO2 and 95% air, at 37 ◦C).

2.5.1. Adhesion Assay

Round-shaped scaffolds (PCL-ref, PCL-CCOH, and PCL-COOH-PRP2) with a diameter of 6 mm
were placed in a 96-well plate. The cells were seeded on the scaffolds at a concentration of 10 × 103 cells
per scaffold. After 20 min (short-time adhesion), 2 and 24 h, and three and seven days, the scaffolds with
fibroblasts were fixed using 4% paraformaldehyde solution for 10 min. Then, 0.1% Triton X-100 was
used for the cell membrane permeabilization. For visualization of cytoskeleton actin filaments, we used
the Alexa Fluor 532 phalloidin (Thermo Fisher Scientific, Waltham, MA, USA). The fibroblast-seeded
scaffolds were stained with Hoechst 33342 for 15 min at room temperature. The cell adhesion on the PCL
nanofibers was studied by fluorescence microscopy (Zeiss, Axio observer Z1, Oberkochen, Germany).

2.5.2. Cell Proliferation

The Click-iT™ EdUAlexa Fluor™ 488 Imaging Kit (Thermo Fisher Scientific, Waltham, MA, USA)
was used for detection of the cell proliferation rate. Each round-shaped scaffold with a diameter of
6 mm was seeded with the fibroblasts at a concentration of 7 × 103 cells per well in the 96-well plates.
The cell-seeded scaffolds were incubated under standard condition (5% CO2 and 95% air) at 37 ◦C.
On the third and seventh day after seeding the cells, EdU was added to each sample for 2 h. The cells
were studied by fluorescence microscopy (Zeiss, Axio observer Z1, Oberkochen, Germany). The cell
quantification was performed on 50 microscopic images per studied scaffold. The level of proliferation
rate was estimated by determining the ratio of total cells (Hoechst-positive) to the EdU-positive cells
using the Cell Activision software (Yokogawa Electric Corporation, Tokyo Japan).

2.5.3. Cell Apoptosis

The fluorescent dye Hoechst 33342 was used to stain cell nuclei. The percentage of apoptotic
cells was evaluated as the ratio of normal cell nuclei (middle bright and uniformity of Hoechst) to
fragmented and brighter nuclei.

2.5.4. Immunofluorescent Staining of Scaffold Cells

Fibroblasts were grown on scaffolds for three and seven days. Afterward, they were fixed with
4% paraformaldehyde, permeabilized with 0.1% Triton X-100, and blocked with 1% BSA (bovine
serum albumin). The cells seeded on the scaffold were stained with primary antibodies for 4 h
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at room temperature, washed with PBS, and incubated with secondary antibodies for 1 h at room
temperature. The stained cells were analyzed with the fluorescence microscope (Zeiss, Axio observer
Z1, Oberkochen, Germany).

The following primary antibodies were used: anti-fibronectin (Abcam, Cambridge, UK, ab6328,
1:200) and anti-collagen IV (Life Span, Hamilton, OH, USA, 1:200). The following secondary antibodies
were used: Alexa Fluor 594 goat anti-mouse immunoglobulin G1 (IgG1; Life Technologies, Carlsbad,
CA, USA).

All results were displayed as mean values and standard errors. The statistical significance was
assessed by the nonparametric Mann–Whitney U test using the Statistica 10 software (StatSoft. Inc.,
Tulsa, Ok, USA).

3. Results

3.1. Optimization of Electrospinning of the PCL Nanofibers

The effect of the electrospinning process on the resulting polymer nanofibers was studied in order
to obtain homogeneous substrates for subsequent immobilization and biological tests. The nanofibers’
topography analyzed by SEM is shown in Figure 1. The comparison of the micrographs reveals a highly
porous network of fibers with considerable differences in morphology and homogeneity depending on
the PCL concentration in solution and the applied voltage.
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Figure 1. SEM micrographs of the polycaprolactone (PCL-ref) nanofibers obtained from the PCL
solutions with the different PCL concentrations and at different voltages. The PCL concentration and
voltage are reported on the images. The size of the bar corresponds to 1 µm.

