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A neurofeedback system adjusting an individual’s attention is an effective treatment for attention-deficit/hyperactivity disorder
(ADHD). In current studies, an accurate measure of the level of human attention is one of the key issues that arouse much interest.
0is paper proposes a novel optimized complex network method (OCNM) for measuring an individual’s attention level using
single-electrode electroencephalography (EEG) signals. A time-delay embedding algorithm was used to reconstruct EEG data
epochs into nodes of the OCNM network. Euclidean distances were calculated between each two nodes to decide edges of the
network. 0ree key parameters influencing OCNM, i.e., delaying time, embedding dimension, and connection threshold, were
optimized for each individual. 0e average degree and clustering coefficient of the constructed network were extracted as a feature
vector and were classified into two patterns of concentration and relaxation using an LDA classifier. In the offline experiments of
six subjects, the classification performance was tested and compared with an attention meter method (AMM) and an
α+ β+ δ + θ+R method. 0e experimental results showed that the proposed OCNM achieved the highest accuracy rate (80.67%
versus 70.58% and 68.88%).0is suggests that the proposedmethod can potentially be used for EEG-based neurofeedback systems
with a single electrode.

1. Introduction

A neurofeedback system aiming at building the self-
regulation mechanism is commonly used to adjust an in-
dividual’s brain activity by means of biofeedback. It is an
effective treatment for attention-deficit/hyperactivity dis-
order (ADHD) which is a common disorder in psychiatry
with a worldwide prevalence of approximately 5.2% [1]. 0e
major symptom of ADHD is lack of attention, and mea-
suring the human attention is one of the key issues in current
researches of the neurofeedback systems. A commonly used
technology for measuring the attention level is acquiring
electroencephalography (EEG) signals from the electrodes
placed on the scalp because of its noninvasive and in-
expensive assay, ease of use, and acceptable temporal res-
olution [2]. Losing attention usually produces changes in the

EEG signals of theta (4–8Hz) and beta (13–20Hz) bands.
Amplitudes of these frequency bands were extracted from an
FPz electrode on the forehead to assess the subject’s at-
tention level [3]. Although this method is simple in
implementation, it is limited to the lack of accuracy. Various
methods using data frommultiple electrodes, such as relative
power spectrum method and independent component
analysis (ICA), have also been proposed for improving the
performance of measuring attention [4].

However, for the home application and entertainment
use, a neurofeedback system with single electrode on the
forehead is more widely used because of its inexpensive assay
and no need for injecting conductive gel [5, 6]. For such a
system decoding single-electrode EEG signals, the major
difficulty lies in measuring human’s attention accurately. Liu
et al. proposed an α+ β+ δ + θ+R method, extracting
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features from multiple wavebands and achieved an accuracy
rate of 68.88% in our experiment [7]. NeuroSky Inc., USA,
designed an attention meter method (AMM) and imple-
mented it in a 0inkGear ASIC Module (TGAM). 0e
TGAM outputs the AMM values representing individual’s
attention level and is wildly used in entertainment and
educational applications such as MindFlex and Nervanix
systems [8]. According to our testing results, the AMM
method delivered an average accuracy rate of 70.58%.
However, as a nonlinear time series, single-electrode EEG
signals are sensitive to noises and artifacts and is difficult to
be accurately classified using the frequency-domain features.
In this paper, we propose a novel optimized complex net-
work method (OCNM) based on nonlinear time series
analysis to measure an individual’s attention level. 0e
network is constructed from the single-electrode EEG sig-
nals using parameters optimized for each individual, and the
average degree and the average clustering coefficient are
extracted as features for classification. To validate the ef-
fectiveness of the proposed method, we compared its clas-
sification accuracy with the AMM and α+ β+ δ + θ+R
method.

0e rest of the paper is organized as follows: Section 2
describes the implementation of the OCNMmethod and the
procedure of the offline experiments. In Section 3, we discuss
the experimental results and some issues that arise from our
experiments. Lastly, the conclusions and suggestions for
future work are given in Section 4.

