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UBE2T-mediated Akt ubiquitination and Akt/B-catenin
activation promotes hepatocellular carcinoma development by
increasing pyrimidine metabolism
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The oncogene protein ubiquitin-conjugating enzyme E2T (UBE2T) is reported to be upregulated in hepatocellular carcinoma (HCC)
and correlated with poor clinical outcomes of HCC patients. However, the underlying mechanism by which UBE2T exerts its
oncogenic function in HCC remains largely unexplored. In this study, in vitro and in vivo experiments suggested that UBE2T
promoted HCC development including proliferation and metastasis. GSEA analysis indicated that UBE2T was positively correlated
with pyrimidine metabolism, and LC/MS-MS metabolomics profiling revealed that the key products of pyrimidine metabolism were
significantly increased in UBE2T-overexpressing cells. UBE2T overexpression led to the upregulation of several key enzymes
catalyzing de novo pyrimidine synthesis, including CAD, DHODH, and UMPS. Moreover, the utilization of leflunomide, a clinically
approved DHODH inhibitor, blocked the effect of UBE2T in promoting HCC progression. Mechanistically, UBE2T increased Akt K63-
mediated ubiquitination and Akt/B-catenin signaling pathway activation. The disruption of UBE2T-mediated ubiquitination on Akt,
including E2-enzyme-deficient mutation (C86A) of UBE2T and ubiquitination-site-deficient mutation (K8/14 R) of Akt impaired
UBE2T's effect in upregulating CAD, DHODH, and UMPS. Importantly, we demonstrated that UBE2T was positively correlated with p-
Akt, B-catenin, CAD, DHODH, and UMPS in HCC tumor tissues. In summary, our study indicates that UBE2T increases pyrimidine
metabolism by promoting Akt K63-linked ubiquitination, thus contributing to HCC development. This work provides a novel insight

into HCC development and a potential therapeutic strategy for HCC patients.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the fourth leading cause of
cancer-related death worldwide [1]. Due to the rapid growth and
distant metastasis, a significant proportion of HCC patients are late
staged at diagnosis and miss the optimal chance for surgery [2-4].
Therefore, identifying the key factors involved in the development
of HCC and exploring the underlying mechanism is urgently
needed.

The oncogene protein ubiquitin-conjugating enzyme E2T
(UBE2T) is a ubiquitin-conjugating enzyme (E2) which was widely
reported to be upregulated and promotes tumorigenesis,
proliferation, and metastasis in various cancers in an E2 activity-
dependent manner [5-9]. For example, UBE2T promoted the
proliferation of breast cancer cells via ubiquitinating and down-
regulating BRCA1 [6]. In addition, UBE2T facilitated the degrada-
tion of p53 protein via enhancing its ubiquitination, and then
increased HCC cell growth [7]. However, the E2 catalytic role of
UBE2T and underlying mechanism in modulating HCC prolifera-
tion and metastasis is still largely unknown.

Tumor metabolism supplies necessary nutrients to construct
neoplasm and maintain cell survival, assisting cancer cells to adapt

to the nutrition-lacking tumor microenvironment [10-12]. Increas-
ing evidence has uncovered the importance of pyrimidine
metabolism in cancer development by providing necessary
precursors used for DNA and RNA biosynthesis. The de novo
pyrimidine synthesis pathway is highly coordinated by a series of
enzymes including carbamoyl-phosphate synthetase 2, aspartate
transcarbamoylase, dihydroorotase (CAD), dihydroorotate dehy-
drogenase (DHODH), and uridine 5-monophosphate synthase
(UMPS) [13]. Dysregulation of these enzymes by numerous
oncogenes and the related signaling pathways was previously
shown to elevate pyrimidine synthesis and promote the develop-
ment in varied types of cancers [14-18]. For example, Yamaguchi
et al. found that PCK1 enhanced the metastatic capacity of
colorectal cells via activating pyrimidine biosynthesis under
hypoxia conditions [16]. In addition, Mathur et al. reported that
PTEN-deficiency regulated glutamine flux to pyrimidine synthesis,
thus increasing the growth of breast cancer cells [17]. Simulta-
neously, there have been studies that reported that pyrimidine
metabolism correlated with the development and poor prognosis
of hepatocellular carcinoma [19-21]. However, the underlying
mechanism is rarely explored.
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Akt activation and its related signaling pathways play a critical
role in regulating varied pathological processes of cancer cells
[22-26]. Other than that phosphorylation is well-known to be the
active form of Akt, and emerging evidences have established that
Lysine (K) 63-linked polyubiquitination is required for Akt
membrane localization and full activation, which facilitates the

studies revealed that Akt K63-linked polyubiquitination is modu-
lated by different ubiquitin ligases (E3s) under various stimulations
and stresses, its function and the regulatory factors in HCC have
not been reported.

