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Abstract

Motivation

The tumour microenvironment (TME) contains various cells including stromal fibroblasts,

immune and malignant cells, and its composition can be elucidated using single-cell RNA

sequencing (scRNA-seq). scRNA-seq datasets from several cancer types are available, yet

we lack a comprehensive database to collect and present related TME data in an easily

accessible format.

Results

We therefore built a TME scRNA-seq database, and created the R package TMExplorer to

facilitate investigation of the TME. TMExplorer provides an interface to easily access all

available datasets and their metadata. The users can search for datasets using a thorough

range of characteristics. The TMExplorer allows for examination of the TME using scRNA-

seq in a way that is streamlined and allows for easy integration into already existing scRNA-

seq analysis pipelines.

Introduction

Single-cell RNA sequencing (scRNA-seq) is a new technology that has emerged as an impor-

tant tool to measure gene expression for individual cells, enabling the examination of cellular

heterogeneity and tissue composition with incredible precision. This has been particularly

applicable in cancer research for the study of tumour composition, heterogeneity and pheno-

type, all of which are directly impacted by the tumour-microenivronment (TME). TMEs are

composed of different stromal and cancer cell types whose interactions likely dictate different

aspects of tumour behaviour, such as metastasis [1–4]. Combined with scRNA-seq analysis

methods, scRNA-seq enables us to dissect the TME into individual cells and investigate the
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different cell subpopulations that exist. Such investigations into the TME are becoming

increasingly important, as tumour composition and heterogeneity can influence cancer pro-

gression and the outcome of cancer therapy [1, 4–9].

With the advancement of scRNA-seq in cancer research, the number of TME datasets that

are generated continues to increase, yet they can be difficult to access. Raw sequence reads gen-

erated by scRNAseq can be shared through online archives, such as the Sequence Read Archive

(SRA) [10], however they exist as large files that require further processing to be analyzed,

making data access a challenge. Already processed scRNA-seq data containing gene expression

information can be accessed through online archives, such as the Genome Expression Omni-

bus (GEO) [11], and can be more easily downloaded for use in one’s own analysis. Further-

more, to manage the growing abundance of publicly available scRNA-seq data, proper quality

control and curation of datasets must be done [12, 13]. Currently, several online databases

offer curated collections of public scRNA-seq datasets, such as PanglaoDB [12], scRNASeqDB

[13], JingleBells [14] and the Single Cell Portal created by the Broad Institute of MIT and Har-

vard [15]. Most existing scRNA-seq databases include a mixture of samples from normal tis-

sues and tissues affected by cancer or other diseases [12–14], while others focus primarily on

samples from normal tissues [16, 17]. A recently published toolkit called CReSCENT [18] con-

tains only cancer scRNA-seq data, however it mainly acts as a cancer data analysis pipeline

rather than a database. A comprehensive database for the collection and sharing of TME

scRNA-seq datasets from a range of tumour types does not yet exist, and researchers interested

in using publicly available TME data must search through several databases to collect relevant

datasets for their study. A database of TME scRNA-seq samples will thus streamline the data

collection steps required for researching cancer at a single-cell level, lowering the barrier for

entry to this type of study.

It is likewise important that scRNA-seq databases are designed to facilitate streamlined data

collection and analysis. This can include a search tool that allows users to select datasets based

on desired characteristics. While existing databases include search tools, they provide few

options in characteristics users are able to search for and often require users to browse through

a metadata table prior to selecting datasets of interest. Furthermore, they are designed as web-

based tools, and thus are not intended to be integrated into workflows [12–15]. Workflow inte-

gration would enable users to access data directly in their pipelines, thus automating the data

collection process and increasing analysis efficiency. A scRNA-seq database that is provided as

an R-package and contains a comprehensive search tool which allows users to select datasets

based on a wider variety of characteristics would make the data collection process easier for

researchers.

Here, we present a curated collection of tumour scRNA-seq datasets made available as an

R-package called TMExplorer. TMExplorer contains publicly available scRNA-seq datasets

specific to TMEs from various tumour types collected from different scRNA-seq studies [1–3,

5–9, 19–53] and online databases [11, 54]. In addition to gene expression data, TMExplorer

contains the corresponding cell type annotations and gene-signature information for several

datasets, and provides a search tool that enables users to search for multiple datasets according

to 13 different characteristics (Table 1). When selecting datasets, users can review the metadata

table first or they can retrieve datasets that match specific criteria without having to browse

through the metadata table. While online databases require users to download a given dataset

prior to use, TMExplorer allows users to access and search available datasets within R. Users

can thus input the data directly into existing pipelines with only a few commands. Each dataset

can be used directly within R as a SingleCellExperiment object, or exported as a gene expression

matrix in multiple formats for use with other applications. Users interested in validating

scRNA-seq analysis algorithms, as they apply to TME data, can easily access this information
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through TMExplorer and incorporate it into their pipelines. Altogether, TMExplorer makes it

easier for researchers to access and share TME scRNA-seq datasets, facilitating the study of

TMEs at the single-cell level in the field of cancer research.

