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Abstract: Maize is an important cereal crop in the world for feed, food, fodder, and raw materials of
industries. Turcicum leaf blight (TLB) is a major foliar disease that can cause more than 50% yield
losses in maize. Considering this, the molecular diversity, population structure, and genome-wide
association study (GWAS) for TLB resistance were studied in 288 diverse inbred lines genotyped
using 89 polymorphic simple sequence repeats (SSR) markers. These lines werescreened for TLB
disease at two hot-spot locations under artificially inoculated conditions. The average percent disease
incidence (PDI) calculated for each genotype ranged from 17 (UMI 1201) to 78% (IML 12-22) with
an overall mean of 40%. The numbers of alleles detected at a locus ranged from twoto nine, with a
total of 388 alleles. The polymorphic information content (PIC) of each marker ranged between 0.04
and 0.86. Out of 89 markers, 47 markers were highly polymorphic (PIC ≥ 0.60). This indicated that
the SSR markers used were very informative and suitable for genetic diversity, population structure,
and marker-trait association studies.The overall observed homozygosity for highly polymorphic
markers was 0.98, which indicated that lines used were genetically pure. Neighbor-joining clustering,
factorial analysis, and population structure studies clustered the 288 lines into 3–5 groups. The
patterns of grouping were in agreement with the origin and pedigree records of the genotypesto
a greater extent.A total of 94.10% lines were successfully assigned to one or another group at a
membership probability of ≥0.60. An analysis of molecular variance (AMOVA) revealed highly
significant differences among populations and within individuals. Linkage disequilibrium for r2 and
D′ between loci ranged from 0 to 0.77 and 0 to 1, respectively. A marker trait association analysis
carried out using a general linear model (GLM) and mixed linear model (MLM), identified 15 SSRs
markers significantly associated with TLB resistance.These 15 markers were located on almost all
chromosomes (Chr) except 7, 8, and 9. The phenotypic variation explained by these loci ranged from
6% (umc1367) to 26% (nc130, phi085). Maximum 7 associated markers were located together on Chr 2
and 5. The selected regions identified on Chr 2 and 5 corroborated the previous studies carried out
in the Indian maize germplasm. Further, 11 candidate genes were identified to be associated with
significant markers. The identified sources for TLB resistance and associated markers may be utilized
in molecular breeding for the development of suitable genotypes.

Keywords: maize; turcicum leaf blight; simple sequence repeats; genetic diversity; population
structure; general linear and mixed linear models; genome-wide association study
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1. Introduction

Maize (Zea mays L., 2n = 20) is considered an important feed, fodder, and staple food
throughout the world and is popularly used as a model organism in plants due to its
high genetically diverse nature [1–3]. Increasing population, climate change, and produc-
tivity constraints have enhanced the demand forpoultry feed, fabric starch production,
pharmaceutical, cosmetic industry, high-quality corn oil, protein, alcoholic quencher, and
biofuels [4,5]. Therefore, the need of the hour is to improve maize for various economical
traits. Maize is a highly out-crossed crop with enormous genetic diversity that confers
a significant level of heterosis for hybrid development. The availability of adequate ge-
netic diversity is the strength of any crop-breeding program. Furthermore, the use of
diverse types of genetic materials such aslandraces and wild species as donors is highly
recommended so as to enrich the existing germplasm with favorable alleles [6,7].

Worldwide, only 10% of the total available genetic diversity in maize has been used
so far in breeding programs. On the other hand, the development of modern varieties,
replacement of old landraces, increased population and climate change are the major
factors of reduction in allelic diversity (genetic erosion) in maize [1,8]. Therefore, ananalysis
of genetic diversity and population structure of different germplasm is very useful for
broadening the genetic base and selecting the promising parental combinations for hybrids
development [3,9–11]. Furthermore, the information on population structure and genetic
diversity are useful to study the markers traits association for different economical traits.

Different approaches are available for the analysis of genetic diversity such asmolec-
ular, biochemical, and phenological approaches. In the present era, DNA-based markers
(molecular markers) are frequently used for genetic diversity and grouping of the popula-
tions [12]. Among the various high throughput DNA-based marker techniques available,
single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) are the mark-
ers of choice because they are co-dominant in nature, locus-specific, reproducible, highly
informative, and easy to use [13]. These markers are not influenced by environmental
changes and are thereforeuseful in genetic diversity, population structure, and mapping
studies [12,14]. Moreover, SSR markers are more informative than biallelic SNP markers
because they can detect multiple alleles per locus [15]. Van Inghelandt et al. [9] reported
SSRs to be 7 to 11 times more accurate than SNPs. Moreover, SSR markers have been
successfully and efficiently used to assess the extent of genetic diversity and population
structure in maize [3,16–23].

For a sustainable genetic gain in maize, the development and deployment of produc-
tive hybrids from diverse lines that performbetter under biotic and abiotic conditions is
very much required [24]. Amongst the biotic conditions, turcicum leaf blight (TLB), also
known as northern corn leaf blight (NCLB) caused by Exserohilumturcicum (Pass) Leonard
and Suggs (Teliomorph = Setosphaeria turcica (Luttrell) is an important foliar disease preva-
lent worldwide and reported to cause up to 50% yield losses in maize [25]. Generally, it is
more severe in regions where moderate temperatures and high humidity prevail [26]. TLB
resistance is complex and polygenic in nature [27,28]. In India, TLB is a more common and
severe disease of maize prevalent in almost all maize growing ecologies of the country [26];
therefore, there is an urgent need to breed for its resistance. In conventional breeding,
genotypes are selected/rejected based on phenotypic expression, which is governed by
many environmental factors. Furthermore, it is more time-consuming and innovative ap-
proaches need to be explored for its resistance breeding.Different approaches are available
to identify genomic regions viz., conventional linkage-based mapping, and genome-wide
association mapping [29]. The efficiency of conventional linkage mapping depends upon
genetic background, size of the population, diversity between two parents and the number
of loci used. Generally, linkage mapping has a lowerresolution compared to the GWAS,
because of the limited number of recombination events [30]. Nevertheless, this approach
has been extensively used in maize and other plant species, even before past two decades,
for the mapping of the gene (s) [25,31]. In the last decade, anincreasing use of GWAS has
been noted to identify genomic regions for various useful breeding traits in maize and other
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crops [32–34]. GWAS explores the historical and evolutionary recombination events at the
population level [34]. Additionally, the diverse panel used in the studies provides oppor-
tunities toidentify multiple alleles for a trait as well [29,30]. The population structure and
genetic relatedness may lead to a spurious association in GWAS. However, analyzing the
genotypes for their structure and kinship relation using suitable tools, e.g., STRUCTURE
and Tassel 3, respectively, can help in eliminating false association between a marker and
target trait [35].

