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Abstract

Blood and serum N-glycans can be used as markers for cancer diagnosis, as alterations in

protein glycosylation are associated with cancer pathogenesis and progression. We aimed

to develop a platform for breast cancer (BrC) diagnosis based on serum N-glycan profiles

using MALDI-TOF mass spectroscopy. Serum N-glycans from BrC patients and healthy

volunteers were evaluated using NosQuest’s software “NosIDsys.” BrC-associated “NosID”

N-glycan biomarkers were selected based on abundance and NosIDsys analysis, and their

diagnostic potential was determined using NosIDsys and receiver operating characteristic

curves. Results showed an efficient pattern recognition of invasive ductal carcinoma

patients, with very high diagnostic performance [area under the curve (AUC): 0.93 and 95%

confidence interval (CI): 0.917–0.947]. We achieved effective stage-specific differentiation of

BrC patients from healthy controls with 82.3% specificity, 84.1% sensitivity, and 82.8% accu-

racy for stage 1 BrC and recognized hormone receptor-2 and lymph node invasion subtypes

based on N-glycan profiles. Our novel technique supplements conventional diagnostic strat-

egies for BrC detection and can be developed as an independent platform for BrC screening.

Introduction

Early detection of breast cancer (BrC) is associated with more treatment options, better surgi-

cal conditions, increased survival, and improved quality of life. While various criteria exist for

classification of BrC, it is most commonly classified into non-invasive BrC (stage 0) or invasive

ductal carcinoma (IDC; stages 1–4). The presence of hormone receptors (HR) in invasive BrC

is a prognostic factor and the most powerful prognostic indicator of hormone suppression.
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HR is widely used to guide treatment of BrC. If the cancer is estrogen receptor (ER)- or proges-

terone receptor (PR)-positive, hormonal therapy is the preferred treatment, with or without

chemotherapy. According to the HR phenotype, patients are classified as ER+/PR+, ER+/PR-,

ER-/PR+, and ER-/PR-. Moreover, based on the expression of the HR and human epidermal

growth factor receptor-2 (HER2), BrC can be classified into four major subtypes: luminal 1

(HR+/HER2-), luminal 2 (HR+/HER2+), non-luminal HER2+ (HR-/HER2+), and triple-neg-

ative phenotype (HR-/HER2-) [1]. In addition, judging by the penetration of cancer cells into

lymph nodes via metastasis, BrC can be classified into two subtypes: without [N (-)] and with

[N (+)] lymph node invasion.

The most commonly used diagnostic techniques for BrC include mammography, magnetic

resonance imaging, ultrasonography, computerized tomography, positron emission tomogra-

phy, and biopsy [2]. However, these strategies are expensive, time-consuming, and unsuitable

for screening large numbers of patients simultaneously [3,4]. Detecting BrC-specific biomark-

ers in bodily fluids would be an ideal approach for BrC diagnosis and screening. Alterations in

protein glycosylation patterns are potential biomarkers for cancer pathogenesis, metastatic

potential, and prognosis [5,6]. Growing evidence indicates differences in glycosylation patterns

between tumor cells and healthy cells [5]. More specifically, cancer-related changes in glycosyl-

ation are associated with altered expression of glycosyltransferase and chaperone genes, as well

as mislocalization of glycosyltransferases [7]. Since some glycoproteins are secreted or shed

from tumors, tumor-associated glycan profiles, as well as alterations in protein glycosylation

reflecting the host response, can also be detected in serum. In fact, changes in protein glycosyl-

ation in serum have been found in various cancer types, including BrC [5,6,8], indicating that

serum glycan profiles could be employed as potential biomarkers for BrC.

In this study, we analyzed serum N-glycomic patterns based on N stage, which is directly

related to biomolecular signatures within bodily fluid. Because we acquired N-glycans from

patient serum samples, the N stage was primarily considered rather than the overall cancer

stage [9].