Materials and methods

Data collection

In order to collect the datasets, we searched the National Center for Biotechnology Informa-

tion (NCBI) [55] for relevant scRNA-seq studies using the following keywords: single cell

RNA sequencing, tumour, cancer, tumour microenvironment, and malignant. We then care-

fully reviewed the published literature and any associated data to confirm if they matched our

criteria. Datasets were included in our data collection if they were publicly available as pro-

cessed data, were generated by scRNA-seq and if they consisted of TME expression data. A

total of 48 datasets originating from different types of human and mouse tumours were col-

lected from online sources such as the NCBI’s Gene Expression Omnibus (GEO) [11],

ArrayExpress [54], and Github [56]. Out of the 48 datasets we collected, 44 datasets originated

from human tumours and 4 datasets originated from mouse tumours (Fig 1). Descriptions of

the collected datasets are provided in Table 2. Metadata for each dataset, such as tumour type

and number of cells sequenced, were collected from descriptions in the corresponding publica-

tions and/or from the online sources that the datasets were obtained from. If publicly available,

we also retrieved cell-type annotations and/or gene signature information that accompanied

the datasets. All data is hosted on FigShare [57] under the TMExplorer project.

Data curation

Datasets found on GEO often contain extra information such as Ensemble ID or chromosome

region in additional rows or columns. We modified all datasets using R to ensure they followed

a similar genes-by-cells format with the gene column serving as an index. If any dataset is pub-

lished as separate samples, samples are merged into a single file with a suffix identifying the

sample appended to cell IDs, so users may separate the samples and perform batch correction

if necessary. Having a similar format for datasets reduces the preprocessing required to use

this data in other analysis pipelines.

Table 1. A list of search parameters that can be passed to queryTME in order to filter the available datasets.

Search Parameter Description

geo_accession Search by GEO accession

score_type Search by type of score available

has_signatures Search by presence of cell type signature gene sets

has_truth Search by presence of cell type annotations

tumour_type Search by type of tumour

author Search by first author

journal Search by publication journal

year Search by publication year

pmid Search by PMID

sequence_tech Search by sequencing technology

organism Search by source organism

sparse Return expression in sparse matrices

download_format Specify a list of score formats to download. Additional formats will be stored in altExps

https://doi.org/10.1371/journal.pone.0272302.t001
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There are three main components to each dataset in our database: (1) gene-by-cell expres-

sion matrices; (2) cell type labels; and (3) gene signatures. The cell type labels are R dataframes
with two columns; one contains every cell barcode present in the expression matrix, and the

other one contains that cell’s type. The gene signatures are stored in R dataframes containing

one column per cell type, with a list of genes that are differentially expressed by that cell type

and reported in the original paper in which each dataset was first introduced. All data for each

dataset is accessible within a single object in order to make it as easy to use as possible.

Since R BioConductor has existing infrastructure for working with scRNA-seq data [58,

59], we used it as the platform to build our package upon. In order to maintain compatibility

with existing Bioconductor software, we return all datasets as SingleCellExperiment objects

[59]. Fig 2 shows the structure of a SingleCellExperiment object, where the expression data is

stored as a named assay, cell type labels (if present) are stored under colData(), and all other

information is stored in a metadata list.

• Expression Data: Named assays allow certain formats to be easily accessed with getter func-

tions such as counts() and tpm(), while other formats can still be accessed with the assay()
getter function [59]. All SingleCellExperiments have one assay named according to the type

of score (e.g. Counts and TPM) represented in that object. Calling assay() returns an expres-

sion matrix with rows of genes and columns of cells.

• Cell Type Labels: ColData stores metadata for the columns in the assay matrix. In our case

this refers to the cell type annotations, if they are available. ColData is a dataframe that

Fig 1. A visualisation of the various tissue types included in TMExplorer. TMExplorer includes 48 TME scRNA-seq datasets from 26 different human

cancer types from 13 different sites and 4 different mouse cancer types. TMExplorer is generalizable and extendable, and the new datasets are added to the

database as they become available. Fig 1 is created with BioRender.com.

https://doi.org/10.1371/journal.pone.0272302.g001
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Table 2. List of tumor microenvironment scRNA-seq datasets included in TMExplorer.

Dataset Cancer type Sequencing

Technology

Number of tumors Number

of cells

Number

of genes

Annotation

available?

Gene

signature

available?