At the globallevel, several reports on the genetic characterization of maize germplasm
and genomic regions for TLB resistance are available [36,37]. Most of these studies are
based on temperate to sub-temperate maize germplasm and used a conventional linkage-
based mapping approach for marker-trait linkage identification. With regard toIndian
maize germplasm, only one report is available so far, in whichthe authorsused conventional
linkage-based mapping in an F2:3 mapping population to identify genomic regions for
TLB resistance [25]. Similarly, Rashid et al. [23] evaluated International Maize and Wheat
Improvement Center (CIMMYT) panel in India for TLB disease and identified the loci
associated with TLB resistance using GWAS. Germplasm development and its character-
ization is a continuous process. Many new lines have been introduced in the breeding
programme. Therefore, anassessment of their genetic diversity and population structure
will contribute toefficient utilization in the ongoing breeding programme. Furthermore,
in India, limited efforts have been made toidentify genomic regions for TLB resistance in
maize. Considering the importance of genetic diversity, population structure analysis, and
TLB resistance in maize, the current study was planned with the objectives of the genetic
characterization of existing and the development of a large set of diverse maize inbred
lines (originated from CIMMYT and nine different maize research centers in India) with
SSR markers and the identification ofgenomic regions using the GWAS approach for TLB
resistance in tropical maize.

2. Materials and Methods
2.1. Plant Materials and DNA Isolation

In this study, a set of 288 genetically diverse maize inbred lines (Table S1) was used
for the assessment of genetic diversity, population structure and marker-trait associa-
tion for TLB resistance in tropical maize. These lines originated from ten different cen-
ters/organizations and derived from diverse source populations. Out of 288, 75 lines were
obtained from CIMMYT and the remaining 213 were from nine different maize research
centers working in India. Furthermore, a total of 212 lines among these were f the normal
field corn group, 75 were from quality protein maize (QPM) and one was from the popcorn
group. Data were collected from randomly selected plants for TLB disease, days to anthesis
(DTA), plant height (PHT; cm) and ear height placement (EHT; cm). DNA was extracted
from the bulked leaf tissues (15 days old seedling) of five randomly selected plants of each
genotype grown in the glasshouse. Each leaf sample was grounded with liquid nitrogen
using the CTAB extraction method with slight modifications. The total DNA quantity and
quality were estimated using 1% Agarose gel in electrophoresis with uncut lambda DNA
as standard. The quantified DNA samples were diluted to a concentration of 50 ng/µL for
use in polymerase chain reactions.

2.2. Disease Screening

During the year 2018–2019, a diverse set of 288 maize inbred lines from 10 different
maize research centers/organizations were characterized for DTA, PHT and EHT at the
Delhi location (Table S1). They were subjected to field screening for turcicum leaf blight
resistance under artificial inoculated conditions at two hot-spot locations, viz., Bajaura
and Srinagar with anaugmented design. The inoculum of TLB was multiplied on whole
sorghum grains and each line was infested by placingit in the whorl of 35-day-old plants.
Inoculation was repeated after one week of the first inoculation. The disease screening
was undertaken by maintaining a conducive environment during the whole cropping
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season. For the effective spread of the pathogen, water was sprayed in plant whorls using a
knapsack sprayer at 3 days intervals in case of no rain. A disease rating was performedafter
the grain-filling stage using a 1.0 (resistant)–9.0 (susceptible) scale and was utilized to
estimate the percentage of disease incidence (PDI) as per Hooda et al. [26].

2.3. Genotyping Using SSR

A set of 140 pairs of SSR primers uniformly distributed throughout the maize genome
were initially tested in a representative set of 288 inbred lines (total 12), of which 89
were found to be polymorphic. The PCR reactions were performed as per the standard
protocol [38,39]. The amplified DNA samples with a 50 bp ladder were separated by
electrophoresis in a 3% metaphor gel. The allele’s size in terms of base pairs was determined
based on their relative positions in the gel. The details of SSRs regarding their primer
sequences, chromosome position, annealing temperature and polymorphic information
content (PIC), are provided in Table S2. The genotyping data of 89 polymorphic SSR
markers were used for genetic diversity, population structure, and marker-trait association
analysis for disease resistance.

2.4. Genetic Diversity and Population Structure Analysis

The different genetic diversity parameters such as alleles per locus, polymorphic
information content (PIC), marker index (MI), the diversity index (DI), and heterozygosity
were calculated using PowerMarkerV.3.25 [40]. These parameters help to understand the
frequency of an allele, heterozygous loci, and the quantum of polymorphism [41] in the
selected set of genotypes. POPGENE software version v.1.32 [42] and Excel were used to
calculate different genetic parameters such asthe number of observed (Na) and effective
allele (Ne) numbers at a locus [43]. The expected homozygosity and heterozygosity were
calculated using Nei’s [44] gene diversity statistics. The neighbor-joining tree, on the basis
of distance matrix, and a factorial analysis were performed using DARwin software 6.0.21
and iTOL [45–47]. The analysis for molecular variance (AMOVA) between the populations
and within them (testing Fst by 9999 random permutations) was performed usingGe-
nAlEx version 6.5 software [48]. The population structure was studied using STRUCTURE
v 2.3.3 software for the assessment of sub-populations and genetic relationships among
the 288 genotypes [49]. The project was run with the set parameters of the population
admixture model and the allele frequency correlated.The hypothetical sub-populations in
the panel were considered as K = 1 to 10 with three independent runs for each K.The length
of the burn-in period and the number of iterations was set at 1, 50,000. The optimum value
for K was wherever the subsequent values of ln Pr (X|K) stopped varying significantly [49].
The pedigree record and breeding history of the lines were also considered while deciding
optimum sup-populations. Inbred lines with membership probability values of ≥0.60 were
assigned to the same group, while those with <0.60 probability were treated as mixed [50].

2.5. Linkage Disequilibrium and Marker-Trait Association Analysis

Linkage disequilibrium (LD) values for r2 [51] and D′ [52] between SSR loci on chromo-
somes were calculated using Tassel 3.0 (https://tassel.bitbucket.io/) following permutation
test of 10,000. A kinship matrix (K) and marker-trait association analysis were done in
Tassel 3.0 using the genotypic data of 89 polymorphic markers and phenotypic data on PDI
of TLB disease for a set of 288 diverse lines. The association study was conductedusing a
general linear model (GLM) with Q matrix (individuals probability of membership in the
population) [53] as well as a mixed linear model (MLM) with kinship (K) and Q matrix [35].
Finally, the associated markers were filtered out based on theR2 of the marker at a very
high significance (p < 0.001) level and with the lowest false discovery rate(FDR). These
markers were physically located on chromosomes using the MaizeGDB database, as well
asnucleotide and primer blast tools. Furthermore, the putative candidate gene belonging
to the selected markers was retrieved from MaizeGDB.

https://tassel.bitbucket.io/
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3. Results
3.1. Phenotypic Variability

Sufficient variability was observed for TLB disease, DTA, PHT, and EHT placement
(Table S1, Figures 1 and S1). The average PDI of TLB ranged from 17 (UMI 1201) to 78%
(IML 12-22) with an overall mean of 40% (Table S1). All types of responses to the TLB,
viz., resistant, moderately resistant, moderately susceptible, and susceptible were observed
in the panel. Some of the genotypes, namely UMI 1201, BML 7, DML 310, CML 542W,
IML 12-116, P72c1 × brasil1177-2, DQL 1017-2, DQL 779-1 were found to beresistant to
moderately resistantagainst TLB acrossthe locations. Similarly, the PHT and EHT placement
ranged from 63 (DQL 653-3-1) to 210 cm (UMI 1200) and 16 (IML 15-65) to 116 cm (CM 207),
with a mean of 135.3 cm, and 67.52 cm, respectively.
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Figure 1. Phenotypic variability for days to anthesis (DTA), ear height placement (EHT), plant height
(PHT), and turcicum leaf blight (TLB) at hots-spots location Srinagar (TLB-S) and Bajaura (TLB-B).

