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Abstract

Background

The potentially lethal zoonosis alveolar echinococcosis (AE) is caused by the metacestode

larval stage of the tapeworm Echinococcus multilocularis. Current AE treatment options are

limited and rely on surgery as well as on chemotherapy involving benzimidazoles (BZ). BZ

treatment, however, is mostly parasitostatic only, must be given for prolonged time periods,

and is associated with adverse side effects. Novel treatment options are thus urgently

needed.

Methodology/principal findings

By applying a broad range of kinase inhibitors to E. multilocularis stem cell cultures we iden-

tified the proto-oncogene PIM kinase as a promising target for anti-AE chemotherapy. The

gene encoding the respective E. multilocularis ortholog, EmPim, was characterized and in

situ hybridization assays indicated its expression in parasite stem cells. By yeast two-hybrid

assays we demonstrate interaction of EmPim with E. multilocularis CDC25, indicating an

involvement of EmPim in parasite cell cycle regulation. Small molecule compounds SGI-

1776 and CX-6258, originally found to effectively inhibit human PIM kinases, exhibited detri-

mental effects on in vitro cultured parasite metacestode vesicles and prevented the forma-

tion of mature vesicles from parasite stem cell cultures. To improve compound specificity for

EmPim, we applied a high throughput in silico modelling approach, leading to the identifica-

tion of compound Z196138710. When applied to in vitro cultured metacestode vesicles and

parasite cell cultures, Z196138710 proved equally detrimental as SGI-1776 and CX-6258

but displayed significantly reduced toxicity towards human HEK293T and HepG2 cells.

Conclusions/significance

Repurposing of kinase inhibitors initially designed to affect mammalian kinases for helminth

disease treatment is often hampered by adverse side effects of respective compounds on

human cells. Here we demonstrate the utility of high throughput in silico approaches to
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design small molecule compounds of higher specificity for parasite cells. We propose

EmPim as a promising target for respective approaches towards AE treatment.

Author summary

The larva of the tapeworm E. multilocularis grows tumor-like within the host liver, thus

causing the lethal disease alveolar echinococcosis (AE). Anti-parasitic treatment relies on

chemotherapy with benzimidazoles, which do not kill the parasite and must be applied for

years. As druggable enzymes with key functions in growth control, protein kinases are

promising drug targets and many kinase inhibitors have been identified during cancer

research. Optimized for binding to human kinases, however, repurposing of such drugs

for parasitic disease treatment is associated with adverse side effects. Herein, the authors

applied an in silico approach to identify small molecule compounds that show higher spec-

ificity for a parasite kinase, EmPim, over its mammalian homologs. The authors demon-

strate expression of EmPim in Echinococcus stem cells, which are the drivers of parasite

growth, and show that mammalian PIM kinase inhibitors SGI-1776 and CX-6258 also

affect parasite development in vitro. Finally, they show that one of the in silico screened

compounds is equally effective against the parasite as SGI-1776 and CX-6258, but signifi-

cantly less toxic to human cells. These results demonstrate the utility of in silico
approaches to identify parasite-specific kinase inhibitors.

Introduction

The metacestode (MC) larval stage of the cestode E. multilocularis is the causative agent of

alveolar echinococcosis (AE), a potentially lethal zoonosis prevalent in the Northern Hemi-

sphere [1]. Intermediate hosts (rodents, humans) are infected by oral uptake of infectious eggs,

which contain an embryonic larval stage, called the oncosphere. Within the intestine of the

intermediate host, the oncosphere hatches from the egg, penetrates the intestinal barrier, and

gains access to the inner organs. Usually within the host liver, the oncosphere then undergoes

a metamorphosis-like transition towards the MC stage [2]. The E. multilocularis MC consists

of numerous vesicles, which grow infiltratively, like a malignant tumour, into the surrounding

liver tissue, eventually resulting in organ failure if no adequate treatment is applied [3]. As we

have previously shown, MC growth and proliferation strictly depend on a population of plu-

ripotent stem cells (called ‘germinative cells’ (GC) in the case of Echinococcus), which, as typi-

cal for flatworms, are the only mitotically active cells of the MC and give rise to all

differentiated cells [4]. Currently, the only option to cure AE is surgical removal of the invad-

ing MC tissue, supported by chemotherapy using benzimidazoles (BZ; albendazole, mebenda-

zole), which target parasite β-tubulin [5]. Surgical removal of parasite tissue is, however, only