Patel et al. Science

2014

Glioblastoma SMART-seq 5 human primary glioblastoma

tumors

1,456 5,796 Yes No

Tirosh et al. Science

2016

Metastatic melanoma SMART-seq

2

19 human melanoma tumors 4,645 23,686 Yes Yes

Tirosh et al. Nature

2016

Oligodendroglioma SMART-seq

2

6 human IDH-mutant

oligodendroglioma tumors

4,347 23,686 Yes Yes

Venteicher et al.
Science 2017

Astrocytoma SMART-seq2 10 human IDH-mutant astrocytoma

tumors

6,341 23,686 No No

Li et al. Nature

Genetics 2017

Colorectal cancer Fluidigm C1 11 human primary colorectal cancer

tumors

375 57,241 Yes Yes

Chung et al. Nature

Communications

2017

Breast cancer Fluidigm C1 11 human primary breast cancer

tumors

563 57,915 Yes Yes

Puram et al. Cell

2017

Head and neck squamous cell

carcinoma

SMART-seq

2

18 human primary oral cavity tumors

and 5 lymph node metastases

5,902 21,884 Yes Yes

Giustacchini et al.
Nature Medicine

2017

Chronic myeloid leukemia SMART-seq2 20 human bone marrow aspirates 2,287 23,384 No No

Filbin et al. Science

2018

H3 K27M-mutant glioma SMART-seq2 6 human primary H3K27M-glioma

tumors

4,058 23,686 Yes No

Jerby-Arnon et al.
Cell 2018

Melanoma SMART-seq2 33 human melanoma tumors 7,186 23,686 Yes Yes

VanGalen et al. Cell

2019

Acute myeloid leukemia Seq-Well 40 human bone marrow aspirates 23,383 27,899 No No

Ting et al. Cell

Reports 2014

Pancreatic cancer Tang

Protocol

5 mice with pancreatic cancer, 1

mouse embryonic fibroblast cell line,

1 mouse pancreatic cancer cell line, 1

control mouse

187 29,018 No No

Miyamoto et al.
Science 2015

Prostate cancer ABI SOLiD 18 patients with metastatic prostate

cancer, 4 patients with localized

prostate cancer, 12 bulk primary

prostate tumors, 4 prostate cancer cell

lines

169 21696 No No

Jordan et al. Nature

2016

Breast cancer Truseq 2 ER+/HER2- breast cancer patients,

14 triple negative breast cancer

patients

74 23,368 No No

Azizi et al. Cell 2018 Breast cancer InDrop 8 human breast carcinomas 46,016 14,875 No No

Lambrechts et al.
Nature Medicine

2018

Non-small cell lung carcinoma 10x

Genomics

5 human non metastatic lung

squamous carcinoma tumors

51,775 22,533 Yes Yes

Davidson et al. Cell

Reports 2018

Melanoma SMART-seq2 Mouse tumors 6,422 26,946 No No

Peng et al. Cell

Resesarch 2019

Pancreatic ductal

adenocarcinoma

10x

Genomics

24 human primary pancreatic ductal

adenocarcinoma tumors, 11 control

pancreases

57,530 24,005 Yes Yes

Darmanis et al. Cell

Reports 2017

Glioblastoma Smart-seq2 4 human glioblastoma tumors 3,589 23,465 No No

Kumar et al. Cell

Reports 2018

Mixed cancer: Melanoma,

breast mammary carcinoma,

Lewis lung carcinoma, colon

carcinoma, fibrosarcoma

10x

Genomics

1 mouse melanoma tumor, 1 mouse

breast mammary carcinoma tumor, 1

mouse Lewis lung carcinoma tumor, 2

different mouse colon carcinoma

tumors, 1 mouse fibrosarcoma tumor

10,473 27,998 No No

(Continued)
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Table 2. (Continued)

Dataset Cancer type Sequencing

Technology

Number of tumors Number

of cells

Number

of genes

Annotation

available?

Gene

signature

available?