The effect of the PCL concentration on the electrospinning solution is shown in the upper row of
images in Figure 1, captured at the magnification of 10,000×. The applied voltage was consistent for all
substrates at 50 kV. The electrospun nanofibers prepared from the solution with 7 wt.% of the PCL
polymer were thin with a calculated thickness of 132 ± 42 nm, and they exhibited a significant beaded
structure. Beads and beaded fibers are more likely formed from less concentrated solutions, as their
viscosities are low, making the jet formation unstable [36]. Increasing the PCL concentration led to an
increase in fiber uniformity and a more regular morphology with a considerable decrease in beaded
fibers [36,37].
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The nanofibrous meshes prepared from solutions with PCL concentrations of 9 and 11 wt.% gave
fiber thicknesses of 263 ± 57 nm and 290 ± 112 nm, respectively. A higher thickness of nanofibers
and their lower homogeneity prepared from more concentrated solutions might be caused by the
viscoelastic force in the nanofiber jet resisting the stretching repulsive forces of opposing charges [38].
The effect of PCL concentration on the thickness of nanofibers is summarized in Figure 2a.

Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 19 

 

nanofibers and their lower homogeneity prepared from more concentrated solutions might be 

caused by the viscoelastic force in the nanofiber jet resisting the stretching repulsive forces of 

opposing charges [38]. The effect of PCL concentration on the thickness of nanofibers is summarized 

in Figure 2a. 

 

Figure 2. Thickness of resulting PCL nanofibers as a function of the PCL concentration (a) and 

applied voltage (b) during the electrospinning process. Error bars represent standard deviation of 

the nanofibers’ thickness distribution. 

For further experiments, a PCL concentration of 9 wt.% was selected, and the effect of the 

applied voltage was studied. The SEM micrographs of the electrospun PCL nanofibers obtained 

with the applied voltages of 30, 40, 45, and 55 kV are shown in the lower row of images in Figure 1. 

The effect of applied voltage is summarized in Figure 2b. It can be seen that the effect of the applied 

voltage on the fiber diameter is not linear. It is worth noting that the extremely low values of applied 

voltage led to a higher dispersion of fiber diameters. Depending on the combination of process 

parameters, it is possible to obtain a substrate with fine homogeneous nanofibers. 

The observed effect of polymer concentration and applied voltage on fiber thickness and 

homogeneity is summarized in Figure 2a,b. The error bars represent the calculated standard 

deviation of nanofiber thickness on selected substrates and, thus, illustrate their homogeneity. As 

visible in the graphs, a lower concentration of PCL polymer in solution (7 wt.%) led to thinner fibers. 

Nevertheless, because of the occurrence of beaded structures, the substrates were not used for 

further experiments. The increase in nanofiber thickness correlated with increasing PCL polymer 

concentration in solution and was less dependent on applied voltage. In addition, the nanofiber 

thickness was more homogeneous when less concentrated/viscous solutions were used. 

The observed tendency is in line with the previously reported data for the optimization of 

electrospinning from a PCL solution in acetic acid using the Starter Kit 40 KV Web set-up, utilizing 

the needle electrospinning technology [36]. The advantage of needleless technology developed by 

Elmarco (used here) is a higher production rate and a bigger size of the produced samples. 

Regarding the optimized conditions, the polymer substrates electrospun from solutions with a PCL 

concentration of 9 wt.% and applied voltage of 50–55 kV were selected for plasma chemical 

depositions. From now on, the paper refers to this type of nanofiber simply as PCL-ref. The 

morphology of the nanofibers was not affected by the deposition of Ar/CO2/C2H4 plasma layers and 

no damage was detected (Figure 3). The immobilization of PRP also had no effect on the 

morphology of the PCL nanofibers. No swelling or degradation of fibers can be observed in the SEM 

micrographs in Figure 3. 

Figure 2. Thickness of resulting PCL nanofibers as a function of the PCL concentration (a) and applied
voltage (b) during the electrospinning process. Error bars represent standard deviation of the nanofibers’
thickness distribution.

For further experiments, a PCL concentration of 9 wt.% was selected, and the effect of the applied
voltage was studied. The SEM micrographs of the electrospun PCL nanofibers obtained with the
applied voltages of 30, 40, 45, and 55 kV are shown in the lower row of images in Figure 1. The effect of
applied voltage is summarized in Figure 2b. It can be seen that the effect of the applied voltage on the
fiber diameter is not linear. It is worth noting that the extremely low values of applied voltage led
to a higher dispersion of fiber diameters. Depending on the combination of process parameters, it is
possible to obtain a substrate with fine homogeneous nanofibers.

