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Abstract: A variety of medical computer vision applications analyze 2D slices of computed tomogra-
phy (CT) scans, whereas axial slices from the body trunk region are usually identified based on their
relative position to the spine. A limitation of such systems is that either the correct slices must be
extracted manually or labels of the vertebrae are required for each CT scan to develop an automated
extraction system. In this paper, we propose an unsupervised domain adaptation (UDA) approach
for vertebrae detection and identification based on a novel Domain Sanity Loss (DSL) function. With
UDA the model’s knowledge learned on a publicly available (source) data set can be transferred to
the target domain without using target labels, where the target domain is defined by the specific
setup (CT modality, study protocols, applied pre- and processing) at the point of use (e.g., a specific
clinic with its specific CT study protocols). With our approach, a model is trained on the source
and target data set in parallel. The model optimizes a supervised loss for labeled samples from the
source domain and the DSL loss function based on domain-specific “sanity checks” for samples from
the unlabeled target domain. Without using labels from the target domain, we are able to identify
vertebra centroids with an accuracy of 72.8%. By adding only ten target labels during training the
accuracy increases to 89.2%, which is on par with the current state-of-the-art for full supervised
learning, while using about 20 times less labels. Thus, our model can be used to extract 2D slices
from 3D CT scans on arbitrary data sets fully automatically without requiring an extensive labeling
effort, contributing to the clinical adoption of medical imaging by hospitals.

Keywords: unsupervised domain adaptation; semi-supervised learning; vertebrae detection;
vertebrae identification; transfer learning; semantic segmentation; data centrism; deep learning

1. Introduction

Fine-tuned AI-driven software tools allow an automated analysis of digital images
and play a highly relevant role in different industries, especially in healthcare [1]. Com-
puted tomography (CT) images provide accurate information about structural anatomy,
morphology, as well as quantitative and qualitative composition of body parts [2]. They
usually consist of multiple 2D slices stacked as a batch and form therefore a 3D data
set. CT scan processing often relies on the feature extraction capabilities of modern deep
learning architectures [3], and many modern deep learning systems process 3D scans as
a whole [4,5]. An alternative to 3D scan processing is to extract representative 2D slices
first [6], which, for example, can be used for preoperative surgical assessment as well as
to examine metabolic, pulmonary, and neurological diseases [7,8]. Such relevant 2D slices
of the upper body are usually identified based on their relation to the spine [8–10] and
can either be extracted manually [10] or automatically, where automatic systems therefore
need to be able to recognize the vertebrae and extract the slice containing the relevant
information [11]. Usually, this requires knowledge of vertebrae locations, i.e., manually
created labels for a multitude of 3D CT volumes, to train respective systems.
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In this paper, we present an approach to identify vertebrae of the spine automatically
without the need of excessive labeling of own data (or even no labels at all), thereby
heralding a data-centric approach [12] based on un- or semi-supervised learning [13].
To this end, our contribution is the development and evaluation of a novel method that
requires no labels at all to achieve reliable vertebrae detection and identification and, if
given less than 5% of the labels we perform on par with comparable supervised approaches.
Thus, our approach reduces the labor-intensive labeling effort that can hinder applicability
in medical institutions. An overview of our approach is given in Figure 1. The quality of
our results allows the extraction of representative 2D slices from 3D volumes within an
automated machine learning (ML) pipeline.

Figure 1. Visual abstract of our work: We train a vertebrae Detection and Identification module
simultaneously on a publicly available data set (source domain) and a second custom data set (target
domain). We require only a few labels from the custom data set. With the help of a loss function
that is inspired by anatomical domain knowledge the proposed model is able to identify vertebrae
centroids with state-of-the-art performance, reducing the need for target-domain labels by a factor
of 20. We see its main application within ML-pipelines to extract representative 2D slices out of 3D
volumes, representing a step towards fully automated systems for downstream 2D slice analysis.