Materials and methods

Subjects and blood collection

The study was approved by the Asan Medical Center (AMC) review board (IRB approval num-

ber: 2018–1234). Informed consent was waived. Blood samples were collected from cancer

patients and healthy volunteers at AMC (Seoul, South Korea, IRB approval number: 2018–

1234). Patient demographics, including, age, disease stage, and tumor cell types, were collected

from AMC (Table 1). The collected blood samples were incubated at room temperature and

then centrifuged at 1,000 ×g for 10 min at room temperature. The supernatant was transferred

into 1.5 mL micro-centrifuge tubes (Eppendorf, Hamburg, Germany) and stored at –80 ˚C.

Isolation of N-linked glycans

In a microtube, 30 μL serum was mixed with an equal volume of 200 mM NH4HCO3 contain-

ing 1 mM dithiothreitol. Serum proteins were moderately denatured by shaking on a heat

block at 65 ˚C for 5 min at 1,500 rpm. N-linked glycans were released from the denatured pro-

teins enzymatically by adding 400 units of peptide-N-glycosidase F (PNGase F; New England

Biolabs, Ipswich, MA, USA). The PNGase F reaction was carried out in a shaking heat block at

45 ˚C for 20 min at 1,500 rpm. Then, 540 μL HPLC-grade water and 100 μL 1% TFA were

added sequentially. Tubes were centrifuged briefly at 3,000 rpm to spin down the liquid adher-

ing to the inner wall.
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Glycan purification

Glycans released by PNGase F were purified using HyperSep Hypercarb solid-phase extraction

(SPE) cartridges fitted on a 96-well plate (Thermo Fisher Scientific, Waltham, MA, USA). The

cartridges were packed with 30 μm spherical 100% porous graphitic carbon (PGC) particles

and were washed with 1 mL distilled water and 1 mL 80% acetonitrile (ACN)/water (v/v). Pre-

pared N-glycan solutions were loaded onto the cartridges and washed three times with 1 mL

distilled water. Glycans were eluted in 20% ACN/water (v/v) and fast-dried using a Genevac

EZ-2 plus centrifugal vacuum evaporator (Genevac, Valley Cottage, NY, USA). Dried glycans

were reconstituted in 15 μL HPLC-grade water for MALDI-TOF mass spectroscopy (MALDI--

TOF MS).

MALDI-TOF MS

Fresh matrix solution was prepared by mixing 2,5-dihydroxybenzoic acid (DHB) (20 mg/mL

in ACN) with 40 mM sodium chloride in water at a ratio of 75:25 (v/v). The glycan solution

was mixed with the matrix at a ratio of 1:2 (v/v), and 2 μL of the resultant mixture was spotted

on an STA μ Focus MALDI target plate (24×16 c 2,000 μm; ASTA, Suwon-si, South Korea).

Spotting generated four independent mass spectra per sample. The loaded sample on the

MALDI plate was fast-dried in vacuum (6–8 × 102 torr) to facilitate uniform matrix-sample

co-crystallization. Mass spectra were acquired using a 4800 Plus MALDI-TOF/TOF MS (AB

SCIEX, Framingham, MA, USA) operated in the positive-ion reflection mode, and the m/z
from 800 to 3,000 was monitored. Glycan mass peaks above 10 S/N (signal-to-noise) were con-

sidered valid.

Data processing and normalization

Mass spectra data were pre-processed, and ion peak information was extracted using 4000

Series Explorer™ (Applied Biosystems, Foster City, CA, USA) and in-house software (Nos-

Quest, Seongnam-si, South Korea) that transfers complete peak information (centroid mass

values, S/N, heights) from a defined spectrum into a tabulated data format such as Microsoft

Excel 2013 (Redmond, WA, USA). Absolute peak intensity (APIi) of each N-glycan was

Table 1. Clinical characteristics of patients with BrC.

Classification Variable Value Number of patients (%)

Stage Stage I

II

III

IV

113 (44.2)

102 (39.8)

33 (12.9)

8 (3.1)

N stage Lymph node invasion Negative

Positive

158 (61.7)

98 (38.3)

HR/HER2 Estrogen receptor (ER) Positive

Negative

187 (73.0)

69 (27.0)

Progesterone receptor (PR) Positive

Negative

154 (60.2)

102 (39.8)

Tissue HER2 (IHC) Positivea

Negative

Unknown

72 (28.3)

182 (71.7)

2

HER2, human epidermal growth factor receptor-2; IHC, immunohistochemistry.
aIHC 3+, or IHC 2+ with amplified fluorescence in situ hybridization.

https://doi.org/10.1371/journal.pone.0231004.t001
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normalized to achieve its relative intensity using the following formula:

NAPIi ¼
API

Pn
j¼1

APIj

where NAPIi denotes the normalized absolute peak intensity of a defined N-glycan in an

acquired mass spectrum, and n represents the number of total peaks in the mass spectrum

(total ion chromatogram). Each API was divided by the sum of total APIs in the spectrum

(total ion current; TIC). For convenience, NAPI values were multiplied by 1,000.

