
NeuroImage: Clinical 4 (2014) 10–17

Contents lists available at ScienceDirect

NeuroImage: Clinical

j ourna l homepage: www.e lsev ie r .com/ locate /yn ic l
Jacobian integration method increases the statistical power to measure
gray matter atrophy in multiple sclerosis☆
Kunio Nakamura a,⁎, Nicolas Guizard a, Vladimir S. Fonov a, Sridar Narayanan a,b,
D. Louis Collins a, Douglas L. Arnold a,b

a McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
b NeuroRx Research, 3575 Park Avenue, Suite #5322, Montreal, Quebec H2X 4B3, Canada
☆ This is an open-access article distributed under the t
Attribution License, which permits unrestricted use, distri
medium, provided the original author and source are credi
⁎ Corresponding author at: 3801 University Street, W

Institute, Montreal, Quebec H3A 2B4, Canada. Tel.: +1 5
2975.

E-mail addresses: kunio.nakamura@mcgill.ca (K. Naka
nicolas.guizard@mcgill.ca (N. Guizard), vladimir.fonov@m
sridar.narayanan@mcgill.ca (S. Narayanan), louis.collins@
douglas.arnold@mcgill.ca (D.L. Arnold).

2213-1582/$ – see front matter © 2013 The Authors. Pub
http://dx.doi.org/10.1016/j.nicl.2013.10.015
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 30 July 2013
Received in revised form 2 October 2013
Accepted 23 October 2013
Available online 29 October 2013

Keywords:
Multiple sclerosis
Magnetic resonance imaging
Gray matter
Atrophy
Sample size
Jacobian integration
Gray matter atrophy provides important insights into neurodegeneration in multiple sclerosis (MS) and can be
used as a marker of neuroprotection in clinical trials. Jacobian integration is a method for measuring volume
change that uses integration of the local Jacobian determinants of the nonlinear deformation field registering
two images, and is a promising tool for measuring gray matter atrophy. Our main objective was to compare the
statistical power of the Jacobian integration method to commonly used methods in terms of the sample size
required to detect a treatment effect on gray matter atrophy. We used multi-center longitudinal data from
relapsing–remitting MS patients and evaluated combinations of cross-sectional and longitudinal pre-processing
with SIENAX/FSL, SPM, and FreeSurfer, as well as the Jacobian integration method. The Jacobian integration
method outperformed these other commonly used methods, reducing the required sample size by a factor
of 4–5. The results demonstrate the advantage of using the Jacobian integrationmethod to assess neuroprotection
in MS clinical trials.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Multiple sclerosis (MS) is an inflammatory, demyelinating disease of
the central nervous system. Although multiple focal lesions in white
matter are the pathologic and imaging hallmarks of MS, gray matter is
also involved. Gray matter pathology, which has been known from
early post-mortem studies (Dawson, 1916) but overlooked for many
decades, has recently become a new focus of MS research (Kutzelnigg
et al., 2005; Lucchinetti et al., 2011). Several postmortem (Bo et al.,
2007; Kutzelnigg et al., 2005), in vivo magnetic resonance imaging
(MRI) (Mainero et al., 2009), and MR spectroscopy studies (Caramanos
et al., 2009) have shown that gray matter pathology appears to be inde-
pendent of white matter pathology, suggesting distinct mechanisms
of tissue destruction. Pathological studies have shown that there is signif-
icant gray matter demyelination in MS, the extent of which can exceed
that of white matter (Geurts et al., 2012; Kutzelnigg et al., 2005).
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However, cortical lesions are rarely visible on conventional MRI (Geurts
et al., 2005a, 2008). Advanced MRI techniques such as double inversion
recovery and phase-sensitive inversion recovery can improve sensitivity
to leukocortical and intracortical lesions (Geurts et al., 2005b; Nelson
et al., 2007) but fail to capture the large bands of subpial demyelination
seen on histopathology (Seewann et al., 2012). Tissue loss in graymatter
(gray matter atrophy), which apparently results from lesional as well as
non-lesional pathology (Wegner et al., 2006) and represents overall
destructive pathology including neurodegeneration, can be measured
by conventional MRI.