In our study, we found that UBE2T plays a key role in HCC
development by promoting pyrimidine metabolism, and this

occurrence and development of tumors [27-29]. Although several process is dependent on UBE2T-mediated Akt K63-linked
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Fig. 1 UBE2T promotes HCC proliferation in vitro and in vivo. A WB for UBE2T expression in HCC-LM3 cells transduced with UBE2T-
overexpressing lentivirus or control lentivirus. B The proliferation of UBE2T-overexpressing and control HCC-LM3 cells was assessed by CCK-8
assay. C WB for UBE2T expression in MHCC-97H cells transduced with UBE2T-overexpressing lentivirus or control lentivirus. D The proliferation
of UBE2T-overexpressing and control MHCC-97H cells was assessed by CCK-8 assay. E Bioluminescence images of the mice injected
subcutaneously with UBE2T-overexpressing and control HCC-LM3 cells. The luminescence signal is represented by an overlaid false-color
image with the signal intensity indicated by the scale. F The xenografts from panel E were shown. G Tumor weights of the removed
xenografts from panel E. H WB for UBE2T expression in HCC-LM3 cells transduced with a control shRNA lentiviral vector or two independent
shRNA lentiviral vectors targeting UBE2T. | The proliferation of UBE2T-silencing and control HCC-LM3 cells was assessed by CCK-8 assay. J WB
for UBE2T expression in MHCC-97H cells transduced with a control shRNA lentiviral vector or two independent shRNA lentiviral vectors
targeting UBE2T. K The proliferation of UBE2T-silencing and control MHCC-97H cells was assessed by CCK-8 assay. L Bioluminescence images
of the mice injected subcutaneously with UBE2T- silencing and control HCC-LM3 cells. M The xenografts from panel L were shown. N Tumor
weights of the removed xenografts from panel L. O The % apoptotic cells of HCC-LM3 cells transfected with siRNA of UBE2T and control was
detected by flow cytometry. P WB for apoptosis markers in UBE2T-silencing and control HCC-LM3 cells. Q The % apoptotic cells of MHCC-97H
cells transfected with siRNA of UBE2T and control was detected by flow cytometry. R WB for apoptosis markers in UBE2T-silencing and control
MHCC-97H cells. In all panels, error bar represent mean + SD, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. In B, D, I, and K, experiments
were repeated at least three times, two-way ANOVA was used for comparison between groups. In G and N, an unpaired two-tailed Student’s t-
test was used for comparing the two groups. In O and Q, one-way ANOVA was used for comparison between treatment groups, and Tukey
post-hoc test was used for two-group comparisons. The average gray values and the statistical data was shown under the corresponding
band. Student’s t-test was used for comparisons, *P < 0.05, **P < 0.01.

ubiquitination and Akt/B-catenin signaling pathway activation.
Inhibition of pyrimidine metabolism prevents UBE2T-induced HCC
progression, highlighting a potential treatment strategy in HCC
patients.

METHODS

Cell culture

HCC-LM3 and MHCC-97H were obtained from the Shanghai Institute of
Biochemistry and Cell Biology. Cells were cultured in DMEM (Gibco, USA)
supplemented with 10% fetal bovine serum (Gibco, USA). All cells were
cultured using standard procedures in a 37 °C humidified incubator with
5% COZ

Cell proliferation assay

Cells were seeded at a density of 1000/well in 96-well plates. CCK-8
solution (Dojindo Laboratories, Japan) (10 pl/well) was added after at days
0-7. Cells were incubated in the dark for 2 h at 37 °C. The absorbance at
450 nm was measured.

Migration and invasion assays

Cell migration assay was performed using 8 um transwell chambers
(Falcon, USA). Cell invasion assay was performed using Matrigel-coated
chambers (BD Biosciences, USA). After 24 h incubation at 37 °C, the cells on
the upper surface of the membrane were removed, the membranes were
stained with 0.1% crystal violet for 15 min, and the cells on the lower side
were then counted under a microscope.

Apoptosis flow cytometry, western blot (WB),
immunoprecipitation (IP), immunofluorescence (IF) staining,
H&E, immunohistochemistry (IHC) staining, RNA extraction,
reverse transcription, and quantitative real-time PCR (qRT-
PCR)

All these analyses were performed as described previously [30]. Antibody
information is shown in Table S1 and the PCR primers were listed in Table
S2.

LC/MS-MS metabolomics profiling

The metabolite extraction from UBE2T-overexpressing and control HCC-
LM3 cells were analyzed by Ultra Performance Liquid Chromatography
(UPLC, ExionLC AD) and Tandem mass spectrometry (MS/MS, QTRAP").
Data analysis was performed using Analyst 1.6.3.