The remainder of the paper is organized as follows: In Section 2, we review the related
work and argue why we build upon the work of McCouat and Glocker [14]. In Section 3, we
explain how we extended the “Detection” module with post-processing and propose a new
unsupervised loss function for the “Identification” module. In Section 4, we present the
results of our method in detail and show how well vertebrae can be detected and identified
with only a few labels. In Section 5, we conclude that our method facilitates the application
in medical institutions, as very good results are obtained with an order of magnitude fewer
labels than comparable methods require. Furthermore, we identify limitations and suggest
future research directions.
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2. Related Work

The detection and identification of vertebrae is well studied. However, many methods
for vertebrae identification make prior assumptions. For example, Zhou et al. [15] assume
that the first sacrum vertebra (S1) is within the image while Yi et al. [16] assume that always
the same vertebrae are visible. The model of Altini et al. [17] on the other hand requires
manual input with meta-information about the first visible vertebra. Other approaches
make assumptions about the shape of the spine [18] and therefore do not work well in
pathological cases where the spine is deformed. In contrast, this work does not impose
such assumptions, enabling processing of a broad range of CT scans even if the images
only contain cropped parts of the spine.

Predicting the vertebra centroids directly (i.e., as a regression task) often leads to poor
results [19]. Therefore most approaches turn the regression problem into a dense classifica-
tion problem [14,16,19]. Earlier approaches used classical machine learning models such as
random forests to identify vertebra centroids [19] while more recent approaches achieve
better results using convolutional neural networks (CNNs). For example, Yang et al. [20]
use an encoder-decoder architecture together with multi-level feature concatenation to
locate vertebrae. The extracted centroid probability maps are iteratively improved based
on the mutual relation of vertebra centroids. Liao et al. [21] achieve state-of-the-art results
using a CNN to detect the positions of the centroids, combining it with a recurrent neural
network (RNN) to capture the ordering of the vertebrae.

McCouat and Glocker [14] obtained similar results using two separate U-Nets [22] for
detecting and identifying vertebrae. Their data set consists of 3D CT scans with labels for
the vertebrae centroids. Initially, these sparse labels are converted to dense labels. Then
the “Detection” module, the first in the two-stage approach, detects the spine within the
3D volume. To enable training with limited computational resources the 3D volumes are
divided into smaller patches. Each of these patches is fed into a 3D U-Net that segments the
vertebrae from the background. Once the spine is located the relevant region is extracted
from the 3D volume and processed by the second module.

This second stage is the “Identification” module that maps pixels to the corresponding
vertebrae. For this purpose, a 2D U-Net is used. The model does not classify each pixel
but produces a continuous value for each pixel. Rounding this continuous value results
in an integer which is associated with a vertebra (e.g., 1 = C1, 2 = C2, ...). Due to the
prediction of continuous values per pixel the L1 loss function can be used to capture the
order of the vertebrae. The Identification module predicts a value for each pixel, even if
that pixel depicts background and not a vertebra. Since the Detection module classifies the
background pixels as 0 the output of the Identification module is multiplied by the output
of the Detection module yielding the prediction without background. Finally, the predicted
dense labels are converted back to sparse labels by calculating their median position.

In this work, we extend this approach from McCouat and Glocker [14] with unsu-
pervised domain adaptation (UDA) methods. We extend the Detection module with
post-processing and the Identification module with a new Domain Sanity Loss (DSL) based
on “sanity checks”. We build upon their work for the following reasons: (i) The average
distance between the predicted and the actual vertebrae centroids is small and considered
state-of-the-art; (ii) the models are pure CNN architectures which can be easily extended
within the framework of deep learning [23]; (iii) no assumptions are made about neither
the shape of the spine nor the visible vertebrae. This way, the model is adapted to the target
data, which is considerably easier to train in our experience than the alternative of adapting
the data to the model [24].

3. A Method for Unsupervised Domain Adaptation of CT Scans of the Spine

The method of McCouat and Glocker [14] performs well on labeled data sets. However,
performance is poor when the trained model is applied to other data sets on which it has
not been trained (c.f. Section 4). To process data from other domains, we extend the two
modules. The Detection module is extended with post-processing, while the Identification
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model is trained with a new DSL loss function. The proposed UDA training procedure for
the Identification module leverages publicly available labels and helps the model to adapt
to a second data set even without labels. Since we adapt the knowledge learned on one
domain to another, we refer to the first domain as the source and the second as the target
domain. Our extensions only affect the training process, while the network architecture
remains unchanged.