Visualization and statistical analyses

The normalized intensity data for the N-glycans corresponding to N-glycan species obtained

from the NosQuest proprietary biomarker panel were gathered and converted to TSV files

using Microsoft Excel. These were then analyzed using Perseus™ (Max Planck Institute of

Biochemistry, Berlin, Germany). A multiple-sample test was performed using analysis of vari-

ance (ANOVA) with a P value truncation method, with the threshold P value set to 0.05. In Z
score normalization, each data point was subtracted from the mean value of the aggregate data

and then divided by the standard deviation of the total data [10]. Perseus™ 1.5.2.6 was used for

hierarchical clustering, principal component analysis (PCA), and plotting [11]. Acquired peaks

were initially filtered using an m/z ratio range of 900 to 3,000. Next, m/z features were filtered

based on a reference glycan list of 239 known human glycans [12]. For each m/z, four replicate

data points were averaged only if more than two out of the four values were present. Otherwise,

they were assigned as Not-a-Number or 0. The m/z features were then filtered a second time

using a cut-off frequency of more than 90% of existing values across the samples. The m/z fea-

tures were then analyzed by multiple-sample ANOVA with a P value cut-off of 0.05.

Normalized intensity data of N-glycans corresponding to N-glycan species from the Nos-

Quest proprietary biomarker panel were extracted and converted to CSV files in which all

cluster markers that were selected in the heat map analysis were filtered, saved, and used to

construct the receiver operating characteristic (ROC) curve. A schematic depiction of the

procedure for serum N-glycan preparation, analysis, and data processing is shown in Fig 1.

Results

Normal versus IDC MALDI-TOF signature

Serum N-glycan profiles were studied using MALDI-TOF MS in healthy volunteers (n = 311)

and subjects with IDC (n = 256), including BrC stage 1 (BrC1; n = 113), stage 2 (BrC2,

n = 102), stage 3 (BrC3, n = 33), and stage 4 (BrC4, n = 8). The average ages of these groups

were 50.88, 51.93, 48.00, 50.24, and 54.75, respectively, and all samples were acquired from

females. Following mass analysis, N-glycan peak intensities were normalized with the TIC to

obtain relative intensities. The heat map showed significant differential expression of 30 N-gly-

can species from NosQuest’s proprietary N-glycan biomarker panel in the sera of IDC patients

compared to that in healthy individuals (Fig 2A). We observed very high diagnostic efficacy of

these filtered biomarkers in differentiating IDC patients from healthy subjects as reflected by

an area under the curve (AUC) of 0.93 [95% confidence interval (CI): 0.917–0.947; Fig 2B, S1

Fig]. We then extracted 20 N-glycans from NosQuest’s N-glycan panel. These filtered glycan

biomarkers exhibited higher accuracy in NosIDsys screening and a�10% difference in abun-

dance based on normalized intensity between healthy and IDC subjects. These “NosID bio-

markers” showed significantly higher expression in IDC patients than in healthy controls (Fig

2C). Levels of significance of these differences and annotations of the associated biomarkers
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are depicted in Table 2. Specific N-glycan markers for each BrC stage and subtype were

assigned (Table 2). N-glycans 1136.401 and 1339.467 (M+Na) were markers of stage 1, while

1606.558, 1768.610, 1444.499, 1460.495, and 1662.550 (M+Na) were dominant only in stages

2–4. By NosIDsys analysis comparing normal and stage 1 samples, specificity, sensitivity, and

accuracy values of 82.3%, 84.1%, and 82.8% were obtained, while normal versus stage 2–4 sam-

ples showed values of 73.5%, 75.2%, and 74.0%, respectively. By PCA, we observed separate

clusters of normal samples and all BrC stages combined, showing that the N-glycomic patterns

differentiated the two groups. PCA was performed separately for normal versus stage 1 (Fig

3A) and normal versus stages 2–4 (Fig 3B). In both cases, sample groups formed unique clus-

ters, suggesting that normal and BrC samples are distinguishable regardless of stage. ROC

curves were plotted and corresponding AUCs calculated. As shown in Fig 3C and 3D, analysis

of stage 1 showed better performance than stages 2–4, with AUCs of 0.955 and 0.889,

respectively.