Mice treatment

BALB/c nude mice (males, 4 to 5 weeks of age) were obtained from the
Southern Medical University Animal Resource Center (Guangzhou, China)
and grouped randomly. Mice were housed, fed, and monitored in
accordance with protocols approved by the Committee for Animal
Research at Southern Medical University. Cells (1 x 107) transduced with

Cell Death and Disease (2022)13:154

lentivirus carrying pCMV-luciferase (Genechem Company Ltd., China) were
implanted subcutaneously in the mice hind flank to establish tumor
growth models or into tail veins to establish tumor metastasis models.
Tumor volumes were calculated using a standard formula: length x width?/
2. The fluorescence intensity of the tumor was detected using an IVIS®
Lumina Il system (Caliper Life Sciences, USA) before the mice were
sacrificed. For Leflunomide (Lef) experiment, mice were intraperitoneally
injected with Lef (51247, Selleck; 7.5 mg/kg) daily until sacrifice.

RNAI targeting sequence

SiRNAs were synthesized by GenePharma (Suzhou, China). Cells were
transfected with the indicated siRNA using Lipofectamine” RNAIMAX
(Invitrogen, USA) according to the manufacturer’s instructions. The
sequences of siRNAs were as followed:

UBE2T (5’-GCUGACAUAUCCUCAGAAUTT-3)

AKT (5'-GAACAAUCCGAUUCACGUATT-3')

B-catenin (5-GGAUGUUCACAACCGAAUUTT-3')

NC (5’-CCACACGAGUCUUACCAAGUUGCUU-3)

GSEA

The GSEA assay using the TCGA cohort of hepatocellular carcinoma was
applied to explore the underlying mechanisms of the effect of UBE2T. The
reference gene set was the C2 (c2.cp.kegg.v7.0.symbols.gmt) from the
Molecular Signatures Database (MSigDB). UBE2T expression was annotated
as a high- or low-UBE2T phenotype. Gene set permutations in each
analysis were conducted 1000 times. A gene set was regarded as
significantly enriched if a P value was less than 0.05.

Statistics

All data were presented as mean * standard deviation (SD) from at least
triplicate independent experiments. The student’s t-test was performed for
comparing the differences between the two groups. The comparisons
between three or more groups were performed using one-way ANOVA,
followed by Tukey’s multiple comparison test. The comparison of mice
subcutaneous tumor volume from four groups was analyzed by using a
mixed-effects model, followed by Tukey’s multiple comparison test. For all
statistical analysis, a p value of <0.05 was determined to be significant. All
graphs were plotted using GraphPad Prism V.8.

RESULTS

UBE2T promotes HCC development in vitro and in vivo
Previous studies have reported that UBE2T is upregulated in
human HCC tissues and a high level of UBE2T is correlated with an
unfavorable prognosis of HCC patients [5, 31]. Here, to explore the
biological role of UBE2T in HCC development, we firstly performed
CCK-8 assays and found that UBE2T overexpression accelerated
proliferation in HCC-LM3 and MHCC-97H cells (Fig. 1A-D and
Suppl. Figs. 1-5). In addition, we observed that the subcutaneous
xenografts derived from HCC-LM3 and MHCC-97H cells with
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Fig.2 UBE2T promotes HCC metastasis in vitro and in vivo. A-D Transwell assays to assess the migration and invasion ability of A UBE2T-
overexpressing and control HCC-LM3 cells, B UBE2T-silencing and control HCC-LM3 cells, C UBE2T-overexpressing and control MHCC-97H
cells, D UBE2T-silencing and control MHCC-97H cells. Quantifications of cell number per fields are from at least three independent
experiments. Error bar represent mean + SD, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Scale bar=100um. In A and C, a two-tailed
Student’s t-test was used for comparing the two groups. In B and D, one-way ANOVA was used for comparison between treatment groups,
and Tukey post hoc test was used for two-group comparisons. E UBE2T-overexpressing and control HCC-LM3 cells were injected in nude mice
by tail vein. Bioluminescence images were collected at 30 days. The luminescence signal is represented by an overlaid false-color image with

the signal intensity indicated by the scale.

UBE2T overexpression displayed quicker tumor growth and
heavier tumor weight compared with those derived from control
cells (Fig. 1E-G and Suppl. Fig. 6). In contrast, knockdown of UBE2T
attenuated HCC proliferation both in vitro and in vivo (Fig. TH-N
and Suppl. Figs. 1-5). Since apoptosis is closely related to cell
survival, by conducting flow cytometry for the percentage of
apoptotic cells and WB for apoptosis-related proteins, we found
that UBE2T silencing promoted apoptosis in HCC cells (Fig. 10-R
and Suppl. Figs. 1-5).