The observed effect of polymer concentration and applied voltage on fiber thickness and
homogeneity is summarized in Figure 2a,b. The error bars represent the calculated standard deviation
of nanofiber thickness on selected substrates and, thus, illustrate their homogeneity. As visible in the
graphs, a lower concentration of PCL polymer in solution (7 wt.%) led to thinner fibers. Nevertheless,
because of the occurrence of beaded structures, the substrates were not used for further experiments.
The increase in nanofiber thickness correlated with increasing PCL polymer concentration in solution
and was less dependent on applied voltage. In addition, the nanofiber thickness was more homogeneous
when less concentrated/viscous solutions were used.

The observed tendency is in line with the previously reported data for the optimization of
electrospinning from a PCL solution in acetic acid using the Starter Kit 40 KV Web set-up, utilizing
the needle electrospinning technology [36]. The advantage of needleless technology developed by
Elmarco (used here) is a higher production rate and a bigger size of the produced samples. Regarding
the optimized conditions, the polymer substrates electrospun from solutions with a PCL concentration
of 9 wt.% and applied voltage of 50–55 kV were selected for plasma chemical depositions. From now
on, the paper refers to this type of nanofiber simply as PCL-ref. The morphology of the nanofibers was
not affected by the deposition of Ar/CO2/C2H4 plasma layers and no damage was detected (Figure 3).
The immobilization of PRP also had no effect on the morphology of the PCL nanofibers. No swelling
or degradation of fibers can be observed in the SEM micrographs in Figure 3.
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and PCL-COOH-PRP2 (d) The size of the bar corresponds to 1 µm.

3.2. Surface Characterization of the Samples

The effect of plasma coating was evident from the WCA measurements. PCL-ref exhibited a
WCA of 121 ± 3◦. The deposition of the Ar/CO2/C2H4 plasma layer led to a decrease in WCA to
67 ± 7◦. The increase in wettability of PCL nanofibers is related to the grafting of polar groups and
it was also shown before for COOH modification of PCL nanofibers using the atmospheric pressure
plasma deposition technique [5]. The chemical composition of the PCL nanofibers (PCL-ref) measured
by XPS is reported in Table 1. The atomic percentages of the elements were quantified from the
high-resolution spectra of each element. The survey spectra of the samples are reported in Figure S1
(Supplementary Materials). The XPS C 1s spectrum of PCL-ref can be fitted with a sum of three
components, namely hydrocarbons CHx (BE = 285 eV), ether group C–O (BE = 286.4 eV), and ester
group C(O)O (BE = 289.0 eV) (Figure 4a). The full width at the half maximum (FWHM) of C–O was set
to 1.35 eV, while CHx and C(O)O were fitted with the FWHM of 1.1 and 0.95 eV, respectively. The XPS O
1s spectrum was fitted with a sum of two components: C=O (BE = 532.1 eV) and C–O (BE = 533.5 eV).
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The relative concentrations of C=O and C–O components were 42% and 58%, respectively (see Figure S2,
Supplementary Materials).

Table 1. Atomic composition (at.%) of samples derived from X-ray photoelectron spectroscopy (XPS)
analysis. The traces of sodium, chlorine, and phosphorus were detected but were not taken into account.
PCL—polycaprolactone; PRP—platelet-rich plasma.

Sample Name C O N S

PCL-ref 73.9 26.1 0.0 0.0
PCL-PRP 71.6 20.6 7.6 0.2

PCL-COOH 72.4 26.7 0.9 0.0
PCL-COOH-PRP1 71.3 18.5 10.0 0.2
PCL-COOH-PRP2 75.8 18.1 5.9 0.2
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The deposition of Ar/CO2/C2H4 plasma layers led to a slight increase in the O/C ratio. Interestingly,
the observed changes in the XPS C 1s spectrum were rather significant (Figure 4c). The XPS C 1s
spectrum of the Ar/CO2/C2H4 plasma-coated nanofibers (PCL-COOH) was fitted with four carbon
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components: CHx (BE = 285 eV), C–O (BE = 286.4 eV), C=O (BE = 287.4 eV), and C(O)O (BE = 289.1 eV).
The FWHM value for all components was set to 1.35 ± 0.05 eV. The concentrations of different carbon
environments are summarized in Figure 4c. XPS analysis also revealed a small amount of nitrogen
present on the PCL-COOH sample. The XPS N 1s spectrum of PCL-COOH (Figure 5c) was fitted
with two components: amide group N–C=O (BE = 400.0 eV) and N–Ox (BE = 402.0 eV). Most likely,
the origins of these groups are related to the reaction with residual nitrogen in plasma or to the contact
of PCL-COOH with the atmosphere. The O 1s spectrum after the deposition of plasma layers was
fitted with the same two components C–O and C=O. However, the FWHM of these peaks became
broader and the concentration of the C=O component was increased by ~20% at the expense of the
C–O component (see Figure S2, Supplementary Materials).
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Concerning the changes in the surface chemistry after the immobilization, according to the XPS
results in Table 1, it is evident that the immobilization of PRP happens even without the plasma coating
of the nanofibers. It is indicated by the relatively high concentrations of nitrogen found on the PCL-
PRP, PCL-COOH-PRP1, and PCL-COOH-PRP2 samples. It is worth noting that the traces of sodium
(<1 at.%), chlorine (<1 at.%), and phosphorus (<0.5 at.%) were also detected on survey scans (see
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Figure S1, Supplementary Materials). These traces are the components of the PBS (NaCl and Na2HPO4)
that we used for washing of the sample surface and, therefore, these elements were not taken into
account in Table 1.