3.1. Detection Module

In accordance with [14] we divide the 3D volumes of the source and target data set
into smaller patches of size [80× 80× 96] and process them with a 3D U-Net. An advantage
of processing patches instead of the entire 3D volume is that the model can be trained
with limited computational resources. The sparse annotations (i.e., centroid positions of
vertebrae) are converted into dense annotations (i.e., pixel-level labels) [14]. Pixels depicting
a vertebra are labeled as 1, and pixels depicting background as 0. Adam [25] is used with
a learning rate of 1× 10−3 during training to minimize a binary cross entropy (BCE) loss.
The model is trained with a batch size of 16 samples for 70 epochs. After training the model
labels pixels either as spine or background. Thus, this module can locate the spine in a
3D volume.

In contrast to [14], we post-process the predictions of our model. This post-processing
is helpful because it can be hard for the model to detect parts of the spine in small patches.
Processing patches is considered more difficult than processing the entire CT scan because
of the lack of context provided by the surrounding pixels. After all patches of a scan are
predicted we conduct a connected component analysis on the 3D volume. It identifies all
connected groups of pixels that are labeled as spine. Since the spine consists of many pixels,
it is retained as the biggest component while smaller components are discarded as artefacts.
To remove only artefacts and not the spine from the prediction we weigh the BCE loss by a
factor of 1.0 for the spine and 0.1 for the background. By doing so, the spine is detected as
a single component with very high accuracy and not removed as an artefact.

3.2. Identification Module and Domain Sanity Loss

The Identification module processes patches of the size [8× 80× 320] in a 2D U-Net
as in [14]. These patches have a large field of view of 80× 320 pixels along the sagittal
plane thus allowing identification of vertebrae. As conducted in the Detection module, the
sparse annotations are converted to dense annotations, background is labeled as 0 and the
vertebrae with integers in ascending order (i.e., 1 = C1, 2 = C2, . . . , 26 = S2).

In contrast to [14], we extend this module with an UDA method. Our proposition is
based on a novel training process that instead of processing only samples from the source
domain is alternatingly feeding mini-batches from the source and target domain into the
model. The intuition behind this is that samples from the source domain teach the model
vertebrae identification while samples from the target domain help to adapt to the target
data set. This 2-way training procedure is shown in Figure 2.

In the first phase, since the source data samples have labels, a supervised L1 loss
function is used as suggested by [14]. By predicting continuous values and not label
probabilities, this function is able to measure the distance to the ground truth vector rather
than merely checking for equality (e.g., prediction C2 is better than prediction C3 for label
C1) and thus considers the order of the vertebrae. However, since no labels are available for
the target data set no supervised loss function can be used in the second phase. Therefore,
we propose the Domain Sanity Loss (DSL) based on “sanity checks” as introduced and
illustrated in Figure 3.
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Figure 2. 2-way training process of the Detection module: In step one, L1 distance is used to calculate
the loss of a mini-batch of source domain samples. In step two, several “sanity checks” (see Figure 3
for an overview) are calculated to form the loss of a mini-batch of target-domain data. The sanity-
check-based DSL loss only considers spine pixels by multiplying the output of the Identification
module with the output of the Detection module and employs the Felzenszwalb-Huttenlocher
algorithm [26] to create a weak segmentation mask of vertebrae location in an unsupervised way (c.f.
Section 3.2).

Figure 3. Visual representation of the sanity checks performed by the proposed Domain Sanity
Loss (DSL) function; the displayed cases show failures for each check, indicated by the white
arrows. Specifically, the DSL loss checks for (i) monotonous ascend of predicted vertebrae numbers
along the spine; (ii) all spine pixels in one column of the image having the same vertebra number;
(iii) predicted vertebrae centroids having a reasonable distance to each other, based on average
distances from the literature; and (iv) predictions not being shifted along the spine, based on an
unsupervised weak segmentation of the vertebrae (c.f. Figure 2).
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The DSL loss is with its four checks purely based on anatomically induced invariances
that hold true even for severely deformed spines and hence need no corresponding human-
provided labels for any image. As these invariances only apply to pixels belonging to the
spine, we multiply the model output with the prediction of the previous Detection module
and thereby set all pixel values that do not belong to the spine to zero. In the following, we
denote this prediction with removed background as ŷ: a matrix of the same shape as an
input image with the predicted vertebra number for spinal pixels (i.e., 1 = C1, 2 = C2, ...)
and 0 otherwise. We denote i as row and j as column indices of ŷ and nrow and ncol as the
number of pixels per row and column of the sagittal plane respectively. Furthermore, we
define the identification function for boolean values as