Next, we explored the metastatic ability of HCC cells with
different UBE2T expression levels. We found that migration and
invasion of HCC cells were increased by UBE2T overexpression,
while reduced by UBE2T knockdown (Fig. 2A-D and Suppl. Fig. 7a,
b). Given that epithelial-mesenchymal transition (EMT) is involved
in cancer metastasis, we examined the protein levels of EMT
markers and found that Vimentin was upregulated, while
E-cadherin was downregulated by UBE2T overexpression (Suppl.
Figs. 1-5 and Suppl. Fig. 7c). By contrast, UBE2T-knockdown cells
displayed a higher expression level of E-cadherin and a lower level
of Vimentin than control cells (Suppl. Figs. 1-5, 7d). Consistently,
by injecting UBE2T-overexpressing or control HCC-LM3 cells
intravenously into nude mice, we observed more liver and lung
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metastasis in the UBE2T-overexpressing group (Fig. 2E and Supple.
Fig. 8).

UBE2T increases pyrimidine metabolism of HCC cells

Next, to explore how UBE2T modulates HCC development, we
performed gene set enrichment analysis (GSEA) and found that
UBE2T was positively correlated with pyrimidine metabolism (Fig.
3A). In addition, KEGG pathway analysis further indicated the
potential regulatory role of UBE2T in pyrimidine metabolism
(Suppl. Fig. 9a). To confirm this observation, we used LC-MS/MS-
based metabolomics profiling analysis to examine the effect of
UBE2T on pyrimidine metabolism. By performing unsupervised
hierarchical clustering analysis on the differentially expressed
pyrimidine metabolite profiles between UBE2T-overexpressing
and control cells, we found that the most salient finding was a
significant increase of main products of pyrimidine metabolism
in UBE2T-overexpressing cells (Fig. 3B, C and Suppl. Fig. 9b-i).
Correspondingly, UBE2T overexpression elevated the levels of
several key enzymes involved in de novo pyrimidine synthesis,
including CAD, DHODH, and UMPS on both mRNA and protein
levels (Fig. 3D, E and Suppl. Figs. 1-5). While knockdown of
UBE2T reduced the levels of these enzymes (Fig. 3F, G and Suppl.

Cell Death and Disease (2022)13:154
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Figs. 1-5). Together, these results indicated that UBE2T increases
pyrimidine metabolism.

Leflunomide impairs UBE2T-mediated HCC development

In the pathway of de novo pyrimidine synthesis, DHODH is a rate-
limiting enzyme, which catalyzes the conversion of dihydroorotate
to orotate. Leflunomide (Lef), a DHODH inhibitor, is a commercially
available agent approved by US Food and Drug Administration
(FDA) for rheumatoid arthritis treatment. Therefore, to determine
whether UBE2T-mediated HCC development relies on pyrimidine
metabolism, we treated the UBE2T-overexpressing and control
HCC cells with Lef. In line with previous reports, Lef reduced
DHODH level and attenuated the UBE2T-induced upregulation of
DHODH (Fig. 4A and Suppl. Figs. 1-5). Cell viability assays showed
that Lef reduced the proliferation of UBE2T-overexpressing cells
(Fig. 4B). Consistently, compared with vehicle treatment, challen-
ging tumor-bearing mice with Lef caused slower tumor growth

Cell Death and Disease (2022)13:154

and lighter tumor weight of the xenografts derived from UBE2T-
overexpressing HCC cells (Fig. 4C-E). Accordingly, Lef caused
lower levels of apoptosis markers in UBE2T-overexpressing cells
(Fig. 4F and Suppl. Figs. 1-5). Furthermore, Lef reduced the effect
of UBE2T on promoting metastasis of HCC cells shown by
transwell assays and EMT marker detection (Fig. 4G, H and Suppl.
Figs. 1-5). Additionally, Lef substantially impaired the lung and
liver colonization of UBE2T-overexpressing HCC cells in vivo (Fig.
41).

UBE2T activates Akt/B-catenin signaling pathway

To explore which signaling pathway participates in UBE2T-mediated
pyrimidine metabolism, we screened the key factors involved in
several widely studied signaling pathways in cells with different
UBE2T levels by western blot, respectively. Results showed that
UBE2T overexpression led to the increase in p-Akt, B-catenin, and
downstream targets of 3-catenin, including c-Jun and Cyclin D1 (Fig.