In addition, the ATR-FTIR analyses (not reported here) showed that there were no changes
in the spectrum of PCL-PRP in comparison to the one of PCL-ref. The XPS N 1s spectrum of
PCL-PRP is presented in Figure 5b. The PCL-ref did not provide any N 1s signal, whereas PCL-PRP,
PCL-COOH-PRP1, and PCL-COOH- PRP yielded very similar spectra that were all fitted with a sum
of two components, namely an amide group N–C=O (BE = 400.0 eV) and protonated amines NH3

+

(BE = 401.7 eV). The FWHM for all components was set to 1.7 ± 0.1 eV. As shown in Figure 5b,d,e,
for these samples, the main XPS N 1s fit component is associated with amide groups, the building block
of all proteins, thus confirming the immobilization of PRP. Interestingly, the highest concentration of
nitrogen was detected for PCL-COOH-PRP1; this effect is most probably related to the steric hindrances
induced by EDC activation as discussed in Section 4. It is worth noting that no unreacted EDC was
detected on the surface, as no N=C=N component at 398.5 eV was found in the N 1s spectrum. The XPS
O 1s spectra of PCL-PRP, PCL-COOH-PRP1, and PCL-COOH-PRP2 were fitted with a sum of C–O
and C=O components (Figure S2, Supplementary Materials). Interestingly the non-covalent bonding
of PRP led to the shift of the C=O component from 532.0 to 531.5 eV (in PCL-PRP and PCL-COOH-
PRP1), whereas the covalent immobilization of PRP did not affect the BE position of this component.
The shift is related to the different neighboring atom adjacent to the C=O component. The BE of
531.5 eV most probably corresponds to the C=O group close to amine group (NH), whereas the BE of
532.0 eV corresponds to C=O close to C–O (e.g., O–C=O).

3.3. Adhesion and Spreading of Fibroblasts Seeded on PCL-ref, PCL-COOH, and PCL-COOH-PRP

After 20 min of seeding cells on the studied scaffolds, the number of adhered cells showed no
statistically significant differences. However, the largest cell size was found on PCL-COOH-PRP2 (up
to 41 µm), while, on PCL-ref and PCL-COOH, the cell sizes reached a maximum of 35 µm (Figure 6).

After 2 h of cultivation, fibroblasts on all studied substrates formed filopodia. Nevertheless, as it
can be seen from Figure 6, the number of cells on PCL-ref and on PCL-COOH was significantly lower
compared to PCL-COOH-PRP2. Cells seeded on PCL-COOH-PRP2 had the biggest spreading area,
multiple focal contacts, and filopodia, and a network of actin fibrils was formed (Figure 6 and Figure S3,
Supplementary Materials).

After 24 h of incubation, the actin cytoskeleton of fibroblasts on PCL-ref was significantly
pronounced at the edges of small rounded cells, whereas a network of actin fibers and stress fibrils was
not observed. The fibroblasts adhered on the hydrophobic surface of PCL-ref, forming groups of cells.

The fibroblasts adhered onto PCL-COOH demonstrated a spread polygonal shape with a network
of actin microfilaments. A part of the cells exhibited an elongated shape and stress fibrils (Figure 6).
The fibroblasts were evenly distributed on the surface.

There was no significant difference in the number of cells after 24 h of incubation on PCL-ref and
PCL-COOH. The binding of PRP to the substrate affected the adhesion of fibroblasts already at the
initiation stage and, after one day, the cells had a well-spread polygonal shape with a pronounced
cytoskeleton and lamellipodia (Figure 6).