Measures of cortical gray matter tissue loss or atrophy are clinically
relevant, as they correlate with cognitive impairment (Amato et al.,
2007), are more closely associated with physical disability than whole
brain atrophy (Fisher et al., 2008), and appear to be less influenced by
so-called “pseudoatrophy” than whole brain or white matter atrophy
(Nakamura et al., 2010; Tiberio et al., 2005). Indeed, these properties
make cortical gray matter atrophy attractive as an outcome measure
in clinical trials, particularly as therapeutic targets shift from suppres-
sion of inflammation to neuroprotection and remyelination.

The longitudinal measurement of cortical volume change on MRI is
not an easy task because the cortex is thin and convoluted, and the
relaxation behavior of both cortex and white matter can change with
pathology. To be useful as an outcome measure in MS, it is critical to
determine an optimal strategy to quantify gray matter atrophy with
high statistical power. The objectives of this study were: (1) to assess
the reproducibility of various analysis pipelines to measure cortical or
gray matter volume, (2) to quantify cortical or gray matter atrophy over
ved.
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time in an MS population, (3) to compare these pipelines in terms of
required sample size, and (4) to assess factors in study design (image
resolution and study duration) that influence the statistical power to
detect a clinical effect on the rate of cortical atrophy over time.

2. Material and methods

Weused a scan–rescandataset to calculate reproducibility and a lon-
gitudinal clinical study of MS patients to measure the required sample
sizes to detect gray matter atrophy.

2.1. Subjects

Subjects for the scan–rescan dataset were 20 healthy normal controls
(age = 30 ± 4 years, 10 females) (Aubert-Broche et al., 2006). Subjects
for the longitudinal dataset came from a multi-center clinical study
(Assessment Study of Steroid Effect in Relapsing Multiple Sclerosis
Subjects Treated with Glatiramer Acetate, ASSERT, NCT00203047)
involving 414 relapsing–remitting MS (RRMS) patients. A cohort of
287 patients (mean baseline age = 39.9 ± 9.0, proportion of female =
73.2%) who completed at least two MRI sessions was studied here. All
patients were randomized to either with glatiramer acetate alone
or with glatiramer acetate plus 1250 mg of prednisone given orally
for 5 days every 4 months.

2.2. Imaging

The scan–rescan MRIs were previously obtained T1-weighted 3D
spoiled gradient-recalled echo images [echo time (TE) = 9.2 ms,
repetition time (TR) = 22 ms, flip angle (FA) = 30°, resolution =
1.0 × 1.0 × 1.0 mm3]. The images were acquired twice on the same
day from 1.5 Tesla Siemens Sonata Vision scanner.

The longitudinal data were acquired at 63 different clinical sites
using 1.0 T (n = 2), 1.5 T (n = 57), or 3.0 T (n = 4) scanners. The
manufacturers included Philips (n = 15), Siemens (n = 18), General
Electric (n = 25), and Marconi (n = 5). Relevant MRI sequences
included: (a) axial proton density (PD)-weighted spin echo [TE = 10–
17 ms, TR = 2000–3800 ms, in-plane resolution = 0.977 × 0.977 mm2,
slice thickness = 3 mm], (b) axial T2-weighted spin echo images
Fig. 1. Flowchart describing the cross-sectional (XPP)
[TE = 77–96 ms, TR = 3267–7767 ms, in-plane resolution = 0.977 ×
0.977 mm2, slice thickness = 3 mm], (c) sagittal high-resolution 3D
T1-weighted gradient echo image [TE = 4–10 ms, TR = 15–24 ms,
FA = 30°, resolution = 1.5 × 1.0 × 1.0 mm3], and (d) axial standard-
resolution 3D T1-weighted gradient echo image [TE = 5–11 ms, TR =
28–34 ms, FA = 30°, resolution = 1.0 × 1.0 × 3.0 mm3]. Subjects
were scanned annually for up to 3 years.

2.3. Segmentation of MS lesions

T2-lesions in white matter were automatically segmented using a
multispectral Bayesian classifier (Francis, 2004) with PD-weighted, T2-
weighted, and T1-weighted images, and then reviewed by experts and
manually corrected as necessary. No cortical gray matter lesions were
identified, as the scanning sequence was not designed to be sensitive to
gray matter lesions.