1b(x) =

{
1 if x is true
0 otherwise

(1)

The first term s1 of the DSL loss function (c.f. Equation (6) at the end of this subsection)
evaluates whether the vertebrae are sorted in ascending order along the spine. For a correct
prediction, the per-pixel values in ŷ along the longitudinal axis must be sorted in ascending
order (c.f. Figure 3(i)). We implement this by comparing each predicted pixel ŷi,j with a
version of the same prediction ŷi,j+s shifted to the right by s pixels. Thereby we evaluate if
a pixel shifted to the right of any given pixel still gets the same or a higher prediction. In
doing so, we check whether pixels are sorted ascending from the left to the right. All pixels
that do not fulfill this criterion lead to an increase in the loss value. We ignore the pixel
values that get shifted outside of the range of the original prediction which is why we only
sum up the pixels column wise until ncol−s. We define the first loss term as

s1(ŷ) =
1

npix

nshi f t

∑
s=1

nrow

∑
i=1

ncol−s

∑
j=1

1b(ŷi,j − ŷi,j+s ≥ 0) (2)

where nshi f t is the maximum range of shift, and npix the number of pixels in ŷi,j. Empirically,
we found that shifting values s > 30 do not enhance the result anymore. We therefore
define nshi f t = 30 and thus compare the order of the vertebrae only locally which leads to
higher computational efficiency. We divide the number of pixels that violate this constraint
by the number of total pixels npix and therefore s1(ŷ) captures the percentage of spinal
pixel for which the anatomical order of the vertebrae is not correct.

The second term s2 of the loss function checks whether the pixel values orthogonal to
the spine are identical. For this we analyze the pixels that are differently labeled along the
sagittal axis (c.f. Figure 3(ii)). We assume the median value of each column j of ŷi,j as label
of that column and compare it to all values in that column. We denote vj as the column
vector of ŷi,j at index j. Furthermore, we define a function median(vj) which calculates
the median of a column vector vj. We assume that the spine is more or less parallel to it
(rotation can be checked easily by pre-processing, if necessary). We define the second loss
term as

s2(ŷ) =
1

npix

nrow

∑
i=1

ncol

∑
j=1

1b(|ŷi,j −median(vj)| > 0) (3)

For each column, we sum up the number of pixels that are labeled differently than the
median and divide this sum by the total number of pixels. Thereby we obtain a factor that
indicates how consistent the vertebrae per column and thus orthogonal to the spine are.

The third term s3 of the DSL loss function evaluates the distance between the centroids
of the predicted vertebrae (c.f. Figure 3(iii)). We define the distance between vertebra i and j
as δi,j. We denote the average distances of vertebrae as taken from Busscher et al. [27] as
δ̄i,j. We denote the upper bound of the summation as nvert = 25, which is the number of
vertebrae of a spine (26) minus one. The third loss term
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s3(ŷ) =
1

nvert

nvert

∑
i=1
|δi,i+1 − δ̄i,i+1| (4)

calculates the Euclidean distances between subsequent vertebra centroids and com-
pares it to the gold standard from literature using the L1 loss. If the distance between
two vertebrae is equal to the gold standard the loss is 0, otherwise it is bigger than 0. We
sum up the distance differences between subsequent vertebrae to the third term s3(ŷ). We
therefore perform an explicit sanity check on vertebrae distance and an implicit check on
vertebrae size.

The fourth term s4 of the loss function checks whether the predicted vertebrae are not
shifted. So far it has only been verified whether the spine is anatomically correctly detected.
However, the spine itself may be slightly displaced within the image (c.f. Figure 3(iv)). To
detect shifts we make use of a weak segmentation mask which is constructed as follows:
First, the input scan (and not the mask) is multiplied by the prediction of the Detection
module to extract the spine, followed by setting all pixels below an intensity threshold of
180HU to 0 in order to emphasize the edges. We then use the Felzenszwalb-Huttenlocher
algorithm [26] to predict a segmentation mask of the vertebrae in a unsupervised manner.
As this mask is relatively imprecise it is referred to as a weak mask wm. The predicted mask
is further improved by heuristically filtering out components that cannot correspond to a
vertebra (e.g., wrong shape) and by merging components that are enclosed in one another.