Within three days, the number of adhered cells on PCL-ref did not increase significantly. The cells
were of small size and exhibited multiple focal contacts. On the third day of incubation, the cells on
PCL-COOH exhibited a relatively pronounced cytoskeleton and a flattened polygonal shape. However,
the cytoskeleton was less pronounced than on PCL-COOH-PRP2 and there were no clear stress-fibrils
and focal contacts. At this incubation time, the cells had a well-formed cytoskeleton, organized stress
fibrils, focal contacts, and lamellipodia on PCL-COOH-PRP2.
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Figure 6. Fibroblast cell adhesion and spreading on the surface of PCL-ref, PCL-COOH, and PCL-COOH-
PRP2 after 20 min, 24 h, and three and seven days of cultivation. The cytoskeleton actin filaments were
stained by phalloidin (green), the cell nuclei were stained by Hoechst 33342 (blue). The size of the bar
corresponds to 20 µm.
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On PCL-ref, the number of cells after seven days of incubation did not differ statistically from that
after three days. The cells revealed cytoplasmic micro-growths directed anisotropically. On PCL-COOH,
despite the statistically important increase in the cell number after seven days of incubation, the cells also
exhibited long, anisotropically directed cytoplasmic micro-growths. (Figure 6). The increased adhesion
on the PCL-COOH-PRP2 substrates during early and late spreading stimulated cell proliferation,
as, after seven days of incubation, a monolayer of fibroblasts was observed (Figure 6 and Figure S3,
Supplementary Materials). There was a contact inhibition of the isotropic movement and, thus, the cells
were co-directed (Figure 6).

3.4. The Modification of PCL Nanofibers with COOH Groups and Its Effect on Human Fibroblast Proliferation
and the Cell Apoptosis

After 24 h of incubation, the number of adhered cells on PCL-ref and PCL-COOH did not differ
significantly; however, on PCL-COOH, the cells were distributed more evenly. The number of cells on
the third day of incubation on PCL-ref and PCL-COOH scaffolds made up 15 ± 7.4 and 18 ± 4.2 cells
per field of view, respectively (Figure 7b). The level of cell proliferation on PCL-ref and PCL-COOH
was not statistically different and was equal to 7.9 ± 1.9% and 8.2 ± 1.6%, respectively (Figure 7a).
The level of apoptosis on PCL-ref was high (31 ± 3.4%), and that on PCL-COOH was two times lower
(14 ± 2.3%) (Figure 7a).
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3.5. The Effect of PRP Immobilization on Human Fibroblast Proliferation 

Figure 7. The influence of scaffold surface on (a) cell proliferation and apoptosis, and (b) cell count
for three and seven days of cultivation. The level of proliferation rate was estimated by determining
the ratio of total cells (Hoechst-positive) to the EdU-positive cells. The percentage of apoptotic cells
was calculated as the ratio of the nuclei with chromatin condensation and nuclear fragmentation
(kariorhexis) to nuclei with homogeneous coloration. The arrows indicate the relationship of the level
of cell apoptosis and cell proliferation. Data are expressed as means ± standard errors; ** p < 0.01,
* p < 0.05.

Due to the uneven density of cells on PCL-ref, the fields of view were divided into two regions
with a high and low cell content. The level of proliferation was highly dependent on the cell number
on the PCL-ref substrates. Thus, 10% EdU-positive cells were in the regions with a high cell density,
while a low cell density demonstrated 4.5% proliferating cells.

At the same time, on PCL-COOH, the proliferation level was practically independent of the
number of cells per field.

On the seventh day of incubation, the average number of cells on PCL-ref and PCL-COOH made
up 13 ± 1.1 and 36 ± 4.2 cells per field of view, respectively (Figure 7b). The proliferation level on
PCL-ref and PCL-COOH substrates did not change statistically. At the same time, the number of
apoptotic cells seeded on PCL-ref and PCL-COOH decreased to 26 ± 3.9% and 9.5 ± 1.9%, respectively
(Figure 7a). The reduced apoptosis was probably due to the production of the extracellular matrix by
viable cells.
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Therefore, the COOH modification of the PCL nanofibers promotes a more uniform distribution
of adhered cells and a better cell viability associated with a decrease in the level of apoptotic
cell death, suggesting a better biocompatibility of this surface as compared to unmodified PCL
nanofibers. The fibroblasts are capable of adhering and surviving on the hydrophobic surface of
PCL-ref, maintaining a certain level of proliferation in the islands of high cell density.