Zhao et al. BMC

Medical Genomics

2019

Glioblastoma Fluidigm C1 1 human glioblastoma cancer cell line,

1 normal neural stem cell line

134 21,209 No No

Chen et al. Cell

Research 2020

Nasopharyngeal carcinoma 10x

Genomics

15 human nasopharyngeal carcinoma

tumors

48,584 24,720 Yes No

Lin et al. Genome

Medicine 2020

Pancreatic ductal

adenocarcinoma

10x

Genomics

16 human pancreatic ductal

adenocarcinoma tumors

14,926 22,217 No Yes

Gillen et al. Cell

Reports 2020

Ependymoma 10x

Genomics

26 human ependymoma tumors 18,500 23,580 Yes No

Zhang et al. Cell

Reports 2019

Gastric cancer 10x

Genomics

13 human gastric tumors 56,440 22,910 No No

Yeo et al. Elife 2020 Breast cancer 10x

Genomics

4 mouse breast cancer tumours 13,745 31,053 No No

Gao et al. Nature

Biotechnology 2019

Anaplastic thyroid cancer 10x

Genomics

5 human anaplastic thyroid tumors 19,568 33,540 No No

Gao et al. Nature

Biotechnology 2019

Breast ductal carcinoma 10x

Genomics

1 human breast ductal carcinoma

tumor

1,480 33,694 No No

Gao et al. Nature

Biotechnology 2019

Triple negative breast cancer 10x

Genomics

3 human triple negative breast cancer

tumors

2,663 33,964 No No

Gao et al. Nature

Biotechnology 2019

Triple negative breast cancer 10x

Genomics

2 human triple negative breast cancer

tumors

6,281 33,538 No No

Gao et al. Nature

Biotechnology 2019

Breast invasive ductal

carcinoma

10x

Genomics

2 human breast invasive ductal

carcinoma tumors

6,209 33,540 No No

Paulson et al. Nature

Communications

2018

Merkel cell carcinoma 10x

Genomics

2 human primary merkel cell

carcinoma tumors

25,066 11,072 No No

Bautista et al. Nature

Communications

2021

Thymic cancer 10x

Genomics

7 human primary thymic cancer

tumors

74,780 33,694 No Yes

Paulson et al. Nature

Communications

2018

Merkel cell carcinoma 10x

Genomics

2 primary merkel cell carcinoma

tumors from 1 human patient at 2

timepoints

7,432 21,861 No No

Kim et al. Genome

Biology 2015

Lung adenocarcinoma SMART-seq 2 primary human lung

adenocarcinoma tumors

201 57,820 No No

Aynaud et al. Cell

Reports 2020

Ewing sarcoma 10x

Genomics

3 Ewing sarcoma patient-derived

xenografts samples

97 56,764 No No

Song et al. Nature

Communications

2022

Prostate cancer Seq-Well S^3 6 prostate biopsies from 3 different

patients, 4 radical prostatectomies

with tumor-only samples from 4

patients, and 4 radical prostatectomies

with matched normal samples from 4

patients

53765 19,665 No Yes

Liu et al. Nature

Communications

2021

Nasopharyngeal carcinoma 10x

Genomics

10 human nasopharyngeal carcinoma

tumor-blood paired samples

176,447 20,930 No Yes

Kurten et al. Nature

Communications

2021

Head and neck squamous cell

carcinoma

10x

Genomics

18 primary human head and neck

squamous cell carcinoma tumors

61,221 33,545 No Yes

Gojo et al. Cancer

Cell 2020

Ependymoma SMART-seq2 20 fresh surgical tumor specimens

from 18 ependymoma patients, eight

patient-derived cell models, and two

patient-derived xenograft models

6,739 20,447 Yes Yes

(Continued)

PLOS ONE TMExplorer: A tumour microenvironment single-cell RNAseq database and search tool

PLOS ONE | https://doi.org/10.1371/journal.pone.0272302 September 9, 2022 6 / 21

https://doi.org/10.1371/journal.pone.0272302


always has one row for every column in the assay matrix, ensuring that there is a label pres-

ent for every cell. If the cell type is not available for a given cell, it is labelled as “unknown”.

• Metadata: The metadata list serves to store any other information that does not fit into a pre-

existing attribute of the SingleCellExperiment object, and is accessed with the metadata() func-

tion. This named list contains the signature gene sets, available score types, tumour and host

organism type, sequencing technology, author, and all other descriptive information as

strings. All information that is available in the metadata table can be accessed by calling the

query function of TMExplorer (i.e. queryTME) with the metadata_only parameter set to true.

Metadata

After collecting the datasets, corresponding metadata was compiled into a table which serves

as the core of the package (S1 Fig). The metadata table contains information such as GEO

accession, author, journal, year, PMID, sequencing technology, expression score type(s),

source organism, type of cancer, number of patients, tumours, cells and genes, and the data-

base that the data was obtained from (S1 Table). All items in the metadata table were chosen as

either entities that distinguish one dataset from the others or criteria that may make a dataset

or group of datasets interesting to researchers (e.g. a specific tumour type or availability of cell

labels or gene signatures). Users can view the available data using the metadata table and

decide which dataset best fits their needs.

Database query

TMExplorer provides a query function (i.e. queryTME) that users can employ in order to select

multiple datasets based on their desired characteristics (S2 Fig). For example, users can select

Table 2. (Continued)

Dataset Cancer type Sequencing

Technology

Number of tumors Number

of cells

Number

of genes

Annotation

available?

Gene

signature

available?

Zhang et al. Cell

2020

Colon cancer SMART-seq2 18 primary human colorectal cancer

tumors

43,817 13,538 No Yes

Steele et al. Nature

Cancer 2021

Pancreatic ductal

adenocarcinoma

10x

Genomics

16 primary human pancreatic ductal

adenocarcinoma tumors

55,652 32,738 No No

Lee et al. Clinical

Cancer Research

2021

Pancreatic ductal

adenocarcinoma

10x

Genomics

16 metastatic human pancreatic ductal

adenocarcinoma tumors

17,889 33,694 No Yes

Moncada et al.
Nature

Biotechnology 2020

Pancreatic ductal

adenocarcinoma

inDROP 11 primary human pancreatic cancer

tumors

19,738 4,343 No No

Wu et al. Nature

Communications

2021

Non-small cell lung cancer 10x

Genomics

42 primary human non-small cell lung

cancer tumors

89,887 29,527 No No

Kim et al. NPJ

Precision Oncology

2022

Gastric cancer 10x

Genomics

47 patient biopsies consisting of 24

gastric cancer lesions and 23 adjacent

normals

13,113 8,705 No No

Kumar et al. Cancer

Discovery 2022

Gastric cancer 10x

Genomics

48 primary human gastric cancer

tumors

158,641 26,571 No Yes

Kim et al. Nature

Communications

2020

Lung adenocarcinoma 10x

Genomics

11 tumour, 11 distant normal lung, 10

normal lymph node, and 10 metastatic

brain tissue samples from patients

without prior treatment. 7 metastatic

lymph node and 4 lung tumour tissue

samples from advanced stage patients.