Normal versus BrC subtype signatures

For analyzing the N-glycomic signatures across multiple subtypes, we took HR, HER2, and N

stage into account. Similarly, HR and HER2 factors were chosen since they represent classifica-

tion methods directly based on biomolecular abundance. Twenty-five NosID glycan biomark-

ers were identified for differentiating healthy volunteers from the four HR/HER2 subtypes of

BrC (Table 2). The abundances of all respective biomarkers for each subtype were significantly

higher than those in the healthy group (S3–S6 Figs). In particular, 1793.636 (M+Na) differenti-

ated HR+/HER2- from healthy controls. Twenty-four NosID glycan biomarkers distinguished

healthy volunteers from BrC without [N (-)] and with [N (+)] lymph node invasion (Table 2).

The expression levels of all biomarkers corresponding to either N (-) or N (+) were signifi-

cantly higher than those in the healthy group (S7 and S8 Figs). Overall, 25 N-glycans were

selected as biomarker candidates for BrC stages and subtypes. Those with m/z of 1622.550,

1704.585, and 1793.636 showed significant differences in MALDI-TOF intensity between BrC

patients and healthy controls, as indicated in Table 2.

Fig 1. Schematic representation of procedures for the extraction, purification, and MALDI-TOF MS of serum N-

glycans and analysis of data. 1Denaturation, 2deglycosylation, 3solid-phase extraction (SPE), 4NosIDsys, and 5glycan

abundance.

https://doi.org/10.1371/journal.pone.0231004.g001
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Discussion

N-glycans play critical roles in the initiation and progression of cancer [13]. Alterations in

protein glycosylation in serum have been observed in several cancers, including BrC [5,6,8,14],

suggesting that serum glycans could be potential biomarkers for BrC. Based on MALDI-TOF

MS of human serum N-glycans, we developed multi-biomarker panels for screening BrC

patients at different stages of progression, lymph node invasion, and HR/HER2 expression.

More specifically, we established a screening system using NosQuest’s proprietary software

“NosIDsys.” In this procedure, glycan biomarkers were selected based on expression or abun-

dance in terms of normalized peak intensities (with a cut-off value of a 10% difference in nor-

malized intensities between the healthy and BrC groups) and NosIDsys analysis.

Interestingly, early-stage cancer samples showed a higher AUC than that of stages 2–4.

Although it is difficult to provide a clear explanation for this result, it seems that BrC-specific

Fig 2. Comparison of the healthy and IDC subjects via heat map, ROC, and normalized intensity. (A) Heat map

showing expression profiles of selected serum N-glycans between healthy and IDC participants. Red, higher relative

expression; green, lower relative expression. (B) ROC curve showing the diagnostic performance in distinguishing IDC

patients from healthy subjects (C) Mean normalized intensity versus m/z of NosID N-glycan biomarkers between

normal and IDC serum samples. P values for differences between the two groups are depicted above the corresponding

bars. Error bars represent standard deviations.

https://doi.org/10.1371/journal.pone.0231004.g002
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N-glycomic signatures are dominant during the relatively early stages, rather than in terminal

cancer. Our results provide positive insight into the feasibility of N-glycome-based methods

for the early diagnosis of BrC.