3.2. Genetic Diversity and Population Structure Analysis

Out of the 140 SSR markers used for initial screening, 89 (63.6%) were polymorphic
in 288 genotypes, with a total of 388 alleles. The number of alleles detected at a locus
ranged from twoto nine. Markers umc2303, phi085 and umc 2284 exhibited the maxi-
mum number of alleles (9), and a group of markers, viz., bnlg1458, bnlg2086, bnlg421,
phi038, phi108411, bnlg128, phi059, umc1367, umc1196, umc1607, umc1161, umc1913, umc2324
and umc1296 recorded the minimum number of alleles (2 alleles) in the genome. Sim-
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ilarly, the effective number of alleles (ne) ranged from 2.58 (umc2077) alleles to 7.73
(umc2303) per locus (Tables 1 and S2). The details of 89 polymorphic markers are pro-
vided in Supplementary Table S2. The PIC of each marker ranged between 0.04 (umc1161,
umc1296) and 0.86 (umc2284) (Table S2). Out of 89 markers, 47 markers were highly poly-
morphic (PIC ≥ 0.60) (Table 1).

Table 1. Genetic characteristic of 47 highly polymorphic SSR loci (>0.60) across the
288 maize genotypes.

S. No. SSR Locus Bin Loc PIC MI DI Na Ne Obs_Hom

1 phi 056 1.00 0.76 180.56 0.96 6 4.21 1.00
2 bnlg 1884 1.05 0.67 133.08 0.93 5 3.42 1.00
3 umc 1122 1.06 0.76 179.75 0.96 6 6.20 1.00
4 bnlg615 1.07 0.61 97.17 0.90 4 2.62 0.92
5 umc 2396 1.07 0.73 143.61 0.95 5 4.79 1.00
6 umc 2047 1.09 0.72 113.31 0.93 4 3.55 1.00
7 phi308707 1.10 0.67 105.53 0.92 4 3.01 1.00
8 phi227562 1.11 0.64 125.79 0.93 5 2.77 1.00
9 bnlg 1092 2.00 0.68 135.24 0.94 5 3.19 1.00

10 phi 96100 2.01 0.63 124.03 0.93 5 2.73 0.97
11 bnlg 2248 2.03 0.74 145.71 0.95 5 4.26 1.00
12 umc1845 2.03 0.66 130.65 0.93 5 3.01 0.98
13 phi 083 2.04 0.71 139.48 0.94 5 3.47 1.00
14 nc 133 2.05 0.71 169.46 0.95 6 3.50 1.00
15 bnlg1138 2.06 0.71 140.88 0.94 5 3.48 1.00
16 nc 003 2.06 0.82 257.82 0.98 8 5.54 0.98
17 umc1108 2.07 0.66 104.26 0.91 4 2.95 1.00
18 phi090 2.08 0.72 198.65 0.96 7 3.55 1.00
19 umc2077 2.09 0.61 121.11 0.92 5 2.58 1.00
20 phi374118 3.02 0.78 185.54 0.96 6 4.93 1.00
21 bnlg 1523 3.03 0.80 254.49 0.98 8 5.49 1.00
22 umc 2259 3.03 0.78 185.41 0.96 6 4.61 1.00
23 phi036 3.04 0.67 133.37 0.93 5 4.57 1.00
24 phi 102228 3.06 0.70 110.11 0.92 4 3.32 1.00
25 phi 046 3.08 0.61 145.47 0.94 6 2.59 1.00
26 bnlg1108 3.08 0.75 147.45 0.95 5 3.98 1.00
27 umc1594 3.09 0.68 133.52 0.94 5 3.09 1.00
28 phi072 4.00 0.76 210.52 0.97 7 4.26 0.98
29 phi096 4.04 0.78 153.20 0.96 5 4.80 1.00
30 umc 1175 4.05 0.60 94.58 0.90 4 2.50 1.00
31 umc 2284 4.06 0.86 304.31 0.98 9 7.13 0.96
32 bnlg252 4.06 0.76 151.15 0.95 5 4.60 1.00
33 phi093 4.08 0.70 137.42 0.94 5 3.14 0.78
34 nc130 5.00 0.71 168.19 0.95 6 3.44 0.92
35 phi024 5.01 0.80 189.34 0.97 6 5.72 1.00
36 umc1332 5.04 0.78 216.81 0.97 7 4.72 0.93
37 umc2303 5.05 0.85 334.58 0.98 9 7.73 0.97
38 phi085 5.06 0.85 370.80 0.99 9 7.63 0.99
39 dupssr14 8.09 0.68 134.47 0.94 5 3.43 0.73
40 phi 015 8.08 0.64 126.12 0.93 5 2.62 0.90
41 umc 1378 7.00 0.60 118.01 0.92 5 2.66 0.94
42 bnlg1443 6.05 0.66 131.04 0.93 5 3.06 1.00
43 duppsr 28 4.08 0.70 111.42 0.93 4 3.36 1.00
44 phi076 4.11 0.62 98.64 0.91 4 2.66 1.00
45 phi445613 6.05 0.69 108.49 0.92 4 2.68 1.00
46 umc1520 6.06 0.71 168.34 0.95 6 3.62 1.00
47 Zag249 6.01 0.66 131.12 0.93 5 2.94 1.00

PIC = Polymorphic information content, MI = marker index, DI = diversity index, Na = number of actual alleles,
Ne = effective alleles, Obs_Hom = observed homozygosity.
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The marker index (MI) ranged from 3.15 (umc1161) to 370.80 (phi085) with an average
value of 107.24 (Table S2). Similarly, the average value of the diversity index (DI) was 0.86,
and ranged between 0.52 (umc1161 and umc1296) to 0.99 (phi085). The marker attributes, viz.,
PIC, MI, and DI are routinely used to evaluate the informativeness of the primers. In the
current study, a PIC value ≥ 0.60 was observed in over 50% of the markers. This indicated
that the SSR markers used were very informative and can be useful in the assessment of
genetic diversity, population structure, and marker–trait association studies. In the current
study, the SSR primer set, phi085, appeared to be highly informative, having high PIC,
MI, DI, and Na (Tables 1 and S2). The value of the observed homozygosity for highly
polymorphic markers ranged from 0.73 to 1.00 with an overall average of 0.98 (Table 1).

A cluster analysis based on the unweighted neighbor-joining method grouped 288 inbred
lines into three main clusters (Figure S2). Furthermore, the main clusters-1 (yellow), 2
(blue), and 3 (red) were divided into two sub-clusters, each representing 33.34%, 32.64%,
and 34.02% of the total 288 inbred lines, respectively. Similarly, the factorial analysis also
revealed three major groups, as observed in clustering (Figure 2). The five optimal sub-
populations were identifiedin the structure analysis (Figure 3). Inbreds with a membership
probability of ≥0.60 were assigned to the same group and if they had a membership
probability of less than this value, they was considered as mixed (not assigned to any of
the five groups). Of the 288 inbred lines, 271 (94.10%) were assigned into either one of the
five groups and the remaining 17 lines (5.90%) were categorized as mixed (Table S1). The
grouping behavior of the lines was mostly observed as per their center from where they
originated and in accordance with the pedigree record (Table S1).