The weak mask wm has the same shape as the prediction ŷ. Each pixel in the weak
mask is assigned to a connected component ck ∈ wm. Each ck has a set of row cki

and
column ckj

coordinates which pairwise represent all pixels of a component. The intuition
behind this fourth loss term is that the prediction ŷ should have the same label at the
coordinates of pixels that belong to the same connected component ck. For each connected
component ck we extract from ŷi,j the values at the positions (i, j) ∈ (cki

, ckj
) and define this

operation as v(ŷ, ck). Furthermore, we define u(x) which returns the number of unique
values in a set x. Based on our definition u(v(ŷ, ck)) returns the number of unique values
within ŷi,j at the coordinates (cki

, ckj
) of a connected component ck.

Per connected component ck the pixels in the prediction ŷ should be labeled identically
and thus u(v(ŷ, ck)) should return 1. If multiple labels are predicted at the positions of a
connected component, u(v(ŷ, ck)) returns a value greater than 1. The fourth part of our
DSL loss function sums up the number of inconsistent labels per connected component:

s4(m, ŷ) =
1
nc

∑
ck∈wm

u(v(ŷ, ck))− 1 (5)

The domain-specific DSL loss function therefore consists of four sanity checks that pe-
nalize anatomical inconsistencies. To obtain the DSL loss value, we sum the four loss terms:

L(m, ŷ) = c1 · s1(ŷ) + c2 · s2(ŷ) + c3 · s3(ŷ) + c4 · s4(m, ŷ) (6)

where the constants cs are scaling values that we found experimentally to work well when
set to c1 = 20, c2 = 1, c3 = 1/40, and c4 = 1/100 as they bring the four loss parts to
an approximately similar scale. To optimize this loss, we use Adam [25] as optimizer
with a learning rate of 5× 10−4. The model is trained for 100 epochs with a batch size of
32 samples.

3.3. Data Sets

We use the BioMedIA Spine data set [28] as source data set. It consists of 242 spine-
focused CT-scans of 125 patients with varying types of pathologies. In most scans, the view
is limited to 5–15 vertebrae, while only a few scans depict the entire spine [19]. The scans
differ significantly in terms of image noise, physical resolution, and vertical cropping [18].
Each scan is labeled with point-annotations of vertebrae centroids that are extended to
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dense labels using the approach outlined in [14]. The data set provides a predefined split
which is used for training and testing.

To test the proposed unsupervised domain adaptation schema for vertebrae detection
and identification, the COVID19-CT data set [29,30] with 1000+ scans from patients with
confirmed COVID-19 diagnosis is used. The scans are composed of 16-bit grayscale images
with a size of 512× 512 pixels [29]. Most of the scans have an inter-axial distance between
0.5 and 1.5 mm. A radiology experienced physician labeled the vertebra centroids of
a random subset with 30 scans, of which 20 are used as a test set and 10 labeled scans
optionally together with the remaining scans as training set.

Similar to [14], we divide all samples into smaller patches. To train the Detection
module on the source data set we extract 10 patches of the size [80× 80× 96] from random
positions out of each scan. Thereby we ensure that at least 8 out of the 10 patches contain
parts of the spine. Since the Detection module is not trained on the target data set, only
patches from the labeled source data set are needed. For testing on the source as well as
the target data set, we divide the entire scan independent of the position of the spine into
patches of the size [80× 80× 96].

For the training of the Identification module, we extract 300 patches with a shape of
[8× 80× 320] per sample. If labels exist we ensure that each patch contains at least one
vertebra. If no labels exist we use the output of the Detection module to locate the spine and
extract patches out of this region. For testing, the entire scan is again divided into patches.

4. Results

In the following three subsections, we analyze our Detection and Identification module
experimentally, comparing them to prior and related work.

4.1. Detection Results with and without Post-Processing

The Detection module detects the spine within the 3D volume well. However, without
post-processing many false-positive predictions (i.e., prediction “spine” instead of “back-
ground”) lead to bad results, especially on the target data set without labels (c.f. Figure 4).
A possible reason for this is that the model is trained only on small patches of the original
volume. Therefore, the model only learns to identify parts of vertebrae and not how a
whole spine looks like. An indication for this is that false negatives are often detected in
places with cubic shapes, for example, the bed on which the patient is lying. However,
since these false predictions consist of far fewer connected pixels than the entire spine our
post-processing is able to successfully remove these artefacts.