SPRINGER NATURE
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HCC-LM3 cells treated with or without Lef (50 pM, 48 h) were analyzed by WB. B Cells were treated as panel (A). Cell survival was assessed by
CCK-8 assay. Experiments were repeated at least three times. C Transplanted xenografts were established with UBE2T-overexpressing (UBE2T)
and vector transduced (Control) HCC-LM3 cells. The tumor-bearing mice were treated with or without Lef (7.5 mg/kg/d) by intraperitoneal
injection. D Tumor volumes from each group were tracked for 25 days. N =5 in each group. E Tumor weights of the removed xenografts from
each group were measured. F Total cells lysate from the cells treated as panel (A) were analyzed for the apoptosis markers by WB. G Transwell
assay to assess the migration and invasion ability of the cells treated as panel (A). Quantification of cell numbers per fields is from at least three
independent experiments. Scale bar = 100 pm. H Total cells lysate from the cells treated as panel (A) were analyzed for the EMT markers by
WB. | UBE2T-overexpressing and control HCC-LM3 cells were injected in nude mice by tail vein. The tumor-bearing mice were treated with or
without Lef (7.5 mg/kg/d) by intraperitoneal injection. Bioluminescence images were collected at 30 days. The luminescence signal is
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hoc test was used for two-group comparisons. In D, two-way ANOVA was used for comparison between groups. The average gray values and
the statistical data were shown under the corresponding band. Student’s t-test was used for comparisons, *P < 0.05, **P < 0.01.
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5A and Suppl. Figs. 1-5). Whereas UBE2T knockdown decreased the
levels of these proteins (Fig. 5B and Suppl. Figs. 1-5). Besides, GSEA
analysis also indicated that UBE2T is positively correlated with Akt
and B-catenin signaling pathways (Fig. 5C). B-catenin is one of the
downstream effectors of Akt, and to test whether UBE2T activates
{-catenin via Akt, we then treated UBE2T-overexpressing HCC-LM3
cells with Akt inhibitor MK-2206 and siRNA specifically targeting Akt.
We found that MK-2206 and si-Akt impaired the role of UBE2T in

SPRINGER NATURE

upregulating the levels of 3-catenin, c-Jun, and Cyclin D1 (Fig. 5D and
Suppl. Figs. 1-5, 10a). Since the translocation of B-catenin from the
cytosol to nucleus is the indicator for 3-catenin activation, we then
examined the effect of MK-2206 and si-Akt on B-catenin subcellular
localization by WB and IF staining. Results showed that MK-2206, as
well as si-Akt, weakened the effect of UBE2T in promoting B-catenin
nuclear accumulation (Fig. 5E, F and Suppl. Figs 1-5, 10b, c). These
results suggested that UBE2T activates (3-catenin via Akt.

Cell Death and Disease (2022)13:154



Z. Zhu et al.

Fig. 6 UBE2T activates the Akt/B-catenin pathway via regulating Akt K63-ubiquitination and leads to upregulation of key enzymes
involved in de novo pyrimidine metabolism. A HCC-LM3 cells were transfected with the FLAG or FLAG-UBE2T vector. FLAG-UBE2T complexes
were purified by using an anti-FLAG antibody and analyzed by the indicated antibodies. B UBE2T-overexpressing and control HCC-LM3 cells
were transfected with HA-ub vector and treated with MG132 (5uM) for 8 h. IP using anti-HA antibody followed by WB to detect Akt
ubiquitination. C UBE2T-silencing and control MHCC-97H cells were transfected with HA-ub vector and treated with MG132 (5 pM) for 8 h. IP
using anti-HA antibody followed by WB to detect Akt ubiquitination. D 293 T cells were co-transfected with FLAG-UBE2T and HA-K48-ub or
HA-K63-ub, then treated with MG132 (5 pM) for 8 h. Ubiquitinated AKT was detected in HA immunoprecipitation. E 293 T cells were co-
transfected with HA-ub and FLAG-UBE2T WT or FLAG-UBE2T C86A, then treated with MG132 (5 uM) for 8 h. The whole-cell extracts were
collected for IP using an anti-HA antibody followed by WB for Akt ubiquitination. F Whole-cell extract and membrane fraction from HCC-LM3
cells transfected with FLAG-UBE2T WT or FLAG-UBE2T C86A were analyzed for Akt by WB. ATP1A1 was included as a loading control for
membrane protein. G Cells were treated as panel (F). Representative images of IF staining for p-catenin (Red) are shown. Scale bar = 200 pm.
H 293 T cells were transfected with various constructs as indicated, then treated with MG132 (5uM) for 8 h and performed for Akt
ubiquitination analysis. | The mRNA levels of the indicated genes were detected by qRT-PCR analysis in UBE2T-silencing and control HCC-LM3
cells transfected with siRNA targeting p-catenin. J HCC-LM3 cells were co-transfected with FLAG-UBE2T and siRNA targeting p-catenin and
then collected for WB. K, L HCC-LM3 cells were transfected with FLAG-UBE2T WT or FLAG-UBE2T C86A and collected for qRT-PCR (K) and WB
(L). M The mRNA levels of the indicated genes were detected by gRT-PCR analysis in UBE2T-silencing and control HCC-LM3 cells transfected
with His-Akt WT or His-Akt K8/14 R. N HCC-LM3 cells were transfected with FLAG-UBE2T, and His-Akt WT or His-Akt K8/14 R, then collected for
WB. In |, K, and M, all data in graph bars are mean £ SD from triplicate experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by one-
way ANOVA followed by Tukey post hoc test. The average gray values and the statistical data were shown under the corresponding band.