2. Materials and Methods

2.1. EEGDataAcquisition. EEG signals were acquired with a
dry-electrode headset (Sichiray Inc., China) designed based
on the TGAM. 0e TGAM is a brainwave sensor module
designed by NeuroSky Inc. for sampling and processing the
EEG data. It calculated the attention meters using the AMM
method and outputted the AMM values along with the raw
EEG data. 0e Sichiray headset uses the TGAM to acquire
EEG signals at a sampling rate of 512Hz with a low signal-to-
noise ratio (SNR) and transmits the data including raw EEG
and AMM values to a recording system via wireless Blue-
tooth. 0e ground and reference electrodes were placed on
the subject’s left earlobe.0e data from a single dry electrode
placed at FPz on the forehead were recorded. Figure 1 shows
a picture of the Sichiray headset and data recording during
the experiment. In our experiment, recording software was
used to save the raw EEG data and the attention data of
AMM.

2.2. Experimental Procedure. 0e experiments were carried
out in a quiet laboratory environment without electro-
magnetic shielding. Six healthy subjects (1 female, aged 19 to
30 years) participated in this experiment. All subjects were
seated in a comfortable armchair and were presented with
experimental instructions using an LCD monitor. Each
subject underwent a total of 40 trials of experiments, con-
taining two types of mental tasks, i.e., concentration and
relaxation. In the concentration task, the subject was

instructed to solve a mental arithmetic question, for ex-
ample, “37× 89� ?” [9]. Most of the subjects finished the
question in 15 seconds and prepared for the next task of
relaxation. In the relaxation task, a blank image was dis-
played on the LCDmonitor and the subject was instructed to
keep relaxed. After 7 seconds, the relaxation task was ended
and a beep sound for the subjects was played. 0e experi-
mental procedure is illustrated in Figure 2.

2.3. OCNM for Feature Extraction. As EEG signals are a
typical nonlinear time series, the nonlinear time series
analysis methods including complex network are effective in
extracting features of the dynamical EEG signals. To in-
vestigate the brainwave patterns from the perspective of
network relations, we proposed a novel method for con-
structing the complex network representing the concen-
tration and relaxation patterns of the single-electrode EEG
signals. To establish the network, we used phase space re-
construction (PSR) to quantify the signals from a dynamic
perspective [10]. 0e nodes were reconstructed from a
single-electrode EEG signal to characterize its dynamic
features in phase space. 0e EEG data xi, where
i � 1, 2, . . . , N is the sampling points of the time series, were
reconstructed in an m-dimension phase space according to
equation (1). 0e nodes X for constructing the network were
calculated using the time-delay embedding algorithm for
PSR [11]:
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where M � N− (m− 1)τ; τ is the delaying time, and m is the
embedding dimension.

To improve the classification performance, the param-
eters τ and m influencing the network structures were
optimized separately for each subject. τ was optimized using
the C-C algorithm based on correlation integral by finding
the minima of the following equation [12, 13]:
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where rj � iσ/2. C(m, r, t) is the correlation integral for the
embedded time series X, and measures the fraction of the
pairs of points whose sup-norm separation is no greater
than r. After acquiring the optimized τ, the modified Cao
method was adopted to optimize the embedding dimension
m [14].
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0e edges regarding the interactions between the nodes
were calculated according to Euclidean distances as follows:

aij �
1, if dij ≤ θ,

0, if dij > θ,

⎧⎨

⎩ (3)

where dij � 
M
n�1‖Xi(n)−Xj(n)‖ is the Euclidean distance

between the ith node and the jth node. 0e threshold θ
deciding the connectivity between two nodes was chosen for
each subject as the minimum value to keep the network fully
connected under the concentration state.

To classify the EEG patterns of concentration and re-
laxation, K and the average clustering coefficient C were
calculated for the constructed network [15]. 0e average
degree K reflects the probability that a randomly chosen
node has a certain number of links ki and is calculated as
follows:

K �
1

M

i∈M

ki, (4)

where ki is the degree of node i and M is the total number of
nodes. ki is equal to the number of links connected to the
node and reflects importance of the individual node in the
network [16].