AMOVA is a suitable criterion by which to assess the overall distribution of diversity
within and among populations. AMOVA revealed highly significant differences among
populations and within individuals. Approximately 93% (88% of the total variance among
individuals and 5% within individuals) of the variation was within sub-populations, while
only a 7% variation was found among populations (Table 2).

Table 2. Analysis of molecular variance (AMOVA) among 288 maize inbred lines based on
89 polymorphic SSR markers.

Source df SS MS Est. Var. % Var. F-Stat. Value p

Between sub-populations 4 931.79 232.95 2.13 7% Fst 0.07 0.001
Among individual (within a population) 283 15,781.60 55.77 27.04 88% Fis 0.94 0.001

Within individual (across whole population) 288 488.50 1.70 1.70 5% Fit 0.95 0.001

Total 575 17,201.89 290.41 30.86 100%

df: degree of freedom, SS: sum of squares, MS: mean sum of squares, Est. Var.:estimated variance, % Var.:
percentage of variation, Fst—inbreeding coefficient within subpopulations relative to the total, Fis—inbreeding
coefficient within individuals relative to the subpopulation, Fit—inbreeding coefficient within individuals relative
to the total.

The AMOVA results revealeda higher level of genetic variation among the individuals
in groups than between different groups of populations. Wright’s F statistics (Fis, Fit, Fst)
was calculated to observe the molecular variation within and across the individuals of
the population. The Fis (within individuals across the whole population) and Fit (among
individuals within a population) values were observed as 0.94 and 0.95, respectively. The
Fst (fixation index; between sub-populations or groups of populations) for the polymorphic
loci across all accessions was calculated as 0.07. The value of Fst ranged from 0 to 1,
with 0 indicating complete panmixis (two populations are interbreeding freely), whereas
1 implies that two populations do not share any genetic diversity. The result of Fst indicated
a low to medium differentiation between subgroups of the population [54].
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Figure 3. Population structure of 288 maize inbred lines revealed by 89 polymorphic SSRs markers at
K = 5. Each inbred line is represented by a vertical line which indicates the membership coefficients
for each individual. The five groups are shown in different colors: G1 (Green), G2 (Red), G3 (Purple),
G4 (Yellow), and G5 (Blue). See Table S1 for details on group membership.

3.3. Marker Trait Association Analysis

LD can be defined as the non-random association between different loci on either
the same or on different chromosomes. The r2 and D′ values indicate the existence of
significant LD between markers on the same or on different chromosomes. The value for
r2 between the marker pairs ranged from 0.00 to 0.77; however, the values for D′ ranged
from 0 to 1.0. A marker trait association analysis was performed using GLM (Q) and MLM
(Q + K) implemented in Tassel 3.0. A total of 15 SSR markers, viz., one on chromosomes
(Chr) 3 and 4, two on Chr 1, 6, and 10, three on Chr 5 and four on Chr 2 were found
to be significantly (p < 0.001, with FDR 0.0001 to 0.04) associated with TLB resistance in
GLM (Figure 4, Table 3). The phenotypic variation explained by these loci ranged from
6% (umc1367) to 26% (nc130, phi085). None of the markers were found to be significantly
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associated with TLB in MLM at low FDR. Furthermore, a total of eleven putative candidate
genes were identified to be associated with significant markers.

Table 3. Simple sequence repeats markers found significantly (p < 0.001) associated with turcicum
leaf blight resistance in marker-trait association analysis done using general linear model.

S. No. Marker Bin Location Physical Position Tandem Repeats Marker R2 FDR PIC

1 umc1122 # 1.06 206027905–206027744 (CGT)7 0.17 0.0097 0.76
2 umc2396 # 1.07 NA * (GTT)5 0.22 0.0003 0.73
3 bnlg1092 2.00 NA * AG(30) 0.16 0.0200 0.68
4 phi083 # 2.04 42235661–42235792 AGCT 0.13 0.0030 0.71
5 bnlg1138 2.06 NA * AG(14) 0.22 0.0110 0.71
6 umc1108 2.07 191651695–191651816 (ACGT)4 0.12 0.0012 0.66
7 phi374118 3.02 17628581–17628810 ACC 0.16 0.0110 0.78
8 phi076 4.11 248828113–248828277 AGCGGG 0.11 0.0020 0.62
9 nc130 5.00 1231799–1231940 AGC 0.26 0.0001 0.71

10 phi024 5.01 4540582–4540751 CCT 0.22 0.0200 0.80
11 phi085 5.06 213469971–213469712 AACGC 0.26 0.0023 0.85
12 phi075 6.00 6643571–6643381 CT 0.11 0.0020 0.49
13 umc1520 6.06 169840623–169840474 (GA)8 0.08 0.0164 0.71
14 phi059 # 10.02 8667388–8667241 ACC 0.12 0.0200 0.44
15 umc1367 10.03 26019710–26019551 (CGA)6 0.06 0.0400 0.23

# Markers found significantly associated with TLB resistance in more than one association analysis carried out
based on disease response at Bajaura, Srinagar and mean values of both the sites. In this case, the maximum value
of R2 from either of the association has been mentioned over here. * Marker details are available in the Maize
GDB but we could not locate an exact physical position.
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No polymorphic markers were found on Chr 7. The marker highlighted in red colors were found
associated with TLB resistance. The details of all these markers have been given in Tables 3 and S1.

The putative candidate genes belonging to selected markers are as follows: Zm00001eb-
253820: glutamine synthetase (phi085); Zm00001eb210620: LOC100193664 (nc130); Zm00001-
eb212940 : opaque2 heterodimerizing protein 2 (phi024); Zea mays metallothionein-like
protein type 2: LOC100283295 (phi374118); Zm00001eb260140: ferredoxin I (Fd) isopro-
tein (phi075); Zea mays catalase (Cat3): L05934.1 (phi076); Zm00001eb038580 (umc1122);
Zm00001eb080380: prp2—pathogenesis-related protein2 (phi083); Zm00001eb292690: tcptf23—TCP-
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transcription factor 23 (umc1520); Zm00001eb407710: aasr1—abscisic acid stress ripening1
(phi059) and Zm00001eb410600 (umc1367).

4. Discussion
4.1. Genetic Diversity and Population Structure

Genetic diversity and population structure analysis are important tools for germplasm
characterization and subsequent utilization in traits improvement. Apopulation with a
high level of genetic diversity helps to broaden the genetic base in any breeding program.
To assess the genetic diversity in maize genotypes, SSR markers remain a marker of choice
due to their co-dominant and multi-allelic nature, abundance, and the specificity of the
locus [9]. In this study, a distance-based clustering approach using 89 polymorphic SSRs
was used to evaluate the genetic diversity and population structure among the 288 inbred
lines. A total of 388 alleles with a range of twoto nineper locus in the present study,
indicate the wide range of diversity among the genotypes [19–23,55]. Lanes et al. [19] and
Vega-Alvarez et al. [55] reported 471 and 649 alleles, respectively, which were higher in
comparison to the present study (388 alleles), while Xiao et al. [56] reported a relatively
lower number of alleles, i.e., 145. Similarly, an average of 9.60 (range of 4 to17), 2.96 (2 to 4)
and 14.57 alleles per locus were reported in maize using SSRs [3,9,38], respectively. The
differences in the number of alleles across studies may be due to the use of different genetic
materials and the number of markers. The average PIC value of 0.54 (range from 0.04 to
0.86) indicates the presence of more informative allelic variations in the panel [41]. The
high polymorphic markers could be used effectively for fingerprinting and QTL mapping
studies. The high values of homozygosity observed in the current study indicate that the
inbred lines are genetically pure and therefore can be used in hybrid breeding [3]. Since
maize is a highly cross-pollinated crop, some amount of residual heterozygosity persists.