208,506 29,634 Yes Yes

https://doi.org/10.1371/journal.pone.0272302.t002
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specific studies by PMID or GEO accession, or filter subsets by sequencing technology,

whether cell type labels or cell type signature gene sets are available etc. Sequencing technol-

ogy, score type, organism, tumour type, and year were all chosen as search parameters because

they represent differences in the type of data and make it easier to find data that fits the needs

of different studies. Some datasets may publish multiple tumour types under the same study.

TMExplorer is able to handle this by having multiple rows of different datasets from the same

study. In these cases, users will need to provide multiple search parameters to select a single

row, for instance the GEO accession and tumour type for a study that contains multiple can-

cers. We have also made it possible to search for datasets for which the cell labels and gene sig-

natures are available. This facilitates developing and testing algorithms that require specific

types of dataset information. For example, testing cell classification algorithms requires cell

labels that can be used as a gold standard, and many existing algorithms require gene signa-

tures that represent the cell types in the dataset [60, 61].

Alternative experiments

For several datasets, gene expressions are available in multiple score types including raw

counts and normalized data by FPKM, TPM or CPM. In order to store each dataset in multiple

score types, we used nested SingleCellExperiments objects with the alternative experiments

Fig 2. The format of the SingleCellExperiment objects containing TME datasets. The Assay is a matrix or dgCMatrix containing the gene expression table,

named according to the type of score (i.e. an Assay containing raw counts would be named “Counts”); colData is a DataFrame with the number of rows equal

to the number of columns in the Assay and describes the cells in the dataset; Metadata is a named list of additional metadata objects describing the dataset. A

SingleCellExperiment object may contain one or more AltExps, which are nested SingleCellExperiment objects containing a different score type in the Assay.

https://doi.org/10.1371/journal.pone.0272302.g002
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(altExps) concept. Alternative experiments are guaranteed to have the same dimensions as the

primary object, but can be kept separate for use in other pipelines [59]. This allows users to

download multiple types of scoring for use in different steps of analysis while still being able to

access each dataset through a single object. Being able to download multiple score types allows

our datasets to be used in a variety of algorithms that require a specific type of score, and keep-

ing them separated as nested objects prevents accidentally applying an algorithm to the wrong

score type.

Dense vs. sparse data formats

In order to reduce the memory requirements for working with large datasets, expression data

is optionally available as a sparse matrix. We implemented sparse matrices using the dgCMa-
trix class from R Matrix [62]. This reduces memory usage by only storing non-zero expression

values. With sparse matrices, the memory required to store a dataset is reduced by as much as

8 Gb for a dataset with 51,775 cells and 22,533 genes. It should be noted that not all software

packages are compatible with sparse matrices, and converting large datasets from sparse to

dense may crash R on machines with low memory. Thus users should confirm that their algo-

rithms support sparse matrices before using them. By default, TMExplorer returns dense

matrices to avoid these problems.

Exporting data in multiple formats

Several tools for scRNA-seq analysis are written in R and therefore a SingleCellExperiment
object can easily be incorporated into these pipelines and tools. However, many other analysis

tools are written in Python or as webapps [18, 63, 64]. To facilitate the use of TMExplorer with

these tools, we wrote a function saveTME that writes individual TME datasets to disk as CSV

or Matrix Market files, depending on whether data was loaded as dense or sparse matrices by

queryTME, respectively. SaveTME takes a SingleCellExperiment object and a path to an output

directory as parameters and saves the gene expression matrix, cell type labels, and cell type sig-

nature gene sets to disk. The resulting files can then be converted as needed and used in other

applications.

Adding new datasets

We keep TMExplorer updated with new datasets as they get published. Additionally, users of the

package doing their own novel research will have access to an issue template on Github where

they can submit their data for inclusion. The interested users will need to provide their scRNA-

seq data as raw counts or normalized data and the corresponding metadata. Since TMExplorer is

open source, those same users can create a fork of the repository and build it from source with

their own data for pre-publication work. Users wishing to fork the repository for their own data

need only replace or add to the metadata table used by the package and update any documenta-

tion or function names to reflect the new data. If users are adding new TME data, no functions

need to be changed since this package already uses TME data. Those users who are interested in

adopting the package for other types of single-cell sequencing data (such as sc-ATAC seq) can do

so by changing documentation and functions to reflect the new data type.