Our results are also in agreement with previous observations in human serum samples,

which revealed that the abundances of the high-mannose glycans Hex6HexNAc2, Hex7Hex-

NAc2, Hex9HexNAc2, and Hex10HexNAc2 were significantly higher in BrC patients than in

healthy individuals [15,16]. Accordingly, most mature glycoproteins departing from the Golgi

complex carry N-glycans, while most present in the EPR are still attached to high-mannose

glycans [17]. Altered expression of glycosyltransferase genes is thought to be a predominant

contributor to differential changes in cellular glycan structures and is therefore considered a

hallmark of neoplastic cell metamorphoses [18]. Thus, it is conceivable that elevated levels of

high-mannose glycans alter protein stability, adhesion, and communication, thereby contrib-

uting to the genesis and growth of BrC cells.

Among IDC patients, 81% were HR+, while 28% were HER2+. Furthermore, 63% of HER2

+ patients were HR+/HER2+. HER2, a member of the Erb family, promotes oncogenic trans-

formation and tumor growth [19]. Nearly 75% of BrCs express ER and/or PR, while approxi-

mately 20% of BrCs exhibit overexpression or amplification of HER2. Moreover, about 63% of

HER2+ BrCs co-express ER/PR [20].

While the promising ability of early diagnosis is important in terms of practical feasibility

in clinical applications, the ability to classify samples into various pre-existing subgroups is

also important in terms of treatment. Thus, we attempted to provide evidence of the linkage

between N-glycomic characteristics and various subgroups. In our study, we found that one

complex/hybrid glycan (m/z 1444.499) and four hybrid glycan members (m/z 1460.495,

1606.558, 1622.550, and 1768.610) were biomarkers for distinguishing BrC2–4 patients from

Table 2. N-glycans with significantly different MALDI-TOF intensities in BrC patients and healthy controls.

Mass

(M+Na)

1095.379 1136.401 1282.422 1298.441 1339.467 1542.538 1565.514 1631.580 1745.580 1751.608 1606.558 1768.610 1793.636

BrC

Stage

Stage 1

Stage 2–4

Stage 1 Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1 Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 2–4 Stage 2–4

BrC

Subtype

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

HR-/

HER2-

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2-

N(-)

HR

+/HER2-

HR-/

HER2-

N(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

HR-/

HER2-

N(+), N

(-)

HR

+/HER2+

HR-/

HER2+

HR-/

HER2-

N(+), N

(-)

HR

+/HER2+

HR-/

HER2+

HR-/

HER2+

HR-/

HER2-

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

HR-/

HER2-

N(+), N

(-)

HR

+/HER2-

HR-/

HER2-

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

HR-/

HER2-

N(+), N

(-)

HR

+/HER2+

HR-/

HER2+

HR-/

HER2+

N(+)

HR

+/HER2-

HR-/

HER2+

N(+), N

(-)

HR

+/HER2-

Mass

(M+Na)

1907.639 2067.698 2069.711 1257.422 1419.470 1581.520 1743.573 1905.631 1444.499 1460.495 1622.550 1704.585

BrC

Stage

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 1

Stage 2–4

Stage 2–4 Stage 2–4 Stage 2–4

BrC

Subtype

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

HR-/

HER2-

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

HR-/

HER2-

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

N(+), N

(-)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

N(+), N

(-)

HR

+/HER2-

HR-/

HER2-

N(+)

HR

+/HER2+

HR

+/HER2-

HR-/

HER2+

N(+), N

(-)

HR-/

HER2+

N(+)

HR-/

HER2+

N(+)

https://doi.org/10.1371/journal.pone.0231004.t002
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healthy participants. In an earlier report, the accuracy (AUC) of Hex5HexNAc3dHex1 (m/z
1606.558) and Hex6HexNAc3 (m/z 1622.550) glycans in differentiating epithelial ovarian can-

cer (EOC) stages 3–4 from healthy controls was higher than their accuracy in segregating EOC

stages 1–2 from healthy controls (S2 Fig) [16]. Accordingly, a hybrid glycan (m/z 1622.550)

and a complex/hybrid glycan (m/z 1704.585) were discovered to serve as biomarkers for differ-

entiating HR-/HER2+ from healthy controls, and a complex/hybrid glycan (m/z 1793.636) was

a specific biomarker for differentiating HR+/HER2- from healthy controls.