Neighbor-joining clustering grouped the accessions into three major clusters. Clear
patterns of grouping were observed as per the center that developed the lines and in
accordance with the pedigree/source populations. Furthermore, cluster-1 mainly accom-
modated the lines from IIMR (87), with a few lines (9) from five AICRP centers and research
partners working in India. Conversely, cluster-2 carries most of the lines of CIMMYT
(69) and the remaining (25) from four different AICRP partners. The sister lines sharing
similar or related pedigree/source populations were generally grouped into one cluster.
The majority of lines of AICRP Karnal, which are derived from CIMMYT materials, were
grouped into cluster-2, largely accommodating the CIMMYT lines. Cluster-3 included the
maximum lines of IIMR (84) and the remaining 14 from almost all maize research partners.
The model-based analysis using STRUCTURE identified five genetically differentiated
groups among all lines. In previous studies, Aci et al. [21] used 47 maize landraces and
reported two sub-populations, whereas Sofi et al. [23] performed anadmixture model-based
approach in 25 maize accessions and reported seven groups. Despite the slight variation
in the number of groups and clusters in Neighbor-Joining clustering, factorial analysis,
and population structure, a similar pattern of grouping was observed in the current study.
Adu et al. [3] also observed a different number of groups based on clustering (fiveclusters)
and population structure analysis (twosub-populations) in maize. Considering the mem-
bership probability of ≥0.60, 17 inbred lines were not assigned to any of the groups and
were therefore marked as mixed (Table S1). The remaining 271 lines were assigned to either
of the groups. This shows that the lines included in the study are highly homozygous and
contained a genetically distinct group [50]. These inbred lines can be a good component
of an association mapping panel for GWAS studies. A low to moderate level of genetic
differentiation (Fst = 0.07), confirmed by a low rate of inbreeding, shows a high genetic
identity level of the populations under study. Genetic differentiation (Fst = 0.07) among our
populations can be ranked bythose found in the American Southern accessions (0.12) [57]
andSahara accessions [22].
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4.2. Markers Trait Association Analysis

Turcicum leaf blight is a serious disease of maize (59). The occurrence of disease in the
field depends upon many field and climatic factors, thereforescreening should be carried
out in hot-spot sites under artificial inoculated conditions. Although several practices are
available for TLB management in maize, the identification and exploration of resistance
sources are more sustainable and effective [58]. Sufficient variability was observed in
the panel for TLB disease. The disease-resistant sources identified can be utilized for
introgression into tropical maize. Furthermore, highly susceptible and tolerant lines can be
utilized to map populations for genetic/genomic studies in maize [39,59].

Finding genomic regions and markers associated with TLB resistance can effectively
help with the issues of field screening. Association analysis provides ample opportuni-
ties to dissect complex traits using natural variation in the germplasm [29]. However,
afalse association is the major constraint in this approach that needs to be tackled before-
hand [29,34,60]. The maximum number of SSRs loci were found to be associated with TLB
resistance forchromosomes 2 and 5. No significant association was found forchromosomes
8, and 9, (Table 3, Figure 4). The SSR primer set, phi085 located on Chr 5, appeared to be
highly informative withhigh PIC, MI, DI, and Na, and was also found to be significantly
associated with TLB resistance. Generally, with regard toIndian maize germplasm, only
a few reports are available on mapping genomic regions for TLB resistance. However,
recently, Ranganatha et al. [25] mapped the QTLs for TLB resistance using an F2:3 mapping
population derived from a cross between CML 153 (susceptible) and SKV 50 (resistant). Out
of the three significant QTLs identified, one was mapped on Chr 2 (2.06) and 5 (5.04–5.05).
In the current study, we also identifiedseven markers, such as the four located on Chr 2
(bnlg1092 (2.00), phi083 (2.04), bnlg1138 (2.06), umc1108 (2.07)) and three on Chr5 (nc130
(5.00), phi024 (5.01), phi085 (5.06)) (Table 3, Figure 4) and explained phenotypic variation
from 12 to 26%. We found some of the markers at exactly the same bin location as mapped
by Ranganatha et al. [25]. Similarly, the genomic regions were also mapped on Chr 1, 2, 5,
8, and 9 by Xia et al. [36] using recombinant inbred lines as a mapping population. These
regions may be considered important for understanding the molecular basis and molecular
breeding for TLB resistance in tropical maize. Rashid et al. [23] also identified SNPs for
TLB on Chr 1, 7, 8 and 10 using GWAS. The putative candidate genes and new regions
identified here may further be explored for validation and synthesis of gene-based markers
for TLB resistance.The markers found to be associated with TLB resistance in this study
would be useful for molecular breeding and further fine mapping TLB resistance, with the
subsequent addition of markers.

5. Conclusions

This study attempted to understand the genetic diversity and population structure of
288 maize inbred lines that originatedfrom diverse sources and breeding programs in India.
Moreover, using GWAS, the molecular markers associated with TLB disease resistance in
tropical maize were identified. Sufficient genetic variation was reported for morphological
traits, TLB disease response, and molecular markers in 288 inbred lines. The presence of
more alleles per locus and high marker polymorphism indicated the existence of a broad
genetic base in the germplasm. The high homozygosity in the panel indicated the purity
of inbred lines. Based on the various statistical methods, the grouping of germplasm
into different groups agreed to a greater extent with the origin and pedigree records of
genotypes. A total 94.10% lines were successfully assigned to one or another group at a
membership probability of ≥0.60. In GWAS, 15 markers were found to be significantly
associated with TLB disease resistance in tropical maize. Genomic regions were identified
on almost all chromosomes except 8, 7 and 9. The selected regions identified on Chr 2
and 5 mostly matched with the previous mapping studies conducted using Indian maize
germplasm and exotic germplasm. The identified resistance sources, markers associated
with TLB resistance and candidate genes may be validated and utilized in molecular
breeding for the development of suitable genotypes.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13040618/s1, Figure S1: Highly susceptible and resistant
maize inbred lines to TLB under artificial inoculated conditions in the field. Figure S2: Neighbor-
joining based phylogenetic radial tree showing the genetic relationship among 288 maize genotypes.
Three different major clusters each having two sub-groups were found in 288 lines using 89 polymor-
phic markers. Table S1: Details of 288 genotypes used for genetic characterization and genome-wide
association study for TLB resistance. Table S2: Details of 89 SSR markers which were found polymor-
phic in 288 diverse sets of inbred lines.