Results

Overview of the TMExplorer package

To make it as easy as possible to integrate TMExplorer into other pipelines, all interactions

with the package are done directly in R. Here, the queryTME function serves as the primary
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interface for the package, allowing users to view the metadata for all available datasets, or select

a subset of datasets according to descriptive criteria (Fig 3A). queryTME provides a set of

parameters (Table 1) used to select a subset of datasets according to characteristics. To review

the available datasets, the metadata_only parameter should be set to TRUE when querying the

package, and a table describing the datasets will be returned instead of the datasets themselves.

The search parameters can be used to find relevant data without requiring users to review the

metadata table first, lowering the barrier for use. For example, users looking for a certain type

of cancer, such as melanoma, can search using queryTME(tumour_type =“Melanoma”) with-

out needing to first examine the metadata for datasets containing melanoma cancers.

After querying the database, a list of SingleCellExperiment objects is returned. The objects

in this list can then be passed to any other algorithms that accept a SingleCellExperiment object,

sparse dgCMatrix, or dense gene expression matrix for inclusion in a pipeline (Fig 4). Alterna-

tively, the saveTME function can be used to write the returned data to disk for further manipu-

lation or use in applications outside of R (Fig 3B). Fig 4 shows how saveTME can be used to

save data for analysis in Python. In order to maintain consistency, the returned value is always

a list of results, whether or not multiple datasets match the query.

TMExplorer database contents

TMExplorer is a curated collection of TME scRNA-seq datasets that have been made available

as an R-package. We created TMExplorer to improve accessibility and sharing of tumour

scRNA-seq data. It acts as a single-entry point to various tumour scRNA-seq datasets for users

interested in studying gene expression of the TME at the single-cell level. Fig 5 provides a sum-

mary of TMExplorer contents at the time of publication. Currently, the collection contains 48

datasets, including 44 datasets derived from human tumours and 4 datasets derived from

mouse tumours (Fig 5A). This comprises 28 different cancer types including leukemia [22,

24], breast [2, 27, 28, 36], colorectal [3, 45], glioblastoma [7, 9, 31], glioma [23], head and neck

[20, 47, 48], astrocytoma [21], oligodendroglioma [8], melanoma [1, 5, 19], lung carcinoma [6,

38, 51], non-small cell lung carcinoma [41], pancreatic [25, 29, 33, 42–44] prostate [26, 49],

gastric [39, 40], merkel cell carcinoma [53], thymic [52], ewing sarcoma [50], ependymoma

Fig 3. An overview of the main functions of TMExplorer. A. queryTME allows users to search and return datasets in either a descriptive table or as a list of

SingleCellExperiment objects for analysis. B. saveTME allows users to write datasets to disk. For each dataset written to disk, up to three files are created; a table

storing the expression data as either a CSV or matrix market file, depending on whether a dense or sparse matrix is passed to the function; a table containing

the cells and their truth label, if available; and a table containing the cell type signature gene sets, if available.

https://doi.org/10.1371/journal.pone.0272302.g003
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[46] (Fig 5E). 13 out of 28 cancer types have more than one associated dataset (Fig 5E). Also, 6

out of 48 datasets are from rare cancers (incidence rate of< 6 in a million persons), including

merkel cell carcinoma [53], thymic carcinoma [52], ewing sarcoma [50], astrocytoma [21], oli-

godendroglioma [8], and ependymoma [46]. Numbers of cells and genes vary across datasets

and fall within the range of 4,343–57,915 genes and 74–208,506 cells (Fig 5F and S1 Table).

The datasets are sequenced by different sequencing technologies including 10x Genomics,

SMART-seq2 and Fluidigm C1 (Fig 5B). Each dataset is provided as processed gene expression

data, and are provided either as raw counts or normalized data (e.g. TPM, RPKM, and RPM)

(Fig 5D). We did not include raw scRNA-seq data (i.e. FASTQ files) in our collection because

these files tend to be very large and can be accessed through the SRA, if available. Out of the 48

datasets, cell-type annotations are also provided for 16 datasets and gene signature information

is provided for 18 datasets (Fig 5C), so that users may access and use this information in their

analyses. Also, for 10 datasets both cell type annotations and gene signatures are available (Fig

5C). Users can browse through the available datasets using the metadata table and then choose

which dataset(s) they would like to analyze. Users can also save the datasets for use outside of

R, for instance in Python or web-based analysis pipelines.

TMExplorer search capability

An important feature of TMExplorer is that it acts as both a database and search tool that can

be easily implemented in one’s own workflow. Some other currently available scRNA-seq data-

bases have a search function, but cannot be easily integrated into workflows because they are

web-based [12–15]. Currently available R-based scRNA-seq databases lack built in search

tools, requiring users to access vignettes to see the available data before it can be retrieved for

Fig 4. An example workflow of using TMExplorer to obtain datasets for the downstream analysis using Python and R. Users start by using queryTME to

return all datasets that have cell type labels and cell type signature gene sets, which will get a list of matching datasets contained in SingleCellExperiment objects.