2.4. Image analysis

The T1-weighted images for each subject were analyzed by combi-
nations of cross-sectional and longitudinal pre-processing with cross-
sectional segmentation-based and longitudinal registration-based algo-
rithms. The following section describes the details of the pre-processing
and atrophymeasurementmethods. All methods were fully-automated
except for the MS-lesion segmentation described above.

Conventional cross-sectional pre-processing (XPP): As shown in
Fig. 1, XPP consisted of (XPP-1) N3 intensity-non-uniformity correction
(Sled et al., 1998); (XPP-2) MS-lesion filling (Battaglini et al., 2012) (to
reduce bias in gray matter volumes due to the impact of variable white
matter MS lesion loads on image intensity distributions) (Nakamura and
Fisher, 2009); and (XPP-3) standard ICBM-space registration (using the
ICBM 2009c Nonlinear Symmetric Template) (Fonov et al., 2009), using
a hierarchical registration technique (Nakamura, 2011). Briefly, the hier-
archical registration procedure involved estimating the affine trans-
formation parameters in multiple steps: (1) two rotations (y- and
z-rotations) by maximizing the left and right inter-hemispheric sym-
metry, (2) x-rotation and z-translation by normalized mutual informa-
tion (NMI) registration to align anterior–posterior on the y-axis, (3)
multi-seed optimization for a global scaling factor using NMI, and (4)
and longitudinal (LPP) pre-processing pipelines.
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three scaling and three shearing parameters again estimated with NMI.
The Nelder–Mead simplexmethodwas used to optimize each stepwith
NMI as the cost function (Pluim et al., 2003). For lesion filling, the mean
and standard deviation of normal-appearing white matter (NAWM)
were estimated from initial segmentation of normal-appearing brain
tissue using FMRIB's Automated Segmentation Tool (FAST) (Zhang
et al., 2001).

Longitudinal pre-processing (LPP): The longitudinal pre-processing
began with the XPP and added the following: (LPP-1) Intra-subject
registration using pairreg from FSL, which includes skull-based correc-
tions for scaling and skewing between each pair of images (Jenkinson
et al., 2002), that corrects for potential voxel size mis-calibration and,
to some extent, geometric distortion (Caramanos et al., 2010); (LPP-2)
An unbiased subject-specific linear template using all combinations
(between each time-point) of linear transformations (Nakamura et al.,
2011). The matrix average was calculated as in Leung et al. (2012)
using octave (http://www.octave.org); (LPP-3) Differential intensity
correction, which estimates the bias field as a median-filtered ratio
map with respect to the subject-specific template (Leung et al., 2012;
Lewis and Fox, 2004); (LPP-4) Template-to-standard-space registration
using the hierarchical method, as previously described; (LPP-5) Con-
sistent standard space (ICBM 2009c Nonlinear Symmetric Template
(Fonov et al., 2009)) registration by concatenating the native-to-
template affine registration matrix and template-to-standard-space
registration matrix; (LPP-6) Field-of-view matching by removing all
voxels that were not in the image at any time-point, and (LPP-7) Longi-
tudinal lesion-filling using combined lesion masks, where the lesion
(a) Baseline MRI (b) Follow-up MRI

(e) Baseline SPM (f) Follow-up SPM

(i) Difference Map (before 
nonlinear registration)

(j) Difference Map (after 
nonlinear registration) -

SPM

Jacobian 
Integration 

Input
Images

Fig. 2.Example images from a single RRMS subject: (a) baseline high-resolution T1-weightedM
for baselineMRIwith colored graymatter tissue, (d) SIENAX from the follow-up scan, outputs of
MRI (g) and on follow-upMRI (h). Finally, from the Jacobian integrationmethod, the absolute in
coded Jacobian determinantmapwhere red indicates voxel expansion andblue indicates contra
(red) while overall parenchymal atrophy is visible in cortical gray matter and thalami (blue).
masks from each time-point were transformed to the subject-specific
template, combined, transformed back to the native space, and filled
with NAWM intensities similar to the lesion filling in XPP (Nakamura
et al., 2010). The flowchart of the two pre-processing pipelines is
shown in Fig. 1.

Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/
spm) is a software suite of MATLAB functions and subroutines. We
used the latest version, SPM8b. Of the many pipelines in SPM8b, we
are interested in the “Segment” function (Ashburner and Friston,
2005). It is a cross-sectional algorithm where each image is indepen-
dently analyzed. This segmentation produces tissue probability maps
from which maps of gray matter, white matter, and cerebrospinal fluid
classes are obtained. The tissue class with the highest probability is
assigned at that voxel. For this work, we are interested only in the
gray matter voxels. Since SPM requires good initial spatial normali-
zation, we performed linear spatial normalization prior to SPM anal-
ysis using the hierarchical registration method in XPP (Nakamura,
2011) with the stereotactic ICBM 2009c Nonlinear Symmetric Template
image (Fonov et al., 2009). The resulting volume, therefore, is a head-size
normalized total (= cortical + deep + cerebellar) gray matter volume.

SIENAX is the cross-sectional version of the Structural Image Evaluation
using Normalization of Atrophy (SIENA)method (Smith et al., 2002) and
is part of FSL (http://www.fmrib.ox.ac.uk/fsl/). Currently, SIENA cannot
measure cortical atrophy and was not used in this study. Briefly, in
SIENAX, the brain is extracted from the volume using the Brain Extraction
Tool (BET) (Smith, 2002) and then classified using FAST into graymatter,
white matter, and cerebrospinal fluid (Zhang et al., 2001). FAST corrects
(c) Baseline SIENAX (d) Follow-up SIENAX

(k) Jacobian 
Determinant Map

0.5 0 +0.5

SIENAX

FreeSurfer

(g) Baseline FreeSurfer (h) Follow-up FreeSurfer

RI, (b) linearly registered follow-up high-resolution T1-weightedMRI, (c) output of SIENAX
SPMonbaselineMRI (e) and follow-upMRI (f). The surface result of FreeSurfer onbaseline
tensity differencemaps, (i) = before and (j) = after nonlinear registration, and (k) color-
ction (range = ±50%). Amarked enlargement is visible in the ventricles and frontal sulcus

http://www.octave.org
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl/
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Fig. 3. (a) Boxplot showing the percent change of cortical or total gray matter volume
measured fromeach pipeline fromone-year data after removing outliers. Jacobian integra-
tion and SIENAX measure cortical volume change while SPM measures total gray matter
volume change. The colored boxplot shows the first quartile, median, third quartile, and
extreme values; the black rectangle indicates the mean with standard error; the curves
are the corresponding histograms. The darker curves use LPP, and lighter colors for XPP.
Mean, standard deviation (SD), and effect size are shown below for each method. (b)
The required sample size per arm for each pipeline for varying treatment effects with
fixed power of 80% and 0.05 significance level. Table 1 shows the same values with 95%
confidence interval. Values greater than 1000 are omitted here as such trials are not real-
istic. Cross-sectional FreeSurfer, FreeSurfer (x) values are not displayed because their
values are above 1000. Abbreviations: XPP = cross-sectional pre-processing; LPP =
longitudinal pre-processing.
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for spatial intensity variations aswell as partial volume, and uses a hidden
Markov random field model and expectation–maximization algorithm
(Zhang et al., 2001). SIENAX calculates a v-scaling factor to normalize
the brain volumes so that they are comparable in the standard stereotaxic
space. This scaling is the determinant of the skull-constrained brain regis-
trationmatrix that registers the subjectMRI and standard template. In the
end, SIENAX outputs normalized and non-normalized volumes for
cortical and total gray matter. In this study, we used normalized cor-
tical volume.

FreeSurfer is a freely available image analysis package (http://surfer.
nmr.mgh.harvard.edu) that has both cortical surface reconstruction
(Dale et al., 1999) and volumetric segmentation (Fischl et al., 2002,
2004a,b). In this study, the surface-based cortical thickness is used to
measure cortical gray matter atrophy. The images are analyzed first
cross-sectionally; then the unbiased longitudinal scheme is applied to
improve the consistency (Reuter et al., 2012). XPP or LPP is not applied
for FreeSurfer because FreeSurfer has its own longitudinal pipeline. The
FreeSurfer version is 5.1.