Author Contributions: Conceptualization: B.K., S.R., M.C. and P.K. (Pardeep Kumar). Data process-
ing and formal analyses: B.K., R.D., Z.A.D., S.K.G., M.C., P.K. (Pardeep Kumar), K.K., K.S.H., S.K.,
B.K.S., C.L., M. and P.K. (Pushpendra Kumar). Writing original draft: B.K., S.R., M.C., P.K. (Pardeep
Kumar) and K.K. Review and editing: S.R., K.K., K.S.H., M.C. and P.K. (Pardeep Kumar). Funding
acquisition: B.K. and S.R. Overall investigation: S.R., B.K., Z.A.D. and S.K.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by [SERB & ICAR] grant number [ECR/2017/002638 & 1007436]
and The APC was funded by [CRP Biofortification project code: 1007436].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data is available with the first author for any further informa-
tion/queries. Besides, part of it has been submitted with the manuscript as Tables S1 and S2.

Acknowledgments: The authors are most grateful to DST-SERB and ICAR for financial support
under ECR and CRP projects schemes, respectively. The role and contribution of partners of the
All India Coordinated Research Project on Maize and CIMMYT for sharing the lines to constitute a
diverse association panel in tropical maize are sincerely acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Prasanna, B.M. Diversity in Global Maize Germplasm: Characterization and Utilization. J. Biosci. 2012, 37, 843–855.
2. Patel, K.A.; Khanorkar, S.M.; Damor, A.S.; Parmar, H.K. Microsatellite Based Molecular Characterization and Genetic Diversity

Analysis of Maize (Zea mays L.) Inbred Lines. Int. J. Agric. Environ. 2017, 10, 773–776.
3. Adu, G.B.; Awuku, F.J.; Amegbor, I.K.; Haruna, A.; Manigben, K.A.; Aboyadana, P.A. Genetic Characterization and Population

Structure of Maize Populations Using SSR Markers. Ann. Agric. Sci. 2019, 64, 47–54.
4. Yadav, O.P.; Karjagi, C.G.; Jat, S.L.; Dhillon, B.S. Overview of Maize Improvement in India. Indian Farming 2014, 64, 4.
5. Choudhary, M.; Singh, A.; Gupta, M.; Rakshit, S. Enabling Technologies for Utilization of Maize as a Bioenergy Feedstock. Biofuels

Bioprod. Biorefin. 2020, 14, 402–416.
6. Lia, V.V.; Poggio, L.; Confalonieri, V.A. Microsatellite Variation in Maize Landraces from Northwestern Argentina: Genetic

Diversity, Population Structure and Racial Affiliations. Theor. Appl. Genet. 2009, 119, 1053–1067.
7. Choudhary, M.; Singh, V.; Muthusamy, V.; Wani, S.H. Harnessing Crop Wild Relatives for Crop Improvement. LS Int. J. Life Sci.

2017, 6, 73–85. [CrossRef]
8. Warburton, M.L.; Reif, J.C.; Frisch, M.; Bohn, M.; Bedoya, C.; Xia, X.C.; Crossa, J.; Franco, J.; Hoisington, D.; Pixley, K.; et al.

Genetic Diversity in CIMMYT Nontemperate Maize Germplasm: Landraces, Open Pollinated Varieties, and Inbred Lines. Crop
Sci. 2008, 48, 617–624.

9. Van Inghelandt, D.; Melchinger, A.E.; Lebreton, C.; Stich, B. Population Structure and Genetic Diversity in a Commercial Maize
Breeding Program Assessed with SSR and SNP Markers. Theor. Appl. Genet. 2010, 120, 1289–1299. [PubMed]

10. Semagn, K.; Magorokosho, C.; Bindiganavile, S.V.; Makumbi, D.; Beyene, Y.; Mugo, S.; Prasanna, B.M.; Warburton, M.L. Molecular
Characterization of Diverse CIMMYT Maize Inbred Lines from Eastern and Southern Africa Using Single Nucleotide Polymorphic
Markers. BMC Genom. 2012, 13, 113.

11. Ertiro, B.T.; Semagn, K.; Das, B.; Olsen, M.; Labuschagne, M.; Worku, M.; Wegary, D.; Azmach, G.; Ogugo, V.; Keno, T.; et al.
Genetic Variation and Population Structure of Maize Inbred Lines Adapted to the Mid-Altitude Sub-Humid Maize Agro-Ecology
of Ethiopia Using Single Nucleotide Polymorphic (SNP) Markers. BMC Genom. 2017, 18, 777. [CrossRef] [PubMed]

12. Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent
Advances: An Overview of Its Analytical Perspectives. Genet. Res. Int. 2015, 2015, 431487. [CrossRef] [PubMed]

13. Powell, W.; Morgante, M.; Andre, C.; Hanafey, M.; Vogel, J.; Tingey, S.; Rafalski, A. The Comparison of RFLP, RAPD, AFLP and
SSR (Microsatellite) Markers for Germplasm Analysis. Mol. Breed. 1996, 2, 225–238. [CrossRef]

https://www.mdpi.com/article/10.3390/genes13040618/s1
https://www.mdpi.com/article/10.3390/genes13040618/s1
http://doi.org/10.5958/2319-1198.2017.00009.4
http://www.ncbi.nlm.nih.gov/pubmed/20063144
http://doi.org/10.1186/s12864-017-4173-9
http://www.ncbi.nlm.nih.gov/pubmed/29025420
http://doi.org/10.1155/2015/431487
http://www.ncbi.nlm.nih.gov/pubmed/25874132
http://doi.org/10.1007/BF00564200


Genes 2022, 13, 618 13 of 14

14. Comertpay, G.; Baloch, F.S.; Kilian, B.; Ulger, A.C.; Ozkan, H. Diversity Assessment of Turkish Maize Landraces Based on
Fluorescent Labelled SSR Markers. Plant Mol. Biol. Rep. 2012, 30, 261–274. [CrossRef]

15. Xu, J.; Liu, L.; Xu, Y.; Chen, C.; Rong, T.; Ali, F.S.; Zhou, F.; Wu, Y.; Liu, J.; Wang, M.; et al. Development and Characterization of
Simple Sequence Repeat Markers Providing Genome-Wide Coverage and High Resolution in Maize. DNA Res. 2013, 20, 497–509.
[CrossRef]

16. Shehata, A.I.; Al-Ghethar, H.A.; Al-Homaidan, A.A. Application of Simple Sequence Repeat (SSR) Markers for Molecular
Diversity and Heterozygosity Analysis in Maize Inbred Lines. Saudi J. Biol. Sci. 2009, 16, 57–62. [CrossRef]

17. Nepolean, T.; Singh, I.; Hossain, F.; Pandey, N.; Gupta, H.S. Molecular Characterization and Assessment of Genetic Diversity of
Inbred Lines Showing Variability for Drought Tolerance in Maize. J. Plant Biochem. Biotechnol. 2013, 22, 71–79. [CrossRef]

18. Sserumaga, J.P.; Makumbi, D.; Ji, H.; Njoroge, K.; Muthomi, J.W.; Chemining’wa, G.N.; Lee, S.-M.; Asea, G.; Kim, H. Molecular
Characterization of Tropical Maize Inbred Lines Using Microsatellite DNA Markers. Maydica 2014, 59, 267–274.