0e average clustering coefficient C reflects the preva-
lence of clustered connectivity around individual nodes and
is calculated as follows:

C �
1
N


i∈M

Ci �
1
N


i∈M

j,h∈M wijwihwjh 
1/3

ki ki − 1( 
, (5)

where Ci is the clustering coefficient for node i and wij is
the weight between nodes i and j. Ci is equal to the
proportion of existing links between the node i and its
neighbourhood to the maximum possible number of such
links. It is a measure of the degree to which nodes in a
graph tend to cluster together. 0e feature vector con-
sisting of K and C for the network was classified by using a
linear discriminant analysis (LDA) classifier to identify the
attention level.

2.4. LDA Classifier. LDA is a linear classifier aiming at
finding a hyperplane to separate the EEG data representing
different classes. 0is paper used LDA to classify the OCNM
features because of its low computational requirement and
demonstrated classification performance in brain-computer
interface (BCI) systems [17, 18].0e use of the LDA classifier
contains a training step and a testing step. In the training
step, the feature vectors were extracted from the training
data of the concentration and relaxation tasks using the
OCNM and used to train the LDA classifier to construct a
hyperplane to separate two classes of feature vectors. In the
testing step, the trained LDA classifier was used to classify
the testing data by calculating the distance d of its feature
vector from the hyperplane:

d � w
T
p + b, (6)

where p is the feature vector of the testing data. w and b are
the normal vector and the bias parameter representing the
hyperplane. 0e subject’s attention level was then catego-
rized as concentration or relaxation according to the sign of
the distance.

2.5. Performance Evaluation. 0e EEG data were recorded
from FPz electrode during the whole experiment and were

(a) (b)

Figure 1: MindFlex headset (a) and recording software (b) for acquiring EEG data.

Time

…1 2 3 40Trial

Solve an arithmetic question

<15s

Concentration task

Keep relaxed

7s

Relaxation task

Figure 2: Illustration of the experimental procedure.
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divided into 1 sec data epochs between 2 sec and 3 sec in each
trial for offline analysis. 0e data epochs were classified using
OCNM into two classes, i.e., concentration and relaxation.
0e classification performance was evaluated by using the
accuracy rate which indicates a percentage of epochs that are
successfully classified. In this paper, we calculate the accuracy
rate of the OCNM according to 10×10-fold cross validation
[19]. In each fold, the 40 epochs of recorded data were divided
into 36 epochs for training and 4 epochs for testing. 0e
classifier was first trained with 36 training epochs and then
was used to classify the 4 testing epochs.0e accuracy rate was
averaged across all the epochs in 10×10 folds.

In the offline experiments, we compared the perfor-
mance of the OCNM with two methods commonly used in
measuring human’s attention, i.e., the AMM and the
α+ β+ δ + θ +R method. As the experiments consisted of
two tasks of concentration and relaxation, it is a 2-class

classification problem testing different feature extraction
algorithms. 0e AMM developed by NeuroSky Inc. (http://
neurosky.com/biosensors/eeg-sensor/algorithms/) is pre-
built in the TGAM to evaluate individual’s attention meters.
0e Sichiray headset is designed based on TGAM and
outputs the AMM values ranging from 0 to 100 via Blue-
tooth. During the experiments, we recorded the AMM
values along with the raw EEG data to evaluate performance
of the three methods. To calculate the classification accuracy
of the AMM, the AMM values recorded in both concen-
tration and relaxation tasks were extracted and classified by
using an LDA classifier. 0e classification accuracy of the
AMM was calculated according to 10×10-fold cross vali-
dation. 0e α+ β+ δ + θ+R method was proposed by Liu
et al. [7] to extract power features from multiple wavebands,
including α band, β band, δ band, and θ band. 0e feature
vector was defined as follows:
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Figure 3: Average brainwaves in the concentration and relaxation tasks. 0e blue curves represent brainwaves of the concentration tasks,
and the red curves represent those of the relaxation tasks.
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where Eα is the power of brainwaves in α band and 
13
f�8Pf

denotes the sum of power spectrum between 8Hz and 13Hz.
0e α+ β+ δ + θ+R method then classified the feature
vector E using a polynomial-kernel support vector machine
(SVM) classifier. 0e accuracy rate of the α+ β+ δ + θ+R
method was also calculated according to 10×10-fold cross
validation.