3.5. The Effect of PRP Immobilization on Human Fibroblast Proliferation

We analyzed the proliferation of human fibroblasts on the PRP-modified PCL nanofibers with
different forms of PRP bonding: non-covalent bonding of PRP to unmodified PCL-ref based on
hydrophobic–hydrophobic interaction of the proteins with PCL nanofibers, ionic bonding of PRP to
COOH group plasma-coated PCL scaffolds, and covalent bonding of PRP to the PCL-COOH using EDC.

Observation over three days showed that the addition of PRP to PCL significantly increased
the number of cells. It was noted that the number of cells on PCL-PRP and PCL-COOH-PRP1 was
lower compared to PCL-COOH-PRP2 (26 ± 2.6 and 32 ± 4.4 against 52 ± 5, respectively). The level of
proliferative activity was also higher for PCL-COOH-PRP2, at 11.2 ± 1.5%, compared with 8.6 ± 1.32%
and 9.4 ± 2.9% for PCL-COOH-PRP1 and PCL-PRP, respectively (Figure 7).

It should be noted that the level of apoptosis on PCL-COOH-PRP2 was three times lower compared
to PCL-COOH-PRP1 and PCL-PRP (3 ± 0.7% versus 10 ± 0.6% and 12 ± 1.9%, respectively) (Figure 8).
Thus, already on the third day, it can be seen that the surface with covalently bound PRP was most
effective for maintaining the functional viability of fibroblasts.
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Cells were stained by antibody Alexa Fluor 594 (orange) to collagen (magnification 40×) and Alexa
Fluor 488 to FN (magnification 20×).

After seven days on PCL-COOH-PRP1, the level of cell apoptosis decreased to 6 ± 0.9%,
while maintaining cell proliferative activity (7.2 ± 1.3%). The percentage of apoptotic cell death
on PCL-COOH-PRP2 remained at the same low level (3.5 ± 0.7%), while maintaining the level of
proliferative activity of 12.4 ± 1.6%.

Thus, it is shown that the addition of PRP to PCL-ref and PCL-COOH nanofibers further increased
the number of adhered cells and the level of cell proliferation, and decreased the level of apoptotic
death. However, hydrophobic non-covalent and ionic bonding of PRP to PCL-COOH and PCL-ref led
to a weak linkage between proteins and PCL and, as a result, only a short-term enhancement of the
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cell proliferation (Figure 7). The dynamics of the cell number growth and percentage of proliferating
cells reduced after three days of cultivation. The covalent bonding of PRP to PCL-COOH ensured a
constantly enhanced level of proliferation and a low level of fibroblast apoptosis even after seven days
of cultivation.

3.6. The Secretion of Fibronectin and Type IV Collagen by Fibroblasts Seeded on PCL-ref

As shown earlier, the uneven cell distribution on PC-ref was associated with a high single-cell
death and a good level of proliferation in the islands of high cell density. The cells on PCL-ref had
a normal phenotype and a high expression level of fibronectin (FN) and collagen after three days of
incubation in the areas of high cell density. On PCL-COOH, the fibroblasts were located evenly and
secreted FN and collagen (Figure 8).

This pattern of ECM component secretion by fibroblasts also suggests that PCL-COOH is more
suitable for cell viability.

4. Discussion

For the purpose of tissue engineering, as well as for regenerative medicine, it is necessary to create
scaffolds suitable for the viability and functional activity of the cells [39]. The aim of this study was to
create a nanofibrous scaffold suitable for the efficient cell adhesion, spreading and functional activity
of fibroblasts. The normal cell adhesion and spreading on the substrate surface affect the later stages
of the cell functional activity [14–17]. Therefore, the study of cell spreading is vital in the scaffold’s
screening for the purpose of regenerative medicine. The initial stage of cell adhesion is determined
by the physico-mechanical interactions of the physical body (cell) and the substrate, and it does not
depend on the molecular integrin–ECM interactions [15]. It is characterized by the blabbing of rounded
cells, formation of a smooth contact area, and passive attachment to the substrate, and it lasts for
5–20 min after the cell seeding. We do not observe differences at this stage neither in the number nor in
the morphological features of cells on the studied PCL scaffolds 20 min after the cell seeding (Figure 6).
However, the bigger size of some of the cells on PCL-COOH-PRP2 was a result of better adhesion and
an earlier spreading of fibroblasts.