Conclusions

We identified 24 NosID glycan biomarkers for differentiating healthy volunteers from N (-)

and N (+) BrC subtypes. Notably, the differential expression of N-glycans between N (-) and N

(+) subtypes was more pronounced for complex, complex/hybrid, and hybrid glycans com-

pared to that for high-mannose glycans. Increased activity or expression of N-acetylglucosami-

nyltransferase V (MGAT5) and β-1,6 GlcNAc-branched N-glycans has been observed in

highly metastatic tumors, including BrC [21]. In contrast, a study evaluating specific metasta-

sis-related N-glycan alterations in EOC has reported that a decrease in bisecting GlcNAc

Fig 3. Comparison of the normal and BrC stages via PCA and ROC. PCA plots (A, B) and ROC curves (C, D) for

healthy controls vs. stage 1 (A, C) and stage 2–4 (B, D) BrC samples. Blue and pink spots indicate individual samples

within the healthy control and terminal BrC groups, respectively.

https://doi.org/10.1371/journal.pone.0231004.g003
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structure is related to higher metastatic potential [22]. Our results demonstrate that N-glyco-

mic analysis of BrC using MALDI-TOF has a higher diagnostic efficiency than that of conven-

tional strategies such as mammography or ultrasonography. Specifically, sensitivity values in a

previous study were 66.7% and 33.3% for ultrasonography and mammography, respectively

[23]. In this study, sensitivity between normal and stage 1 BrC samples reached 84.1%, suggest-

ing that N-glycomics is a promising strategy for fast and sensitive early BrC diagnosis in the

clinic. However, this result relies on statistical analysis based on a limited number of BrC and

healthy samples. Thus, the representativeness of the enlisted glycan markers should be further

evaluated using a larger cohort.

Supporting information

S1 Fig. Mean normalized intensity versus the mass-to-charge ratio of NosID N-glycan bio-

markers between healthy controls and stage 1 serum samples. P values for the difference in

outcome rates of the normalized intensities of glycan peaks between the two groups are

depicted above the corresponding bars. Error bars represent standard deviations.

(TIF)

S2 Fig. Mean normalized intensity versus the mass-to-charge ratio of NosID N-glycan bio-

markers between healthy controls and stage 2–4 serum samples. P values for the difference

in outcome rates of the normalized intensities of glycan peaks between the two groups are

depicted above the corresponding bars. Error bars represent standard deviations.

(TIF)

S3 Fig. Mean normalized intensity versus the mass-to-charge ratio of NosID N-glycan bio-

markers between healthy controls and HR+/HER2- subtype serum samples. P values for the

difference in outcome rates of the normalized intensities of glycan peaks between the two

groups are depicted above the corresponding bars. Error bars represent standard deviations.

(TIF)

S4 Fig. Mean normalized intensity versus the mass-to-charge ratio of NosID N-glycan bio-

markers between healthy controls and HR+/HER2+ subtype serum samples. P values for

the difference in outcome rates of the normalized intensities of glycan peaks between the two

groups are depicted above the corresponding bars. Error bars represent standard deviations.

(TIF)

S5 Fig. Mean normalized intensity versus the mass-to-charge ratio of NosID N-glycan bio-

markers between healthy controls and HR-/HER2+ subtype serum samples. P values for the

difference in outcome rates of the normalized intensities of glycan peaks between the two

groups are depicted above the corresponding bars. Error bars represent standard deviations.

(TIF)

S6 Fig. Mean normalized intensity versus the mass-to-charge ratio of NosID N-glycan bio-

markers between healthy controls and HR-/HER2- subtype serum samples. P values for the

difference in outcome rates of the normalized intensities of glycan peaks between the two

groups are depicted above the corresponding bars. Error bars represent standard deviations.

(TIF)

S7 Fig. Mean normalized intensity versus the mass-to-charge ratio of NosID N-glycan bio-

markers between healthy controls and N (-) serum samples. P values for the difference in

outcome rates of the normalized intensities of glycan peaks between the two groups are
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depicted above the corresponding bars. Error bars represent standard deviations.

(TIF)

S8 Fig. Mean normalized intensity versus the mass-to-charge ratio of NosID N-glycan bio-

markers between healthy controls and N (+) serum samples. P values for the difference in

outcome rates of the normalized intensities of glycan peaks between the two groups are

depicted above the corresponding bars. Error bars represent standard deviations.

(TIF)
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