Student’s t-test was used for comparisons, *P < 0.05, **P < 0.01.

UBE2T is required for Akt K63-linked ubiquitination and
activation

To clarify the activating role of UBE2T on the Akt/B-catenin
signaling pathway is direct or indirect, we performed IP to test
whether UBE2T interacts with Akt or B-catenin. Results showed
that UBE2T was associated with Akt but not B-catenin (Fig. 6A
and Suppl. Figs. 1-5). Since UBE2T is an E2 enzyme, we
hypothesized that UBE2T might bind with and ubiquitinate Akt.
To test this, we assessed the ubiquitination of Akt in UBE2T-
overexpressing cells and found that UBE2T promoted Akt
polyubiquitination, in company with increased Akt phosphor-
ylation and f-catenin (Fig. 6B and Suppl. Figs. 1-5, 11a).
Consistently, Akt polyubiquitination, activation, and [-catenin
level were reduced in UBE2T-knockdown cells (Fig. 6C and
Suppl. Figs. 1-5, 11b). It has been well demonstrated that Akt
ubiquitination through the K48-ubiquitin chain promotes Akt
for proteasomal degradation, while the K63-ubiquitin chain
leads to Akt membrane recruitment, phosphorylation, and
activation. To identify the way how UBE2T ubiquitinates Akt, we
co-expressed a FLAG-Akt with either an HA-tagged K48 or K63
only ubiquitin mutant (ubiquitin can only be added to the K48
or K63 site) in 293 T cells and found that Akt was modified by
K63-linked ubiquitination (Fig. 6D and Suppl. Figs. 1-5, 11¢).
Meanwhile, K63 but not K48-mediated Akt ubiquitination
increased the level of phosphorylated Akt and B-catenin (Fig.
6D). Moreover, though blocking the ubiquitin-proteasome
system with MG132 increased the expression of -catenin and
p-Akt in HCC-LM3 cells, UBE2T overexpression further activated
the Akt/B-catenin axis (Suppl. Figs 1-5, 11d).

Next, we detected whether UBE2T-mediated Akt K63-
ubiquitination is required for Akt activation. Firstly, we found that
the UBE2T C86A mutant, which is lack of E2 activity, abolished Akt
K63-ubiquitination, and Akt activation shown by less Akt/p-Akt
membrane recruitment, and (-catenin nuclear accumulation (Fig.
6E-G and Suppl. Figs. 1-5, 11e). In addition, reduced Akt K63-
linked ubiquitination and Akt/B-catenin signaling activation were
also observed in the cells carrying the mutation of K8 and K14,
which are two key residues for Akt K63-linked ubiquitination (Fig.
6H and Suppl. Figs. 1-5, 11f). Together, these data suggested that
UBE2T activates the Akt/B-catenin signaling pathway by mediating
the K63-linked ubiquitination of Akt.

UBE2T upregulates de novo pyrimidine synthesis-related
enzymes via activating Akt/B-catenin

Our previous data showed that UBE2T upregulated the levels of
CAD, DHODH, and UMPS. Next, we determined the regulatory role
of UBE2T-mediated Akt/B-catenin activation on these de novo
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pyrimidine synthesis-related enzymes. Firstly, we found that
knockdown of B-catenin remarkably decreased UBE2T-induced
upregulation of CAD, DHODH, and UMPS on both mRNA and
protein levels (Fig. 6l, J and Suppl. Figs. 1-5), suggesting that the
effect of UBE2T on upregulating these enzymes relies on
[B-catenin. Moreover, the disruption of UBE2T-mediated ubiquiti-
nation on Akt, including UBE2T C86A and Akt K8/14 R attenuated
UBE2T's effect in upregulating CAD, DHODH, and UMPS (Fig. 6K-N
and Suppl. Figs. 1-5). Together, these results indicated that UBE2T
upregulates de novo pyrimidine synthesis-related enzymes via
ubiquitinating Akt and activating Akt/B-catenin.

The axis of UBE2T/Akt/B-catenin is correlated with pyrimidine
metabolism in HCC
To determine whether the expression levels of UBE2T, p-Akt,
B-catenin, CAD, DHODH, and UMPS were correlated in HCC, we
harvested the xenografts derived from UBE2T-overexpressing or
control HCC-LM3 cells. The IHC staining and WB results showed
that UBE2T overexpression increased the expression of p-Akt,
[-catenin, CAD, DHODH, and UMPS (Fig. 7A, B and Suppl. Figs. 1-5).
In addition, we also collected 38 pairs of HCC and adjacent non-
tumorous tissues and found that the patients with higher UBE2T
tended to have higher levels of p-Akt, B-catenin, CAD, DHODH,
and UMPS (Fig. 7C, D and Suppl. Figs. 1-5). Moreover, systematical
analysis of IHC images revealed the statistically positive correla-
tions between UBE2T and p-Akt, 3-catenin, DHODH, UMPS (Fig.
7E). Although there was a trend that HCC patients with high levels
of UBE2T exhibited upregulated levels of CAD, the difference did
not reach significance. Nevertheless, our findings implied the
positive relation between UBE2T, Akt/B-catenin, and pyrimidine
metabolism.