To highlight how our post-processing improves performance we calculate various
metrics. However, these metrics must be interpreted with caution for two reasons: (i) Gen-
erated dense annotations, which are calculated based on average sizes of vertebrae bodies,
are used as ground truth; such annotations are by design less accurate than, for example,
carefully hand-crafted segmentation masks. (ii) The performance is calculated on the whole
volume and not on cropped samples as is conducted in [14]. Since the cropped samples
have a much higher proportion of pixels representing the spine these results are not di-
rectly comparable. However, the published results of [14] correspond roughly with the
performance of our model without post-processing as both are based on the same method.

Table 1 shows the results of the Detection module. The accuracy, recall, intersection
over union (IoU), and dice-score are calculated for the source data set (BioMedIA) and
for the target data set (COVID19-CT). The proposed post-processing clearly improves the
performance. For example, the IoU of pixels representing vertebrae in the source data set
improves from 67.4% to 78.7%, which is a 16.8% relative improvement. The improvement
on the target data set is even more noticeable. Using post-processing on the target data
set, IoU improves from 46.4% to 79.1%. While the model without post-processing is
considered not accurate enough to detect the vertebrae on the target data set, the model
with post-processing is suitable for the subsequent vertebrae identification.
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Figure 4. Four randomly selected samples from the target data set (COVID-19 CT) with overlayed
predictions for the spine detection with (bottom row) and without (top row) post-processing. To
provide a better grasp of the post-processing’s effect, we visualize all predictions within the 3D mask
along the sagittal plane (left) and along the coronal plane (right).

Table 1. Performance evaluation of the Detection module with the highest score for each metric and
data set in bold. For each metric, the overall performance for the whole 3D scan and for the vertebrae
with ignored background is reported. The positive effect of our proposed the post-processing is
visible on the source and the target data sets.

BioMedIA (Source Data Set)
Metric without Post-Processing with Post-Processing

Accuracy (overall) 99.2% 99.5%
Recall (overall/vertebrae) 99.2%/94.3% 99.5%/94.1%
IoU (overall/vertebrae) 98.3%/67.4% 99.0%/78.7%
Dice (overall/vertebrae) 99.2%/80.2% 99.5%/88.0%

COVID-19 CT (Target Data Set)
Metric without Post-Processing with Post-Processing

Accuracy (overall) 99.6% 99.9%
Recall (overall/vertebrae) 99.6%/95.1% 99.9%/95.1%
IoU (overall/vertebrae) 99.2%/46.4% 99.8%/79.1%
Dice (overall/vertebrae) 99.6%/63.0% 99.9%/88.0%

4.2. Identification Results per Spinal Pixel

We trained the Identification module in three different setups: (i) A first model is
trained without UDA and only using source labels, corresponding to the same method as
proposed in [14]; (ii) a second model is optimized with the proposed DSL loss of Section 3.2;
(iii) a third model is given ten random training samples plus their labels from the target
data set, used in the same fashion as source samples.

To compare the models with and without UDA, the classification accuracy per pixel is
measured. The accuracy is determined by dividing the number of correctly classified pixels
by the total number of pixels. Thereby, only the pixels belonging to the spine are taken
into account and the background is ignored. As shown in Table 2, the model without UDA
(i) achieves a classification rate of 13.3% on the target data set. The model with UDA (ii)
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achieves an accuracy of 61.4%. This corresponds to a relative improvement of 462.7% and
demonstrates the effectiveness of the proposed approach. If additionally ten samples from
the target data set are labeled (iii), the identification rate further improves to 74.2%. We
display some predictions in Figure 5. This visualization demonstrates that the vertebrae
are well recognized.

Figure 5. Random samples of prediction from the Identification module on the target data set
(COVID-19 CT), showing satisfactory results even when the spine is not well aligned on the coronal
and sagittal axis.

Table 2. Classification rate on the COVID19-CT data set for the three trained models with the best
classification rate in bold. The effectiveness of un- and semi-supervised domain adaptation is striking.