The Jacobian integrationmethod is a longitudinal registration-based
method and a type of tensor-based morphometry (Ashburner et al.,
1998). We used a variant of the longitudinal pipeline developed in the
Image Processing Laboratory at the McConnell Brain Imaging Centre at
the Montreal Neurological Institute (Guizard et al., 2012). Briefly, the
Jacobian integration method consisted of the following: (1) skull-based
intra-subject registration using pairreg (Jenkinson et al., 2002), (2) trans-
formation and resampling of both images into an isotropic halfway space
using sinc interpolation, (3) symmetric nonlinear registration of the two
affine-halfway-transformed images using SyN (Avants et al., 2008), (4)
calculation of the local Jacobian determinants of nonlinear displace-
ment fields, and (5) integration of Jacobian determinants within the
baseline cortical masks obtained from FAST (Zhang et al., 2001). The
Jacobian determinants are calculated from numerical integration and
not analytical integration of functions used for nonlinear registration.
The output of the Jacobian integration method is a percent change in
volume; it is not a cross-sectional measure.

2.5. Effect of study designs

We evaluated the effect of image resolution and duration of trials
using the Jacobian integration method. To assess the effect of image
resolution, the rate of cortical atrophy was measured from higher-
resolution sagittal MRIs (1.5 × 1.0 × 1.0 mm3) and separately using
standard-resolution axial MRIs (1.0 × 1.0 × 3.0 mm3). It should be
noted that this evaluation of image resolution does not test the pure
effect of resolution change because the pulse timing parameters are
not the same. Nonetheless, we find that this evaluation is more realistic
than synthetic averaging of slices, and the result is directly applicable to
real-world clinical trials.

For the statistical effect of the study duration, the rate of cortical
atrophy was measured from baseline to year 1, baseline to year 2, and
baseline to year 3.

2.6. Statistical analysis

For scan–rescan analysis, wemeasured the absolute percent volume
change.

In order to determine and compare the statistical power of each
pipeline, we estimated the sample size (per arm) required to detect
pre-specified treatment effects (10–90%) in the longitudinal data set,
without accounting for normal aging. We compared combinations of
the following analysis pipelines (1) XPP + SPM, (2) LPP + SPM, (3)
XPP + SIENAX, (4) LPP + SIENAX, (5) cross-sectional version of
FreeSurfer, (6) longitudinal version of FreeSurfer, (7) XPP + Jacobian
integration method, and (8) LPP + Jacobian integration method. The
effect of study designwas investigated using Jacobian integrationmeth-
od only.
Weused the “pwr”package (http://cran.r-project.org/web/packages/
pwr/index.html) in R to estimate the sample size required to detect
treatment effects with 80% power, 0.05-significance level, and 10–90%
treatment effects. The treatment effect was assumed to start imme-
diately and remain constant over 3 years. The 95% confidence inter-
val was estimated by bootstrapping 10,000 times. The sample size was
calculated from the longitudinal data and independent of scan–rescan
data.

For the analyses using SIENAX, SPM, and FreeSurfer, the atrophy rate
was calculated from the difference in cortical gray matter volume, total
gray matter volume, and cortical thickness, respectively. For the Jacobi-
an integration method, the output is a direct measure of atrophy rate in
percent change. The atrophy rates were annualized before calculating

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://cran.r-project.org/web/packages/pwr/index.html
http://cran.r-project.org/web/packages/pwr/index.html
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the sample sizes. As in Healy et al. (2009), we defined outliers a priori as
having an annualized change greater than 10%/year, and these were
eliminated from the analysis. The number of outliers for each technique
is reported in Results section.

3. Results

The scan–rescan absolute percent differences in graymatter volume
or thickness were 0.32 ± 0.23% (range = 0.01–0.85%) for the XPP +
Jacobian integration method, 0.32 ± 0.24% (range = 0.03–0.90%) for
the LPP + Jacobian integration method, 0.80 ± 0.73% (range = 0.05–
2.85%) for XPP + SPM8, 0.89 ± 0.70% (range = 0.07–2.86%) for LPP +
SPM8, 1.50 ± 1.41% (range = 0.01–6.41%) for XPP + SIENAX, 0.73 ±
0.57% (range = 0.01–2.57%) for LPP + SIENAX, and 1.04 ± 0.41%
(range = 0.30–1.84%) for longitudinal FreeSurfer.