possible in around 20% of cases, leaving BZ chemotherapy as the only remaining treatment

option for non-operable patients [3]. Although the prognosis of such patients has significantly

improved after the introduction of BZ chemotherapy around 40 years ago, adverse side effects

are frequently observed [6]. Furthermore, albendazole and mebendazole appear to be effective

against the parasite in only one third of cases [7], whereas they are parasitostatic only in the

majority of patients and must, therefore, be applied for years to decades, sometimes even life-

long [8]. Since GC are the only mitotically active cells of the MC [4], it has already been pro-

posed that the high recurrence rates after anti-AE chemotherapy are due to limited activity of
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BZ against the parasite’s stem cell population [9]. Hence, alternative drugs are urgently needed,

which are also active against the Echinococcus GC [5].

Due to their catalytical process in transferring phosphate onto protein targets, protein

kinases (PKs) are particularly druggable enzymes [10] and most small molecule compounds

that interfere with kinase activity bind to the ATP binding pocket [11]. Furthermore, PKs are

crucially involved in regulating proliferation and differentiation of eukaryotic cells, making

them highly attractive targets for strategies to chemically interfere with aberrant cell prolifera-

tion, e.g. in the context of malignant transformation [12]. One of these PKs, the PIM (proviral

integration site for murine leukemia virus) kinase, has recently drawn much attention as a

potential target for treating multiple forms of cancer [13–20]. Mammals typically express three

PIM kinase isoforms, Pim-1, Pim-2, and Pim-3, which are constitutively active serine/threo-

nine kinases [21] that phosphorylate numerous protein substrates and are downstream effec-

tors of a variety of cytokine signalling pathways [22]. Via activation of CDC25 phosphatase,

mammalian Pim-1 is involved in the regulation of the cell cycle [23,24] and aberrant expres-

sion of PIM kinases has been associated with numerous forms of malignant transformation

[22]. A hallmark of PIM kinases is their unusual hinge region, which facilitates the develop-

ment of specific kinase inhibitors and, during recent years, several small molecule compounds

with activities against PIM kinases have been identified. Of these, the imidazole pyridazine

compound SGI-1776 proved to be an effective pan-PIM inhibitor with IC50 values of 7, 363,

and 69 nM against human Pim-1, Pim-2, and Pim-3, respectively, but also inhibited the

kinases FLT3 (44 nM) and haspin (34 nM) [16]. Among second generation inhibitors, the oxi-

ndole-based compound CX-6258 displayed even higher specificity for PIM kinases than SGI-

1776 (IC50 Pim-1, 5 nM; Pim-2, 25 nM, Pim-3, 16 nM) [25] and less activity against FLT3

(IC50: 134 nM) [26]. At least in melanoma cell lines, CX-6258 also showed activities against

haspin kinase, although also at much higher IC50 values than against Pim-1 and Pim-3 [27].

Although SGI-1776 has proceeded to clinical phase I trials against non-Hodgkin lymphoma

and prostate cancer, the respective studies have been terminated due to toxicity in cardiac elec-

tric cycle prolongation [28], probably due to their activities against PIM kinases in non-cancer

cells and/or to off-target effects.

In the present work, we demonstrate that SGI-1776 and CX-6258 also exert detrimental

effects on in vitro cultivated stem cells and larval stages of E. multilocularis. We characterized

the Echinococcus PIM kinase ortholog, show that it contains the majority of amino acid resi-

dues that mediate the binding of PIM inhibitors to the ATP binding pocket, and demonstrate

that, like the mammalian counterpart Pim-1, the Echinococcus enzyme interacts with CDC25

phosphatase. Using an in silico modelling approach to discriminate between mammalian and

parasite PIM sequences, we then identified compound Z196138710, which displays equal tox-

icity against parasite larvae as SGI-1776 or CX-6258, but which is much less toxic for mamma-

lian cells. The impact of these findings on drug design strategies against AE are discussed.