3. Results and Discussion

3.1. Statistical Results of Raw EEG Data. 0e raw EEG data
during the experiments were acquired and recorded using
the Sichiray headset. Figure 3 shows the average brainwaves
acquired from the six subjects in the concentration and
relaxation tasks. 0e blue and red curves represent the
average brainwaves of the concentration and relaxation
tasks, respectively. To compare the statistical characteristics
of the raw EEG data, mean values, standard deviation,
skewness, and kurtosis were computed for each epoch of raw
data and were analyzed for the concentration and relaxation
tasks, respectively. Table 1 lists the statistical characteristics
of the EEG data from six subjects. 0e results showed that
the statistical characteristics were significantly different from
individual to individual. 0is is caused by the low SNR of
EEG signals and the inherent differences of individual’s
brain structures. Among the four statistical characteristics,
the mean values showed no significant difference between
the two tasks. However, the skewness values were higher in
the relaxation task than those in the concentration task for
all the subjects. However, these characteristics have rather
large standard deviations, and it is difficult to separate these
features between the concentration and relaxation tasks.

3.2. OCNM Features of Concentration and Relaxation.
Table 2 lists the results of three parameters in constructing
the OCNM for each subject. 0e optimization details are
described in Section 2.3. τ is the delaying time and m is the
embedding dimension, as in equation (1). θ is the threshold
deciding the connectivity between two nodes, as in equation
(3). 0e results showed significant difference in parameter

values for varied individuals. As a result, these parameters
should be optimized for a new user before the OCNM was
applied to estimate his attention level. In our 10×10-fold
cross validation evaluating the classification performance, 36
epochs of training data were used to estimate the optimized
parameters for each subject.

Figure 4 shows the distribution of the OCNM features
acquired in the concentration and relaxation tasks for the six
subjects. 0e red circles denote features of the concentration
trials, and the blue pentagons denote features of the re-
laxation trials. 0e results showed significant difference
between the OCNM features of the concentration trials and
the relaxation trials. An interesting fact is that for Subj1 and
Subj5 (as in Figures 4(a) and 4(e)), the average degree and
the average clustering coefficient are bigger in the concen-
tration trials, while for Subj2, Subj3, and Subj6 (as in
Figures 4(b), 4(c), and 4(f)), those features are bigger in the
relaxation trials. 0is may be caused by the individual
difference and requires detailed investigation in our future
research. As shown in Figure 4(d), the OCNM features of
two classes are difficult to be separated. As a result, Subj4
achieved the poorest classification performance among all
the subjects.

Figure 5 shows the statistical results of features extracted
by the AMM method and the α+ β+ δ + θ+R method. 0e
red boxes denote the results of the concentration task, and
the blue boxes denote the relaxation task. Figure 5(a) shows
the AMM values extracted from the six subjects, and
Figures 5(b)–5(f) shows the features of the α+ β+ δ + θ+R
method as in equation (7). 0ese results reflected the in-
dividual variability of brainwave features. In our experi-
ments, the classification parameters were trained for each
subject, respectively.

3.3. Classification Performance of the Proposed OCNM.
Table 3 lists the classification accuracy of the proposed
OCNM for 6 subjects and compares its performance with the
AMM and α+ β+ δ + θ+R methods. Please note that all the
accuracy rates in Table 3 were calculated according to
10×10-fold cross validation. 0e results showed that the
proposed OCNM delivered a higher average accuracy
(80.67%) than the AMM (70.58%) and the α+ β+ δ + θ+R
method (68.88%). Most of the subjects achieved the highest
accuracy rate using OCNM, while for Subj4, AMM delivered
a higher accuracy (69.00%) than OCNM (61.25%). An in-
teresting fact for Subj4 is that all the methods delivered
accuracy rates of below 70%. 0is may be caused by his bad
execution of the experiments. Among the 6 subjects, Subj2

Table 2: Optimized OCNM parameters for six subjects.

Subject τ m θ
Subj1 5 8 100
Subj2 6 9 90
Subj3 9 7 115
Subj4 7 9 110
Subj5 7 9 115
Subj6 5 7 200
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Figure 4: OCNM features of the concentration and relaxation trials for the six subjects.
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Figure 5: Continued.
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achieved the highest accuracy of 92.50% using OCNM, but
his accuracy rate of AMM (58.75%) was the lowest. 0is
result revealed the inherent difference of the methods’
suitability for varied subjects.