The longer phase of early spreading lasted for approximately 120 min and was defined by the
active cell attachment with the organization of a peripheral zone by actin fibrils and the formation of
lamellipodia. At this phase, the polymerization of actin and the contraction of myosin are necessary
for the polarization and movement of cells.

This phase was significantly extended until 24 h for PCL-COOH and until three days for PCL-ref.
The electrophilicity of the PCL-COOH surface, together with the negative charge of the cells, led to a
delay in their interaction. The presence of divalent cations in the cell culture medium of the PCL-COOH
surface allowed the cells to adhere faster as compared to the hydrophobic surface of PCL-ref. The delay
in the initial stage of adhesion and spreading on PCL-ref and PCL-COOH affected the proliferation rate
and cell viability in the future and reduced the efficiency of PCL nanofiber colonization by fibroblasts
(Figure 6 and Figure S3, Supplementary Materials).

It was previously shown that mesenchymal stem cells (MSCs), secreting mainly trophic factors,
had good spread area on PCL-ref hydrophobic surfaces during the first hours after seeding but they
did not survive on the PCL-ref surfaces during further cultivation [40]. Even though MSCs have
highly promising regenerative potential, numerous MSC transplantation experiments showed that cells
have a transient paracrine effect and do not survive in the pathologic area, losing their regenerative
potential [41–43]. Fibroblasts have a morphology similar to MSCs and express a number of mesenchymal
markers (cluster of differentiation 90 (CD90), CD105, CD44, and CD73). However, secretion of ECM
components is the main function of these cells. In this work, the fibroblasts secrete ECM components,
enriching PCL nanofibers with FN and collagen, thereby increasing the biocompatibility of the PCL-ref
hydrophobic surface. On the third day of incubation, the fibroblasts cultivated on PCL-ref were found
out to actively secrete FN and collagen in the cell islands. This promoted cell survival and proliferation,
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while the single cells died. Throughout the entire experiment, a high level of the fibroblast anoikis
on PCL-ref was observed due to the surface adhesion deterioration [44] (see Figure 6 and Figure S3,
Supplementary Materials). However, the observation of cells after seven days of cultivation revealed
that the cells detached from the PCL nanofibers, despite the increase in cell density in the cell “islands”
and the active secretion of fibronectin (data not shown). This can be explained by the fact that poor
initial cell attachment to the substrate leads to the fibronectin turnover shift to the intercellular contacts
instead of the cell–matrix contacts [29,45]. The increased cell-to-cell contact creates an area of an
increased tension and leads to the cell detachment from the substrate [46].

The simple soaking of PCL-ref in PRP solution (non-covalent bonding) enabled immediate cell
attachment to the substrate, thereby increasing the possibility of normal functioning of fibroblasts in
the future. The grafting of PRP onto the uncoated PCL nanofibers can be explained by the interaction
of the hydrophobic shell of proteins with the hydrophobic nanofibers. Such a process can potentially
happen only on the very top surface of the fibers and it would lead to a very small immobilization of
PRP. This was confirmed by the shape of the XPS C 1s spectrum exhibiting many similarities to the
spectrum of uncoated nanofibers (see Figure 4a,b). However, leaching of the PRP components from the
surface of the nanofibers during cultivation resulted in a bare PCL-ref hydrophobic surface, leading to
an increase in the anoikis of the cells.

In order to improve the biocompatibility of PCL nanofibers, an additional modification of their
surface by the binding of freeze–thawed platelet-rich plasma was used.

The XPS data revealed that, after the immobilization of PRP, there was 0.2 at.% sulfur in the layer
and the N 1s signal consisted of N–C=O and NH3

+. When compared to literature data for FN XPS
analysis, the BE of the S 2p peak, as well as the shape of the N 1s peak, was very similar to the reported
ones [47].