19. Lanes, E.C.M.; Viana, J.M.S.; Paes, G.P.; Paula, M.F.B.; Maia, C.; Caixeta, E.T.; Miranda, G.V. Population Structure and Genetic
Diversity of Maize Inbreds Derived from Tropical Hybrids. Genet. Mol. Res. 2014, 13, 7365–7376. [CrossRef]

20. Choudhary, M.; Hossain, F.; Muthusamy, V.; Thirunavukkarasu, N.; Saha, S.; Pandey, N.; Jha, S.K.; Gupta, H.S. Microsatellite
Marker-Based Genetic Diversity Analyses of Novel Maize Inbreds Possessing Rare Allele of β-Carotene Hydroxylase (CrtRB1)
for Their Utilization in β-Carotene Enrichment. J. Plant Biochem. Biotechnol. 2015, 25, 12–20. [CrossRef]

21. Aci, M.M.; Lupini, A.; Mauceri, A.; Morsli, A.; Khelifi, L.; Sunseri, F. Genetic Variation and Structure of Maize Populations from
Saoura and Gourara Oasis in Algerian Sahara. BMC Genet. 2018, 19, 51. [CrossRef] [PubMed]

22. Belalia, N.; Lupini, A.; Djemel, A.; Morsli, A.; Mauceri, A.; Lotti, C.; Khelifi-Slaoui, M.; Khelifi, L.; Sunseri, F. Analysis of Genetic
Diversity and Population Structure in Saharan Maize (Zea mays L.) Populations Using Phenotypic Traits and SSR Markers. Genet.
Resour. Crop Evol. 2019, 66, 243–257. [CrossRef]

23. Rashid, Z.; Sofi, M.; Harlapur, S.I.; Kachapur, R.M.; Dar, Z.A.; Singh, P.K.; Zaidi, P.H.; Vivek, B.S.; Nair, S.K. Genome-Wide
Association Studies in Tropical Maize Germplasm Reveal Novel and Known Genomic Regions for Resistance to Northern Corn
Leaf Blight. Sci. Rep. 2020, 10, 21949. [CrossRef] [PubMed]

24. Smith, S.; Bubeck, D.; Nelson, B.; Stanek, J.; Gerke, J. Genetic Diversity and Modern Plant Breeding. In Genetic Diversity and
Erosion in Plants. Sustainable Development and Biodiversity; Springer: Cham, Switzerland, 2015; Volume 7.

25. Ranganatha, H.M.; Lohithaswa, H.C.; Pandravada, A. Mapping and Validation of Major Quantitative Rait Loci for Resistance to
Northern Corn Leaf Blight Along With Determination of the Relationship Between Resistances to Multiple Foliar Pathogens of
Maize (Zea mays L.). Front. Genet. 2021, 11, 7. [CrossRef] [PubMed]

26. Hooda, K.S.; Bagaria, P.K.; Khokhar, M.; Kaur, H.; Rakshit, S. Mass Screening Techniques for Resistance to Maize Diseases; ICAR-Indian
Institute of Maize Research: Ludhiana, India, 2018; Volume 1004, p. 14.

27. Chaudhary, B.; Mani, V.P. Genetic Analysis of Resistance to Turcicum Leaf Blight in Semi-Temperate Early Maturing Genotypes
of Maize (Zea mays). Indian J. Genet. 2010, 70, 65–70.

28. Ranganatha, H.M.; Lohithaswa, H.C.; Anand, S.P. Understanding the Genetic Architecture of Resistance to Northern Corn Leaf
Blight and Southern Corn Rust in Maize (Zea mays L.). Indian J. Genet. 2017, 77, 357–363. [CrossRef]

29. Kumar, B.; Akshay, T.; Verma, K.; Bala, I.; Harish, G.D.; Samrat, G.; Lal, S.K.; Sapra, R.L.; Singh, K.P. Mapping of Yellow Mosaic
Virus (YMV) Resistance in Soybean (Glycine Max L. Merr) through Association Mapping Approach. Genetica 2014, 143, 1–10.
[CrossRef]

30. Kumar, B.; Talukdar, A.; Bala, I.; Verma, K.; Lal, S.K.; Sapra, R.L.; Namita, B.; Chander, S.; Tiwari, R. Population Structure and
Association Mapping Studies for Important Agronomic Traits in Soybean. J. Genet. 2014, 93, 775–784. [CrossRef]

31. Price, A.H. Believe It or Not, QTLs Are Accurate! Trends Plant Sci. 2006, 11, 1427–1437. [CrossRef]
32. Thornsberry, J.M.; Goodman, M.M.; Doebley, J.; Kresovich, S.; Nielsen, D.; Esiv, B. Dwarf8 Polymorphisms Associate with

Variation in FLowering Time. Nat. Genet. 2001, 28, 286–289. [CrossRef]
33. Sun, G.; Zhu, C.; Kramer, M.H.; Yang, S.S.; Song, W.; Piepho, H.P.; Yu, J. Variation Explained in Mixed–Model Association

Mapping. Heredity 2010, 105, 333–340. [CrossRef] [PubMed]
34. Rice, B.R.; Fernandes, S.B.; Lipka, A.E. Multi-Trait Genome-Wide Association Studies Reveal Loci Associated with Maize

Inflorescence and Leaf Architecture. Plant Cell Physiol. 2020, 61, 1427–1437. [CrossRef] [PubMed]
35. Yu, J.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.; McMullen, F.; Gaut, M.D.; Nielsen, B.S.; Holland, D.M.; et al. A

Unified Mixed-Model Method for Association Mapping That Accounts for Multiple Levels of Relatedness. Nat. Genet. 2006, 38,
203–208. [CrossRef] [PubMed]

36. Xia, H.; Gao, W.; Qu, J.; Dai, L.; Gao, Y.; Lu, S.; Zhang, M.; Wang, P.; Wang, T. Genetic Mapping of Northern Corn Leaf
Blight-Resistant Quantitative Trait Loci in Maize. Medicine 2020, 99, 31. [CrossRef]

37. Shu, G.; Cao, G.; Li, N.; Wang, A.; Wei, F.; Li, T.; Yi, L.; Xu, Y.; Wang, Y. Genetic Variation and Population Structure in China
Summer Maize Germplasm. Sci. Rep. 2021, 11, 8012. [CrossRef]

38. Kumar, B.; Rakshit, S.; Singh, R.D.; Gadag, R.N.; Nath, R.; Paul, A.K. Genetic Diversity of Early Maturing Indian Maize
(Zea mays L.) Inbred Lines Revealed by SSR Markers. J. Plant Biochem. Biotechnol. 2008, 17, 133–140. [CrossRef]

39. Kumar, B.; Singh, S.B.; Singh, V.; Hooda, K.S.; Bagaria, P.K.; Kumar, K.; Pradhan, H.R.; Kumar, S. RILs development and its
characterization for MLB resistance and flowering in maize (Zea mays). Indian J. Agric. Sci. 2020, 90, 183–188.