Classification Rate on COVID-19 CT (Target Data Set)
Our Method without UDA Our Method Our Method (with 10 Labels)

13.3% 61.4% 74.2%

4.3. Identification Results per Vertebra

The results described so far refer to the classification accuracy per pixel. However,
the goal is to identify the vertebra centroids and therefore the obtained dense predictions
must be converted back into sparse centroid predictions. This is conducted by calculating
the median of the dense predictions as described by [14], thereby ignoring outliers in the
pixel-level prediction by virtue of the median. The results of the centroid predictions
are shown in Table 3. We define the identification rate “ID” as the number of correctly
identified vertebrae divided by the total number of vertebrae. We count an identification
as correct if the predicted centroid is no more than 20 mm away from the ground truth.
We use 20 mm as this is an often used reference distance [14,18,21] and therefore makes
our method comparable to other approaches. Only the results on thoracic vertebrae are
compared since vertebrae from other regions are underrepresented in the COVID-19 CT
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data set (CT scans can be classified into regions depending on the body part they are taken
from. Well-known areas are the cervical region (neck level), the thoracic region (chest level)
and the lumbar region (pelvis level). For state-of-the-art AI models the thoracic region is
the most challenging one because only a middle section of the spine is visible in these scans
and therefore vertebrae cannot be counted from the first cervical vertebra (C1), respectively
the last sacrum vertebra (S2)).

Table 3. Detection result per vertebra with the best score for each metric and data set in bold. The
upper part of the table displays the results on thoracic scans of the source data set, the lower part
the results on the target data set. The column “ID” gives the identification rate, column “Mean”
reports the average distance to the ground truth centroid in mm and column “Std” gives the standard
deviation in mm.

Thoracic Vertebrae BioMedIA (Source Data Set)
Method ID Mean Std

Chen et al. [31] 76.4% 11.4 mm 16.5 mm
Liao et al. [21] 84.0% 7.8 mm 10.2 mm
McCouat and Glocker [14] 79.8% 6.6 mm 7.4 mm
Our method 67.0% 8.4 mm 8.7 mm
Our method (with 10 labels) 80.1% 6.2 mm 7.2 mm

Thoracic Vertebrae COVID-19 CT (Target Data Set)
Method ID Mean Std

Our method without UDA 45.6% 17.4 mm 24.2 mm
Our method 72.8% 11.1 mm 20.8 mm
Our method (with 10 labels) 89.2% 8.1 mm 20.3 mm

As before, “our method” corresponds to the model proposed in [14] with additional
UDA extensions. The results obtained with this model on the BioMedIA source data set are
less accurate than those of the original model without UDA. A reason is that our model
was optimized for the target data set only. Furthermore, by using domain adaptation a
performance loss on the source data set was consciously accepted in exchange for better
results on the target data set. If ten labels from the target data set are added during training
the model is superior to the original one on the source data set. Reasons for this are that (i)
the post-processing of the Detection module leads to better identification of the spine and
(ii) that the COVID-19 CT data set contains a lot of samples from thoracic vertebrae and
thus the model is more optimized for this region.

When analyzing the results on the COVID19-CT data set the effectiveness of the
proposed domain adaptation is evident. When the model is trained without UDA, only
45.6% of the vertebrae are correctly classified on the target data set. With the proposed
domain adaptation methods, the classification rate increases to 72.8%. A comparison with
state-of-the-art results on the BioMedIA data set shows (though being unfair because of the
different data sets used to achieve the respective numbers) that this is only 11.2 pp. less
accurate than the results of Liao et al. [21] and only 7 pp. less accurate than the results
of McCouat and Glocker [14], which both trained their model with labels. If ten labeled
target samples are added to the training set, an identification rate of 89.2% is achieved.
This is 5.2 pp. better than the best results reported so far for the BioMedIA data set. Of
course, the comparability of these remarks is limited because the data sets are different, but
it underlines that the performance of our method with semi-supervised domain adaptation
is remarkable.