From the longitudinal dataset, we removed data from seven sites
that changed scanners during the data acquisition period. We also did
not analyze images with incomplete supratentorial brain coverage or
severe artifacts. For high-resolution MRIs, there were 279 baseline and
year-one image pairs, 159 baseline and year-two image pairs, and 71
baseline and year-three image pairs. The respective numbers were
274, 158, and 71 for the standard-resolution MRI image-pairs. There
was no effect of treatment on whole brain or cortical atrophy, and the
following analysis was performed on the combined group.

3.1. Evaluation of pipelines

Fig. 2 shows an example of input and resulting images from a single
RRMS subject. Fig. 3(a) shows the percent volume change in cortical or
total gray matter atrophy from each pipeline, and Fig. 3(b) shows the
required sample size for varying treatment effects. Table 1 shows the
corresponding values with 95% confidence intervals. The numbers of
outliers (defined as N10%/year change a priori) was none from Jacobian
integration method; 4 from SPM8 and SIENAX with XPP; and 2 from
SPM8 and SIENAX with LPP; 16 for cross-sectional FreeSurfer and
4 for longitudinal FreeSurfer. The mean annualized rates (SD)
of atrophy were −0.555 (0.793), −0.519 (0.724), −0.829 (2.474),
−1.011 (2.182), −0.856 (2.845), −1.218 (2.414), −0.377 (2.858),
and−0.594 (2.521) %/year for Jacobian integration, XPP + Jacobian,
LPP + Jacobian, XPP + SPM8, LPP + SPM8, XPP + SINEAX, LPP +
SIENAX, cross-sectional FreeSurfer, and longitudinal FreeSurfer, respec-
tively. Compared to XPP, LPP decreased the required sample size on aver-
age by 38% and 57% for SPM8 and SIENAX, respectively. The Jacobian
Table 1
Comparison of various pipelines.

Treatment effect XPP + Jacobian
integration

LPP + Jacobian
integration

XPP + SPM LPP +

10% 3201
(2129–4972)

2731
(1996–3888)

N10,000
(7178–)

732
(417

20% 801
(533–1244)

684
(500–973)

3496
(1796–9657)

183
(1045–

30% 357
(238–554)

305
(223–433)

1,555
(799–4293)

81
(465–1

40% 201
(134–312)

172
(126–244)

875
(450–2415)

45
(262–

50% 129
(87–200)

111
(81–157)

561
(289–1546)

29
(169–

60% 90
(61–140)

77
(57–109)

390
(201–1074)

20
(117–

70% 67
(45–103)

57
(42–81)

287
(148–790)

15
(87–3

80% 51
(35–79)

44
(33–62)

220
(114–605)

11
(67–2

90% 41
(28–63)

35
(26–49)

174
(90–478)

92
(53–1

Required sample size per arm to detect treatment effect on cortical atrophy except for SPM,
bootstrapping 10,000 times. Abbreviations: XPP = cross-sectional pre-processing; LPP = long
integration method showed further improvement and had a 58% reduc-
tion on average compared to the next best result, LPP + SPM8. Compared
to conventional XPP + SIENAX, Jacobian integration reduced the sample
size required to see a change in cortical gray matter by more than 5 fold.

3.2. Effect of study designs

MRI image resolution was found to be a significant contributor to
study power. As shown in Fig. 4 and Table 2, low-resolution MRIs
(3 mm slice thickness) required an average of 34% more subjects to de-
tect differences. The same figure also shows that longer studies require
fewer patients. A post-hoc analysis with a subset of patients who had
completed 4 MRIs did not significantly change these results.

4. Discussion

The results of the current study showed that the longitudinal
Jacobian integration method was superior to commonly-used cross-
sectional methods — reducing the required sample size by 4–5 fold
in the MS population studied. The required sample size was reduced
when commonly-used cross-sectional methods were applied on
longitudinally-pre-processed images (Nakamura et al., 2012), but
the improvement with the Jacobian integration method far exceeded
that improvement. Our results suggest that longitudinal methods
such as the Jacobian integration method have substantial advantages
for measuring cortical and gray matter atrophy in future clinical trials.