DISCUSSION

In this study, we determined the novel role of UBE2T in promoting
HCC development by facilitating pyrimidine metabolism, exhib-
ited by upregulated de novo pyrimidine-related enzymes and
increased pyrimidine metabolism products. This occurs by UBE2T
regulating the K63-ubiquitination and phosphorylation of Akt,
leading to the nuclear translocation of B-catenin, which upregu-
lates the expression of de novo pyrimidine synthesis-related
enzymes (Fig. 8). Cancer cells require high levels of pyrimidine
products to sustain cell DNA biosynthesis and drive cell cycle
progression, which indicates that targeting de novo pyrimidine
synthesis could be a potential strategy for cancer therapy
[14, 32, 33]. Lef, as the inhibitor of DHODH, has been reported
by several pre-clinical studies to exert an antitumor effect on
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HCC. A The representative images of IHC staining for the indicated proteins in xenografts derived from UBE2T-overexpressing or control HCC-
LM3 cells. Scale bar =100 pm. B WB was performed to detect the indicated proteins in xenografts derived from UBE2T-overexpressing or
control HCC-LM3 cells. C WB of the indicated protein in six pairs of HCC tissues (T) and matched non-tumorous liver tissues (N) was performed.
D Representative cases of HCC specimens with high level or low levels of UBE2T from 38 HCC patients were analyzed by IHC staining with the
indicated proteins. Scale bar = 100 um. E The expression of the indicated proteins in 38 HCC specimens were analyzed by IHC analysis. The
relative proportions of protein expressions were illustrated as a pie chart. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 by chi-square test.
The average gray values and the statistical data were shown under the corresponding band. Student’s t-test was used for comparisons, *P <
0.05, **P < 0.01.
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Leflunomide, which is an inhibitor of DHODH.

several types of cancers [16, 34-40]. For example, Mathur et al.
reported that Lef interrupted de novo pyrimidine synthesis-
dependent glutamine generation and caused lethality in PTEN-
mutation cells [17]. In addition, Yamaguchi et al. revealed that
PCK1 enhanced colorectal cancer metastasis by driving pyrimidine
nucleotide biosynthesis under hypoxia and Lef impaired the pro-
metastasis role of PCK1 [16]. These findings suggested that the
active pyrimidine metabolism caused by several oncogenes might
generate vulnerability to Lef treatment and the utilization of Lef
might be a potential anti-cancer agent, especially for those
patients with higher levels of pyrimidine metabolism. UBE2T has
been shown to be upregulated in HCC based on the TCGA
database and several clinical cohorts. Moreover, the amplification
rate of UBE2T in HCC patients reaches up to about 12% [41]. Here,
we showed that UBE2T promoted pyrimidine metabolism, and the
level of UBE2T was positively related with the levels of key
enzymes involved in de novo pyrimidine synthesis. Thus, Lef
might benefit a certain portion of HCC patients in the clinical
scenario.

UBE2T plays a critical role in varied cancers by ubiquitinating and
degrading some cancer suppressors. For example, Ueki et al.
reported that UBE2T led to polyubiquitination and degradation of
BRCAT1, which is a well-known tumor suppressor in breast cancer [6].
Additionally, p53 is a classic tumor suppressor in HCC, and p53
mutation is considered to be one of the driver genes in HCC and
occurs in about 20-30% of HCC patients [42-44]. UBE2T was
demonstrated to suppress the expression of p53 by increasing the
ubiquitination of p53 [7]. Although in these studies, the way how
ubiquitin was linked to substrates by UBE2T was not mentioned, we
assumed that it may be K48-linked ubiquitination according to the
substrate consequence. Unlike the K48-linked ubiquitin chain
generally targets proteins for degradation via 26S proteasome,
ubiquitination through K63 is established to play a critical role in
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signaling pathway transduction, protein trafficking, and DNA damage
repair [45-49]. Although numerous reports have shown that UBE2T
activated Akt signaling pathway, there is still a gap existing between
UBE2T and Akt activation [50-52]. In our study, for the first time, we
uncovered a direct evidence that UBE2T activates the Akt/B-catenin
signaling pathway by interacting with Akt and facilitating Akt K63-
linked ubiquitination. In consistent, Yu et al. reported that in gastric
cancer, UBE2T ubiquitinated RACK1, a member of the degradation
complex of B-catenin, resulted in the activation and translocation of
B-catenin, which further supports our conclusions about the
connection between UBE2T and [-catenin [53].