5. Conclusions

In this paper, we presented a method to find vertebrae centroids on unlabeled CT
data sets, proposing a novel un- and semi-supervised domain adaptation method based
on the Domain Sanity Loss function that achieves state-of-the-art results with orders
of magnitudes less labels than previous methods. The detection and identification of
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vertebrae is important, for example, to extract 2D slices at predefined levels from 3D CT
scans. Compared to existing state-of-the-art systems our method has the advantage of
requiring much fewer labels while obtaining comparable results. For example, in clinical
practice, the BioMedIA [28] data set could be used as source data set and be combined with
a custom target data set. Our proposed UDA approach would only require the creation
of approximately ten labels of the custom data set, whereas a supervised approach might
require several hundred labels. Since less labor-intensive labeling is necessary the transfer
of the method to other medical applications and facilities is easier and more cost-efficient.

The main drawback of our method is that it requires more computational resources.
While supervised methods use one data set, our UDA method requires a source and a target
data set. Using an NVIDIA V100 GPU, training takes about 2 days. However, comparable
results with an ID rate of over 86% can be achieved after 16.5 h (with 35 instead of 100
epochs). Thus, the training takes slightly more than twice as long as the original method
from McCouat and Glocker [14]. Inference, on the other hand, is identical except for the
additional post-processing and therefore takes about the same amount of time.

5.1. Discussion

Specifically, pixel-level classification is often employed in the medical field [4–6].
Training such models in a supervised manner requires labels. Depending on the specific
task, labeling a single 3D scan on the pixel level can take an expert up to two weeks [32].
Considering that many applications require several hundred samples, one can conclude
that labeling a complete data set is almost prohibitively labor-intensive [33,34], setting harsh
limits to AI democratization. Alternatively, representative 2D slices can be used for various
applications (c.f. Section 1). These 2D slices are less time-consuming to label, since they
are only a cut-out of the 3D data. Thus, not only does our method for extracting 2D slices
require very few labels, but it can reduce the labeling effort of downstream ML pipelines
because representative 2D slices instead of 3D data can be processed in subsequent systems.

On the COVID-19 CT data set, 89.2% of all vertebra centroid predictions are identified
correctly which is in line with (in fact, beyond) the state-of-the-art on other data sets.
The mean deviation of the predicted centroid to the ground truth centroid is 8.1 mm.
However, this distance is measured in the 3D space. Considering the task of extracting
2D slices the deviation is even smaller because only the error in one direction of the 3D
space is relevant. In rare cases vertebrae can be mistaken and the deviation is much bigger,
leading to a standard deviation of 20.3 mm. Depending on the application, such wrong
predictions can simply be filtered out by analyzing the content of the 2D slice as conducted
by [11]. However, since this is application-dependent such post-processing is out of scope
of our work.

5.2. Limitations and Future Work

The proposed UDA method with DSL loss works very well on our target data set. A
limitation, however, is that the fourth loss component s4 relies on reference distances be-
tween subsequent vertebrae from the literature. Therefore, it is assumed that our approach
works worse for patients which do not comply with these reference values (e.g., children).
A second limitation is uncommon spinal constellations. In very rare cases, for example,
patients may have an additional lumbar vertebra L6, a lumbalizated S1, or a sacralizated
L5 as normal deviations to the standard spine. Since these constellations are not included
in our label set, they therefore cannot be detected.

In principle, our proposed UDA method and a DSL loss based on domain-specific
sanity checks is applicable to other domains and problems as well, even outside of medical
image processing. For example, we started experimenting with DSL losses for symbol
recognition in document analysis tasks [35]: We calculated statistics of symbols such as
their size and orientation, and built DSL losses to ensure that the predictions per page
comply with these statistics. From the preliminary experiments, we learned that DSL losses
will not work well if the data contains a lot of variation which cannot be specified in the loss
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function. Furthermore, we found that in this use-case a pre-training is necessary, otherwise
the predictions deviate too much from the statistics which hinders the learning process.

With respect to this work, we see further research potential (i) on optimizing per-
formance for patients with a smaller spine and (ii) on reliably detecting and correcting
incorrect predictions. The issues for patients with a small spine could be remedied either
by using other reference values or by adapting the loss component s4 to work with ratios
instead of absolute distances. Incorrect predictions, on the other hand, could be detected
with statistical methods regarding the centroids or by analyzing the corresponding 2D slice
on the transversal plane.

On a more general perspective, the DSL loss is considered complementary to process
unlabeled data and could serve as a general domain adaptation method. For example,
specifying a framework that derives statistics about sizes and relations of objects from
the data set and uses them as sanity checks in the loss function could be helpful for
various applications.
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