40. Lui, K. PowerMarker: Integrated Analysis Environment for Genetic Marker Data. Bioinformatics 2005, 21, 2128–2129.

http://doi.org/10.1007/s11105-011-0332-3
http://doi.org/10.1093/dnares/dst026
http://doi.org/10.1016/j.sjbs.2009.10.001
http://doi.org/10.1007/s13562-012-0112-7
http://doi.org/10.4238/2014.September.12.2
http://doi.org/10.1007/s13562-015-0300-3
http://doi.org/10.1186/s12863-018-0655-2
http://www.ncbi.nlm.nih.gov/pubmed/30068292
http://doi.org/10.1007/s10722-018-0709-3
http://doi.org/10.1038/s41598-020-78928-5
http://www.ncbi.nlm.nih.gov/pubmed/33319847
http://doi.org/10.3389/fgene.2020.548407
http://www.ncbi.nlm.nih.gov/pubmed/33584784
http://doi.org/10.5958/0975-6906.2017.00048.7
http://doi.org/10.1007/s10709-014-9801-6
http://doi.org/10.1007/s12041-014-0454-0
http://doi.org/10.1016/j.tplants.2006.03.006
http://doi.org/10.1038/90135
http://doi.org/10.1038/hdy.2010.11
http://www.ncbi.nlm.nih.gov/pubmed/20145669
http://doi.org/10.1093/pcp/pcaa039
http://www.ncbi.nlm.nih.gov/pubmed/32186727
http://doi.org/10.1038/ng1702
http://www.ncbi.nlm.nih.gov/pubmed/16380716
http://doi.org/10.1097/MD.0000000000021326
http://doi.org/10.1038/s41598-021-84732-6
http://doi.org/10.1007/BF03263274


Genes 2022, 13, 618 14 of 14

41. Botstein, D.; White, R.L.; Skolnick, M.H.; Davis, R.W. Construction of a Genetic Linkage Map in Man Using Restriction Fragment
Length Polymorphisms. Am. J. Hum. Genet. 1980, 32, 314.

42. Yeh, F.; Yang, R.; Boyle, T.J.; Mao, J. POPGENE Software: Microsoft Windows-Based Freeware for Population Genetic Analysis;
Version 1.32; Center for International Forestry Research, University of Alberta: Edmonton, AB, Canada, 1997.

43. Lewontin, R.C. The Apportionment of Human Diversity. In Evolutionary Biology; Springer: New York, NY, USA, 1972; pp. 381–398.
44. Nei, M. Genetic Distance between Populations. Am. Nat. 1972, 106, 71–79. [CrossRef]
45. Perrier, X.; Jacquemoud-Collet, J.P. DARwin Software: Dissimilarity Analysis and Representation for Windows. 2006. Available

online: http://darwin.cirad.fr/darwin (accessed on 14 March 2022).
46. Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic

Acids Res. 2021, 49, 293–296. [CrossRef]
47. Rohlf, F.J. Numerical Taxonomy and Multivariate Analysis System; Version 2.1; Exeter Software: New York, NY, USA, 2000.
48. Peakall, R.; Smouse, P.E. Genalex, 6 Genetic Analysis in Excel Population Genetic Software for Teaching and Research. Mol. Ecol.

Notes 2006, 6, 288–295. [CrossRef]
49. Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155,

945–959. [CrossRef]
50. Leng, Y.; Lv, C.; Li, L.; Xiang, Y.; Xia, C.; Wei, R.; Rong, T.; Lan, H. Heterotic Grouping Based on Genetic Variation and Population

Structure of Maize Inbred Lines from Current Breeding Program in Sichuan Province, Southwest China Using Genotyping by
Sequencing (GBS). Mol. Breed. 2019, 39, 38. [CrossRef]

51. Hill, W.G.; Robertson, A. Linkage Disequilibrium in Finite Populations. Theor. Appl. Genet. 1968, 38, 226–231. [CrossRef]
52. Farnir, F.; Coppieters, W.; Arranz, J.J.; Berzi, P.; Cambisano, N.; Grisart, B.; Karim, L.; Marcq, F.; Moreau, L.; Mni, M.; et al.

Extensive Genome-Wide Linkage Disequilibrium in Cattle. Genome Res. 2000, 10, 220–227. [CrossRef]
53. Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of

Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [CrossRef]
54. Wright, S. Evolution and the Genetics of Populations; University of Chicago Press: Chicago, IL, USA, 1978; Volume 4, p. 560.
55. Vega-Alvarez, I.; Santacruz-Varela, A.; Rocandio-Rodríguez, M.; Córdova-Téllez, L.; López-Sánchez, H.; Muñoz-Orozco, A.;

Hernández-Bautista, A. Genetic Diversity and Structure of Native Maize Races from Northwestern Mexico. Pesqui. Agropecu.
Bras. 2017, 52, 1023–1032. [CrossRef]

56. Xiao, Y.; Liu, H.; Wu, L.; Warburton, M.; Yan, J. Genome-Wide Association Studies in Maize: Praise and Stargaze. Mol. Plant 2017,
10, 359–374. [CrossRef]

57. Noldin, O.; Revilla, P.; Orda’s, B. Genetic Diversity of the Floury Race of Maize Avati Morotî from the Guaraní tribe in Paraguay.
Span. J. Agric. Res. 2016, 14, e0707. [CrossRef]

58. Hooda, K.S.; Khokhar, M.K.; Shekhar, M.; Karjagi, C.G.; Kumar, B.; Mallikarjuna, N.; Devlash, R.K.; Chandrashekara, C.; Yadav,
O.P. Turcicum Leaf Blight—Sustainable Management of a Re-Emerging Maize Disease. J. Plant Dis. Prot. 2017, 124, 101–113.
[CrossRef]

59. Kumar, B.; Hooda, K.S.; Gogoi, R.; Kumar, V.; Kumar, S.; Abhishek, A.; Bhati, P.; Sekhar, J.C.; Yathish, K.R.; Singh, V.; et al.
Inheritance Study and Stable Sources of Maydis Leaf Blight (Cochliobolus heterostrophus) Resistance in Tropical Maize Germplasm.
Cereal Res. Commun. 2016, 44, 424–434. [CrossRef]

60. Neumann, K.; Kobiljski, B.; Dencic, S.; Varshney, R.K.; Borner, A. Genome-Wide Association Mapping: A Case Study in Bread
Wheat (Triticum aestivum L.). Mol. Breed. 2011, 27, 37–58. [CrossRef]

http://doi.org/10.1086/282771
http://darwin.cirad.fr/darwin
http://doi.org/10.1093/nar/gkab301
http://doi.org/10.1111/j.1471-8286.2005.01155.x
http://doi.org/10.1093/genetics/155.2.945
http://doi.org/10.1007/s11032-019-0946-y
http://doi.org/10.1007/BF01245622
http://doi.org/10.1101/gr.10.2.220
http://doi.org/10.1093/bioinformatics/btm308
http://doi.org/10.1590/s0100-204x2017001100008
http://doi.org/10.1016/j.molp.2016.12.008
http://doi.org/10.5424/sjar/2016143-9214
http://doi.org/10.1007/s41348-016-0054-8
http://doi.org/10.1556/0806.44.2016.004
http://doi.org/10.1007/s11032-010-9411-7

	Introduction 
	Materials and Methods 
	Plant Materials and DNA Isolation 
	Disease Screening 
	Genotyping Using SSR 
	Genetic Diversity and Population Structure Analysis 
	Linkage Disequilibrium and Marker-Trait Association Analysis 

	Results 
	Phenotypic Variability 
	Genetic Diversity and Population Structure Analysis 
	Marker Trait Association Analysis 

	Discussion 
	Genetic Diversity and Population Structure 
	Markers Trait Association Analysis 

	Conclusions 
	References