In the offline analysis, the OCNMwas used to classify the
EEG signals into two brainwave patterns, i.e., concentration
and relaxation. However, in a real-world neurofeedback
system, it is necessary to measure more level of the attention
for adjusting the strength of biofeedback. As in equation (6),
the LDA classifier calculated the distance d of the OCNM
feature vectors from the hyperplane and generated the
classification results according to the sign of d. Figure 6
shows the statistical results of the LDA distances. 0e t-tests
were performed to compare the LDA distances between the
concentration and the relaxation trials. For Subj4 who
achieved an accuracy of 61.25% using the OCNM, the LDA
distances of the concentration and relaxation trials are
overlapped.0e t-test also showed an insignificant difference
(p � 0.083) between these distances. For other subjects, the
t-test showed significant differences (p< 0.05). Especially for
Subj2 who achieved the highest accuracy of 92.5% using the
OCNM, the significant level of the LDA distances are less
than 0.01 between the concentration (d� 0.0909± 0.0641)
and the relaxation (d�−0.0909± 0.0739) trials.0is suggests
that the LDA distance can potentially be used as a meter for
measuring more levels of the human attention.

Figure 7 shows the LDA distances of OCNM and the
AMM values of each subject obtained in all the epochs,
consisting of 20 epochs of the concentration task and 20

epochs of the relaxation task. 0e horizontal axis indicates
the epoch number for the recorded data, and the vertical
axes represent the OCNM values and the AMM values,
respectively. 0e red curves in the figures denote the OCNM
results of each epoch, and the blue curves denote the AMM
results. Among the curves of OCNM and AMM, the solid
curves with circles denote the results acquired in the con-
centration task, and the dashed curves with pentagons de-
note the results acquired in the relaxation task. As shown in
Figures 7(b) and 7(e), the red solid curves representing the
concentration task were overlapped with the red dashed
curves representing the relaxation task. As it is difficult to set
a threshold to separate these features of different tasks, the
AMM only achieved an average accuracy rate of 59.25% for
Subj2 and Subj5. While for the blue curves denoting the
OCNM results, it is easier to separate the blue solid curves
and the blue dashed curves. As a result, the OCNM achieved
an average accuracy rate of 86.25% for Subj2 and Subj5. For
Subj4 who achieved poor accuracy rates using bothmethods,
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Figure 5: Statistical results of features extracted by the AMM and α+ β+ δ + θ+R methods.

Table 3: Offline classification accuracy rates (%) of six subjects.

Subject AMM α+ β+ δ + θ+R Proposed OCNM
Subj1 84.75 77.75 90.00
Subj2 58.75 80.75 92.50
Subj3 80.25 66.50 86.00
Subj4 69.00 56.75 61.25
Subj5 59.75 74.25 80.00
Subj6 71.00 57.25 74.25
Average 70.58 68.88 80.67
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Figure 6: Statistical results of LDA distances for the six subjects.
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Figure 7: LDA distances of OCNM and AMM values obtained in each epoch of six subjects.
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the red and blue curves in Figure 7(d) are overlapped for
most of the epochs. 0e results indicate that the LDA dis-
tance of OCNM is more effective in representing subjects’
attention levels.

4. Conclusions

In this paper, a novel OCNMmethod is proposed to improve
the accuracy of measuring the attention level in the single-
electrode neurofeedback system.0e experimental results of
six subjects showed that the OCNM achieved a higher ac-
curacy rate (80.67%) than the AMM (70.58%) and the
α+ β+ δ + θ +R method (68.88%). However, all these
methods were only tested in the offline experiments. In an
offline experiment, because of influence of classification
output and real-time adjustment of the individual, the online
classification performance usually differs from that in the
offline experiments [20]. In future studies, we will improve
the classification accuracy of OCNM in measuring more
attention levels and report its online performance in a real-
time neurofeedback system produced by Jiangsu Brain
Medical Technology Co. Ltd., China.
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