As one of the key factors for cell survival and metabolism
reprogramming involved in cancer development, Akt undergoes
many kinds of post-translational modifications by various enzymes
[54]. Recent studies have uncovered the essential roles of K63-linked
ubiquitination by different enzymes on K8 and K14 within the PH
domain for Akt activation under varied conditions. For example, in
response to EGF stimulation, Skp2, which is a subunit of the Skp1-
Cullin-1-F-box (SCF) ubiquitin E3 ligase complex, is required for Akt
K63-linked ubiquitination, membrane localization, and activation [55].
While, upon the trigger by IGF, another E3 ligase, TRAF6 is engaged
in Akt K63-linked ubiquitination and activation [27]. However, the E2
enzymes involved in Akt K63-linked ubiquitination is largely
unknown. By now, UBC13 is the only known E2 that works with
TRAF6 and promotes Akt K63-linked polyubiquitination [28, 54, 56]. In
our study, we revealed a novel E2, UBE2T increased Akt K63-linked
polyubiquitination, membrane accumulation, and activation. How-
ever, the E3 ligase which UBE2T cooperates with to ubiquitinate Akt
was not demonstrated in our current study and is worthy to be
explored in the future.

Although it is widely accepted that E3 ligases recognize specific
substrates, E2s determine the type of the ubiquitin chain synthesizing
on the substrates. However, some new emerging evidence have
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shown that one E2 might mediate varied types of ubiquitin chain
linkage on substrates and execute different functional roles. For
example, UBC13, which is a major E2 known to trigger K63-linked
ubiquitination with the assistance of its cofactor UEV1A, mediated
ubiquitination and degradation of Sirt1 in CRC cells [57-60]. Although
how the ubiquitin chain was linked to Sirt1 by UBC13 has not been
discussed, based on the consequence, we assumed that UBC13
promoted K48 but not K63-ubiquitination of Sirt1. Moreover, besides
ubiquitinating and degrading substrates, such as p53 and BRCAT,
UBE2T also monoubiquitinates and catalyzes FANCD2 for DNA inter-
strand crosslink damage repair [61-63]. We previously reported that
UBE2T induces HCC radioresistance by monoubiquitinating H2AX
[41]. Here, in this study, we revealed another novel function of UBE2T
on ubiquitinating Akt via K63 linkage.

Accumulating evidence have shown that Akt K63-linked ubiqui-
tination is critically involved in cell metabolism. For example, Chan
et al. reported that Skp2 regulates glycolysis of breast cancer cells
through promoting Akt K63-ubiquitination and activation [27]. In
addition, Yu et al. showed that Skp2 promotes HK2 mitochondrial
localization via upregulation of Akt K63-ubiquitination and activation,
thus increasing HK2-mediated glycolysis in nasopharyngeal carci-
noma [55]. Besides glycolysis, current knowledge about the effect of
Akt K63-ubiquitination on other cell metabolism of cancer cells is still
limited. Here, we uncovered that UBE2T-mediated Akt K63-
ubiquitination is required for de novo pyrimidine synthesis.

Numerous upstream regulators involved in pyrimidine metabolism
have been proposed previously. For example, PTEN-deficiency was
proved to drive glutamine flux through the de novo pyrimidine
synthesis pathway [17]. It is well established that PTEN is a negative
regulator of the phosphatidylinositol-3-kinase (PI3K)/Akt signaling
pathway [64, 65]. Analogously, in this study, we found that Akt
activation increased de novo pyrimidine synthesis in HCC cells. These
studies implied that PTEN/Akt may be a potent signaling cascade in
activating de novo pyrimidine synthesis. Furthermore, the activation
of mTORC1 led to phosphorylates S1859 on CAD, the enzyme that
catalyzes the first three steps of de novo pyrimidine, by ribosomal
protein S6 kinase 1 (S6K1) in mouse embryo fibroblasts (MEFs) [66].
mMTOR and (-catenin are reported to be the two major effectors of
Akt, and we found that UBE2T-mediated pyrimidine metabolism
stimulation via Akt/B-catenin but not Akt/mTOR signaling pathway
activation in HCC. These reports indicated that Akt is a central factor
in modulating pyrimidine metabolism, and the downstream effectors
of Akt involved might vary under different conditions.

In summary, we demonstrated that UBE2T increases Akt K63-
ubiquitination and promotes Akt activation, resulting in the
upregulation of the de novo pyrimidine synthesis-related
enzymes and the stimulation of pyrimidine metabolism.
Utilization of pyrimidine metabolism inhibitor Lef significantly
impaires UBE2T-mediated HCC development and progression.
Our work highlights a potential treatment strategy for targeting
UBE2T/Akt/B-catenin signaling pathway-mediated pyrimidine
metabolism in HCC.
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