In order to understand how bioactive molecules attach to the PCL nanofibers, it can be useful
to look at the immobilization process using the example of FN immobilization. When considering
the immobilization of FN on the PCL nanofibers, one needs to remember that FN has a fibrillary
structure with NH2 and COOH groups at the “ends” of the long fibrils. In the absence of COOH groups
on PCL nanofibers, the only possible binding of FN to PCL-ref would be the non-covalent binding
via the interaction of the hydrophobic parts of FN with the hydrophobic PCL nanofibers. Only one
monolayer of proteins can be immobilized on the top surface of PCL-ref and, certainly, the bonding
will be very weak. The immobilization of FN directly on PCL-COOH (without EDC activator) would
lead to the electrostatic coupling of FN to PCL-COOH, as shown in Figure 9. The absence of covalent
bonding, a relatively long aliphatic chain between the “body” of protein and the amine group, and the
excess of proteins in the PRP solution allow all available sites on the PCL-COOH-PRP1 to become
“freely” occupied. The activation of the COOH groups by EDC leads to the grafting of carbodiimide
bearing bulky fragments (see Figure 9). Most probably, these groups occupy more space on the
surface during interaction in comparison to the amine group in the long aliphatic chain at the FN end.
As a result, the concentration of nitrogen on PCL-COOH-PRP1 is higher by a factor of two than on
PCL-COOH-PRP2. Hence, the density of the immobilized FN is higher for PCL-COOH-PRP1, but a
weaker electrostatic bonding leads to the fast release of bioactive molecules, leaving the PCL-ref surface
bare and with a hydrophobic nature. The formation of an area on the surface free of PRP molecules
leads to a decrease in the survival of cells, thus increasing the apoptosis on the PCL-COOH-PRP1 and
PCL-PRP samples (Figure 6).

Regardless of the type of bonding with PCL, the immobilization of PRP to PCL-ref and PCL-COOH
leads to the normal cell adhesion and spreading due to the high biological activity of PRP components.
The immobilization has a positive effect on the proliferative activity of fibroblasts and reduces the cell
death by anoikis. However, the covalent bonding of PRP to PCL-COOH-PRP2 not only promotes the
early stages of cell adhesion and spreading, but also significantly reduces the degree of cell apoptosis
as compared to PCL-PRP and PCL-COOH-PRP1.
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Most likely, the covalent bonding of PRP occurs over the entire volume of the porous plasma
polymer coating and provides a stable fixation of biologically active substances of PRP, causing the
consistently high cell proliferation rate throughout the study. Additionally, the confocal layer-by-layer
imaging of fibroblasts seeded on PCL showed that the cells fill the entire thickness of the nanofibers,
which, in this case, became “friendly for the cell”. The use of such matrices with covalently immobilized
PRP for wound healing prolongs the biological activity of the immobilized molecules and protects
them from the aggressive media of the wound. The proteins with a weak, non-covalent bonding to
the PCL surface will be quickly washed out from the surface by exudation of the wound, leaving the
PCL-ref surface bare and with a hydrophobic nature. Such a hydrophobic surface is not “cell-friendly”
as discussed above.

Considering that the modification with COOH groups allows any type of proteins to be covalently
attached, such a technique considerably widens the potential of the PCL nanofiber application in
tissue engineering.

5. Conclusions

The reported modification of PCL nanofibers with COOH groups and the subsequent covalent
binding of protein molecules is a rather simple and technologically accessible procedure. It was
demonstrated that covalent binding of PRP occurs without the loss of its biochemical activity, allowing
a significantly reduced fibroblast apoptosis and an increased cell proliferation on PCL-COOH-PRP2
compared with PCL-ref, PCL-COOH and PCL-COOH-PRP1 to be obtained.

The reported research findings reveal the potential of PCL matrices for application in tissue
engineering, while the plasma modification with COOH groups and their subsequent covalent binding
with NH2 groups of proteins expand this potential.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/4/637/s1:
Figure S1: XPS survey spectra of PCL-ref, PCL-PRP, PCL-COOH, PCL-COOH-PRP1 and PCL-COOH-PRP-2; Figure
S2: XPS O 1s curve fitting of PCL-ref, PCL-PRP, PCL-COOH, PCL-COOH-PRP1 and PCL-COOH-PRP-2; Figure S3:
The influence of dynamic disturbance of cell adhesion and spreading on cell proliferation. Representative images
of cell adhesion and spreading stage on PCL-ref and PCL-COOH-PRP after 20 min and 2 hours. The second
stage of adhesion (2 hours) is significantly slower on PCL-ref. The cells have the same morphology as on the
early stage of adhesion (20 min). The cells seeded on PCL-COOH-PRP have a well-spread polygonal shape with a

http://www.mdpi.com/2079-4991/9/4/637/s1
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pronounced cytoskeleton and lamellipodia. As a consequence, the level of cell proliferation and the number of
cells are the highest for PCL-COOH-PRP.
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