The fact that the average atrophy rates varied from −0.519%/year
with the Jacobian integration method + LPP to −1.218%/year with
LPP + SIENAX emphasizes that the interpretation of atrophy data
requires caution. We cannot directly compare atrophy rates across
different analysis methods. The current literature on cortical atrophy
using Jacobian integration methods in MS is limited. In Anderson
et al. (2009), the authors used a Jacobian integration method to com-
pare the rates of gray matter atrophy in normal controls versus that in
patients with RRMS and failed to detect a significant difference— likely
due to the study's small sample size. In another study, Anderson et al.
applied a Jacobian integration method in patients with Alzheimer's dis-
ease and showed a pattern similar to our findings of power improve-
ment with respect to SIENAX (Anderson et al., 2012).

The estimated sample size required by SIENAX in the current study
was larger than that of a previous report by Healy et al. (2009). The lat-
ter study reported approximately 70–250 patients per arm for a 2-year
annual MRI study with 50% treatment effect and 80% power, whereas
SPM XPP + SIENAX LPP + SIENAX Cross-sectional
FreeSurfer

Longitudinal
FreeSurfer

1
8–)

N10,000
(8143–)

6174
(3638–)

N10,000 N10,000

2
3756)

4336
(2037–)

1545
(911–2990)

N10,000
(6339–)

7084
(3184–)

5
670)

1928
(906–6764)

687
(406–1330)

N10,000
(2818–)
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which uses gray matter atrophy. The range is a 95% confidence interval obtained from
itudinal pre-processing.
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Fig. 4. (a) Boxplots and histogram of cortical volume change comparing study durations
and image resolutions using the Jacobian integration method. From left to right (year-
one high-resolution, year-one low-resolution, year-two high-resolution, year-two low-
resolution, year-three high-resolution, and year-three low-resolution), the average rates
of cortical atrophy were −0.56 ± 0.79, −0.52 ± 0.87, −0.48 ± 0.43, −0.42 ± 0.47,
−0.43 ± 0.27, and −0.41 ± 0.28% per year. (b) The sample size per arm required for
varying treatment effect with fixed power of 80% and 0.05 significance level. The use of
high resolution MRIs reduced the required sample size by 34% on average. The reduction
was greater for short duration or small treatment effect. Longer study duration consistent-
ly decreased the required sample size (41% per year on average).
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our equivalent analysis with XPP–SIENAX required approximately 450
patients per arm (data not shown). A number of important differences
between the studies may underlie this discrepancy: first, study designs
were different (measurement of total graymatter atrophy frommonthly
MRIs in Healy et al. vs. cortical atrophy from annual MRI in the current
study); and, second, the atrophy rates in the patient populations
were very different (from −1.9 to −3.6%/year in Healy et al. and from
−0.56% to−1.22% in the current study). It is plausible that theMS pop-
ulation studied here, all of whom were on treatment with glatiramer
acetate, was more stable than the population in that study.

The current study did not include a placebo arm, which would
have allowed for an estimation of actual treatment effect. Neverthe-
less, future MS clinical trials are unlikely to have placebo arms due to
ethical considerations (Polman et al., 2008); therefore, modeling the
treatment effect against a placebo population may overestimate the
statistical power when applied to a trial with an active comparator
arm. As a result, our estimations are more directly applicable to
future clinical trials. The current study also did not examine cortical
atrophy in normal controls, which could have allowed us to account
for normal aging. However, cortical, or gray matter, atrophy due to
normal aging is very small compared with MS-related atrophy at the
group level (−0.028 ± 0.24 and−0.23 ± 0.34% per year, respectively,
for normal controls and patients with RRMS in Fisher et al. (2008); and
−0.06 ± 0.16 and−0.15 ± 0.27% per year in Anderson et al. (2009));
thus, we believe that neglecting normal aging effects in the present
calculation introduces little error. However, in a population where atro-
phy due to normal aging is not small (e.g., Alzheimer's disease), this
approach could overestimate the power.

FreeSurfer did not performwell in the current study as shown by the
large sample sizes and many outliers. It is possible that images used
in the longitudinal study (single FLASH without signal averaging or
multi-echo) are not optimal for FreeSurfer. Nonetheless, it emphasizes
that the Jacobian integration method is robust with respect to the T1-
weighted sequence details as its performance in low-resolution images
is relatively similar to that from high-resolution MRIs. This is a poten-
tially important practical advantage of Jacobian integration, as it can
be used almost equally as well on images with 3 mm slice thickness,
which is standardly acquired in MS clinical trials.