Then, for R based algorithms, users can pass the SingleCellExperiments directly if that is supported, or users can pass the individual components required. For

Python based algorithms, saveTME can be used to save the files for each dataset to disk, which can then be opened in Python for analysis.

https://doi.org/10.1371/journal.pone.0272302.g004
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use in a pipeline [16]. TMExplorer provides a search tool that allows users to search for data-

sets that fit their needs by tumour type, sequencing technology, source organism, and more

(Table 1), all from the R command line. This makes TMExplorer an improvement over both

R-based and web-based databases because users are able to browse and query data from the

same console they are using for analysis. By including a search tool and database in a single

package, TMExplorer provides a single point of entry to include TME scRNA-seq data into

data analysis pipelines. In Fig 6, we provide a flowchart that shows various steps involved in

querying TMExplorer, obtaining the datasets of interest, saving them on the local machines,

and performing further analysis in R or other programs.

Case studies

In this section, we bring two example applications where TMExplorer can be used to facilitate

data analysis. In the case study 1, we show how TMExplorer can be combined with automated

cell-type identification algorithms to identify different cell types in TME scRNA-seq data.

Here, we also show how users can return datasets with both the signature gene sets and gold

standard annotations needed for testing cell-type identification. In case study 2, we show how

TMExplorer can be integrated with the algorithms for inferencing copy-number variations in

individual cells and facilitate the separation of malignant and non-malignant cells in multiple

tumour scRNA-seq datasets of the same cancer type.

Fig 5. A summary of TMExplorer contents. Here, we provide a summary of the number of humans and mice datasets in TMExplorer (A); the number of

datasets generated by various sequencing technologies (B); the number of datasets for which cell type labels and gene signatures are available (C); and the

distributions of score types of different datasets (D) and the tumour types (E). In addition, boxplots of the number of cells, genes, tumours and patients across

different datasets are provided (F).

https://doi.org/10.1371/journal.pone.0272302.g005
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Case study 1: Identifying different cell types in TME scRNA-seq data. Often, when

using TME scRNA-seq data, we are interested in the cellular composition of the dataset. In

order to find this, automated cell type identification algorithms are used. This is usually done

by first clustering the cells, and then assigning appropriate cell type labels to each cluster [65].

In Fig 7, we show how TMExplorer can be combined with a clustering method (e.g. Seurat

[66]) and a cluster labelling method (e.g. GSVA [61]) to create a workflow for the identifica-

tion of cell populations within a dataset. Seurat requires only the gene expression matrix to

perform clustering, but GSVA requires a list of cell-type signature gene sets in addition to the

expression matrix. TMExplorer can return all of the datasets that have signature gene sets

available using queryTME(has_signatures = TRUE). If after identifying the cell types within a

dataset, users want to assess the performance of their workflow by comparing the automated

annotations to those reported alongside the dataset, the has_truth = TRUE parameter can be

added to queryTME to only return datasets that have gold standard labels available. Seurat and

GSVA can be replaced by any other tool that accepts a SingleCellExperiment object or a matrix

of gene expression values, providing flexibility for users to incorporate TMExplorer into their

own workflows.

Fig 6. A flowchart of data query and analysis using TMExplorer. TMExplorer provides a search and analysis capability, where users can look up and return

their datasets of interest, view the expression matrix, cell type labels and metadata including gene signatures (if available) and continue by either using R for

data visualization and analysis, or save the datasets in CSV format to be analyzed by their programming language of choice (e.g. Python).

https://doi.org/10.1371/journal.pone.0272302.g006
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Case study 2: Inferencing copy number variations in multiple datasets of the same can-

cer type. Single cell sequencing is an important tool that enables the dissection of TMEs into

malignant and non-malignant cells. Researchers interested in comparing the tumour composi-

tion across different datasets of a specific cancer type would have to collect datasets from dif-

ferent sources prior to application of separation methods. With TMExplorer, users can easily

access multiple datasets of a specific tumour type, as well as the accompanying cell type anno-

tations and/or gene signature information from one location, thus avoiding inconsistencies

when acquiring data from different databases. TMExplorer can be easily incorporated with

other packages into workflows for the analysis of scRNA-seq data, therefore enabling users to

access and use the data entirely within R.

Fig 8 displays an example workflow that uses queryTME(tumour_type = “Glioblastoma”) to

retrieve datasets of a specific cancer type (i.e. glioblastoma) for use in the downstream analysis.

In this example, we retrieved glioblastoma datasets from the TMExplorer database as Single-
CellExperiment objects and converted them to gene expression count data matrices. We then

applied a copy number variation (CNV) inferencing method called CONICSmat [67] to each

of the datasets individually, and generated heatmaps displaying the inferred CNV patterns.

This allowed us to separate malignant and non-malignant cells considering their long-range

CNV patterns. The proportion of malignant and non-malignant cells and the patterns of CNV

across the different datasets can then be compared.