We measured atrophy in all cerebral gray matter (deep and cortical
gray matter) directly using different methods, and compared their sta-
tistical power. Cortical gray matter forms about 80% of total gray matter
and does not include deep structures such as the thalami, which are
known to show disproportionately high rates of atrophy, even in early
MS (Henry et al., 2008). Importantly, cortical gray matter also does
not include cerebellar gray matter, and the segmentation of which
on conventional MRI scans is highly contaminated by partial volume
effects. Sample sizes were not very different for the two cross-sectional
approaches (namely, SPM and SIENAX), and all things considered, it is
difficult to assess whether one metric should be preferred in the clinical
trial setting.

A constant and immediate treatment effectwas assumedhere. How-
ever, it is possible that gray matter may demonstrate pseudoatrophy
(an acceleration of atrophy in the first year following the initiation of
treatment), depending on the nature of the treatment being initiated
(Zivadinov et al., 2008). Previous studies have suggested that white
matter volume change is predominantly affected by pseudoatrophy
whereas gray matter is less sensitive to fluctuations associated with
changes in inflammation (Nakamura et al., 2010; Tiberio et al., 2005).
However, we cannot exclude the possibility that pseudoatrophy can
occur in gray matter as well (Horakova et al., 2008; Nakamura et al.,
2010). It is also possible that there is a tissue-specific delayed effect of
treatment on atrophy; that is, conventional anti-inflammatory treat-
ments may reduce inflammation in white matter first, followed by
reduced Wallerian degeneration, and ultimately neuroprotection. Such
treatment-specific mechanisms of action may also play a role in the
dynamics of cortical atrophy.
In conclusion, our results clearly show that longitudinal registration-
based methods such as the Jacobian integration method described here
have greater statistical power for detecting treatment effects on gray
matter atrophy than the commonly-used cross-sectional segmentation-
based methods, even when the latter are combined with longitudinal
pre-processing. Our results should help in the planning of new clinical
trials assessing neuroprotection in MS.
Acknowledgment

The authors thank Teva Pharmaceutical Industries for the use ofMRI
data from the Multi-Centered, Randomized, Double-Blind, Placebo
Controlled Study Assessing the Add-on Effect of Oral Steroids in Relaps-
ing Remitting Multiple Sclerosis Subjects Treated with Glatiramer
Acetate (ASSERT, NCT00203047) trial, NeuroRx Research for provid-
ing these data, CBRAIN (http://cbrain.mcgill.ca/, principal investigator:
Alan C. Evans) (Frisoni et al., 2011), a Canada-wide platform for dis-
tributed processing, for computation, and Zografos Caramanos for

http://cbrain.mcgill.ca/


Table 2
Effect of resolution and duration on the required sample size per arm to detect treatment effect on cortical atrophy.

Treatment effect Year 1 high-resolution Year 1 low-resolution Year 2 high-resolution Year 2 low-resolution Year 3 high-resolution Year 3 low-resolution

10% 3201
(2269–4609)

4331
(2277–4586)

1247
(899–1717)

1917
(1372–2707)

607
(367–885)

719
(437–1076)

20% 801
(568–1153)

1084
(570–1148)

313
(226–430)

480
(344–678)

153
(93–222)

181
(110–270)

30% 357
(253–513)

483
(254–511)

140
(101–192)

214
(154–302)

69
(42–100)

81
(50–121)

40% 201
(143–289)

272
(144–288)

79
(58–109)

121
(87–171)

39
(24–57)

46
(29–69)

50% 129
(92–186)

175
(93–185)

51
(37–70)

78
(56–110)

26
(16–37)

30
(19–44)

60% 90
(64–129)

122
(65–129)

36
(26–49)

55
(40–77)

18
(12–26)

21
(14–31)

70% 67
(48–96)
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(48–95)

27
(20–36)
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(29–57)

14
(9–20)

16
(10–23)

80% 51
(37–73)

69
(37–73)

21
(16–28)

31
(23–44)

11
(7–15)

13
(8–18)

90% 41
(29–58)

55
(30–58)

17
(13–23)

25
(18–35)

9
(6–12)

10
(7–15)

Required sample size per arm to detect treatment effect on cortical atrophy using the Jacobian integration method. The range is a 95% confidence interval obtained from bootstrapping
10,000 times.
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