Fig 7. A case study on using TMExplorer to identify cell types. A case study showing how TMExplorer can be used in order to obtain datasets for cell cluster

labelling via Seurat and GSVA. queryTME can be used to return those datasets which have both gene signatures and cell type annotations required for testing

the automated identification of cell types. The expression data can be passed to Seurat for cell clustering, and the gene signatures can be used by GSVA to

identify the cell types in Seurat’s clusters. Finally, the cell type annotations can be used as the truth labels to measure the performance of the results obtained by

Seurat clustering followed by GSVA.

https://doi.org/10.1371/journal.pone.0272302.g007
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Discussion

The emergence of single-cell RNA sequencing has enabled the study of tumour composition and

phenotype. With the increasing use of scRNA-seq in cancer research, scRNA-seq data from

TMEs continues to be generated and published. In order to streamline the data collection process

Fig 8. A case study on using TMExplorer for inferring CNVs. A case study showing how TMExplorer can be used to obtain multiple datasets for a specific

tumour type, to be used with CNV-based separation methods, such as CONICSmat. QueryTME returns datasets of a specific tumour type, such as

Glioblastoma. These datasets can then be inputted directly into large-scale CNV inferencing methods, such as CONICSmat.

https://doi.org/10.1371/journal.pone.0272302.g008
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for researchers interested in studying the TME, we created a curated database of TME scRNA-seq

datasets, made available as an R-package called TMExplorer. Here we have built a database using

a variety of cancers from multiple sources. We searched NCBI [11, 55] for TME scRNA-seq data-

sets that contain gene expression data, as well as comprehensive metadata such as tumour type,

sequencing technology, cell type annotations, and gene signatures. In total, 48 datasets represent-

ing 26 different human cancer types and 4 different mouse cancer types are represented, along

with their cell type annotations and cell type signature gene sets if they were available.

TMExplorer addresses a gap in currently available scRNA-seq databases by providing a

focused, easily accessible database as an R package. TMExplorer has several advantages over

other currently available scRNA-seq databases, the most prominent being:

1. Existing curated scRNA-seq databases consist of mostly normal tissue or non-cancer data

and relatively few cancer datasets. To allow researchers to easily locate and access TME

scRNA-seq data, we curated publicly available TME datasets and made them available in a

database accessible as an R package. With TMExplorer, researchers can access all publicly

available TME scRNA-seq datasets from a single location and can also return multiple data-

sets that match their desired criteria with a single command.

2. TMExplorer provides a variety of search parameters (Table 1) that can be used to return a

subset of the available data that matches specific criteria. The parameters were designed so

that users can search for matching datasets without having to first view a list of all available

datasets, making it easier and faster to access data of interest.

3. The majority of existing scRNA-seq databases can only be accessed online as web-based

tools and are not easily incorporated into pipelines for analysis of scRNA-seq data. Since

many researchers use R or Python for their analyses, we chose to provide TMExplorer as an

R-package so that it may be easily integrated into existing pipelines.

4. Some analyses require more than just gene expression information, and TMExplorer pro-

vides cell type annotations and cell type signature gene sets alongside gene expression

matrices, where they are available. This facilitates the use of a wider range of analysis meth-

ods without requiring additional work from the researchers.

We regularly maintain TMExplorer and add new datasets to our database as they get pub-

lished. Additionally, we have provided an issue template and vignette on GitHub showing how

users can process their data and submit it for inclusion in the package. Users who have found

new published datasets or sequenced their own should read the formatting instructions and

open a new issue using our template. The users who want their dataset to be included in

TMExplorer need to provide a description of the dataset, a link to the source for the dataset, a

link to the dataset files that will be added to the package, and the completed metadata table.

TMExplorer is generalisable to many other sources, including both single-cell and bulk

sequencing data. We have recently worked on adopting it for the scATAC-seq data in scA-

TAC.Explorer BioConductor package [68].

In summary, TMExplorer allows researchers to easily access, share and integrate TME

scRNA-seq data into their own analysis pipelines. TMExplorer can be used to access data

needed for the validation of new algorithms and to allow researchers interested in the tumour

microenvironment to study specific types of cancer.

Supporting information

S1 Fig. Viewing the TMExplorer metadata and documentation. Users can view the TMEx-

plorer database metadata of scRNA-seq datasets, interact with the metadata as a dataframe
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object, and view the TMExplorer documentation of function arguments included in the pack-

age.

(TIF)

S2 Fig. Example searchable parameters to filter scRNA-seq datasets. A set of searchable

parameters can be used to filter scRNA-seq datasets. The users can search for specific datasets

using user-specified parameters, and return one specific dataset as a SingleCellExperiment

object for downstream analysis.

(TIF)

S1 Table. Metadata of TMExplorer. The metadata table contains information such as GEO

accession, author, journal, year, PMID, sequencing technology, expression score type(s),

source organism, type of cancer, number of patients, tumours, cells and genes, and the data-

base that the data was obtained from.

(XLSX)
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