Methods

Ethics statement

In vivo propagation of parasite material was performed in mongolian jirds (Meriones unguicu-
latus), which were raised and housed at the local animal facility of the Institute of Hygiene and

Microbiology, University of Würzburg. This study was performed in strict accordance with

German (Deutsches Tierschutzgesetz, TierSchG, version from Dec-9-2010) and European

(European directive 2010/63/EU) regulations on the protection of animals. The protocol was

approved by the Ethics Committee of the Government of Lower Franconia (Regierung von

Unterfranken) under permit numbers 55.2–2531.01-61/13 and 55.2.2-2532-2-1479-8.
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Organisms and culture methods

All experiments were performed with the E. multilocularis isolates H95 and GH09 [29] which

either derive from a naturally infected fox of the region of the Swabian Mountains, Germany

(H95) [30] or from Old World Monkey species (Macaca fascicularis) that had been naturally

infected in a breeding enclosure (GH09) [31]. The isolates were continuously passaged in

mongolian jirds (Meriones unguiculatus) essentially as previously described [32,33]. In vitro
culture of parasite metacestode vesicles (MV) under axenic conditions was performed as previ-

ously described [34] and the isolation and maintenance of Echinococcus primary cell cultures

(PC) was carried out essentially as established by Spiliotis et al. [35]. In all cases, media were

changed every three to four days (d), including addition of fresh compound solution in the

case of inhibitor studies. For these studies, specific concentrations of compounds, dissolved as

10–50 mM stock solutions and stored at -80˚C, were added to parasite cultures as indicated,

and as negative control DMSO (0.1%) was used. SGI-1776 was purchased from Selleckchem

(Houston, Texas) and CX-6258 was from Cayman chemical (Ann Arbor, Michigan).

Z196138710 was purchased from SIA Enamine (Riga, Latvia). Providers of other kinase inhibi-

tors are listed in S1 Table. A6 medium was prepared by seeding 1.0 × 106 rat Reuber hepatoma

cells [33] in 175 cm2 culture flasks with 50 ml DMEM (Dulbecco’s Modified Eagle Medium)

+ GlutaMAX-I (life technologies) including 10% Fetal Bovine Serum Superior (life technolo-

gies) and incubated for 6 d under aerobic condition. The supernatant was sterile filtrated to

remove hepatocytes. Similarly, B4 medium was prepared by seeding 1.0 × 107 rat Reuber hepa-

toma cells in 175 cm2 culture flasks with 50 ml DMEM+GlutaMAX-I including 10% FBS and

incubated for 4 d under aerobic conditions prior to sterile filtration.

Anti-parasitic inhibitor assays

In cell viability assays for initial screening of kinase inhibitors, PC were isolated from mature

MV using a previously established protocol [34] and PC density was measured by densitome-

try. 1 Unit (U) of PC is defined as the amount which increases OD600 by 0.01.15 U of isolated

PC (~2.25 × 103 cells/well) were seeded into 384 well plates with 100 μl of conditioned medium

(50% A6 medium + 50% B4 medium) including defined concentration of inhibitors as indi-

cated. Plates were incubated at 37˚C under nitrogen atmosphere. After 3 d, cell viability was

measured using the Cell Titer Glo 2.0 cell viability assay (Promega), according to the manufac-

turer’s instructions. According to Crouch et al. [36], Kangas et al. [37], and Maehara et al. [38],

the strength of the luminescent signal in this test is directly proportional to the amount of ATP

and to the number of viable cells in culture. Luminescence was measured using a Spectramax

iD3 Multi-mode Microplate reader (Molecular Devices; San Josè, CA, USA). Measured lumi-

nescence units were normalized to those of the DMSO control and visualized as heatmaps

with GraphPad Prism version 9.3.1 (Graphpad software). All kinase inhibitors were tested

independently in three technical replicates.

In mature MV assays, 10 individual MV each were cultured in 2 ml of conditioned medium

(100% A6 medium) in the presence of inhibitors in 12 well plates under axenic conditions for

28 d as described in [39]. Only vesicles without visible brood capsules or protoscoleces were

used, all vesicles had comparative diameter (~0.5 mm) and were of comparative age (5–7

months of culture). Structural integrity of MV was assessed using an optical microscope

(Nikon eclipse Ts2-FL). Experimental set-up and execution of inhibitor studies and structural

integrity assessment was performed by independent experimenters. Criteria for intact or dam-

aged vesicles were essentially as previously described [40,41]. All experiments were performed

using 3 biological replicates. Percentages of structurally intact vesicles were statistically

PLOS NEGLECTED TROPICAL DISEASES Echinococcus multilocularis PIM kinase

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010483 October 3, 2022 4 / 24

https://doi.org/10.1371/journal.pntd.0010483


analyzed with one-way ANOVA with Dunnet’s multiple comparison tests in Graphpad prism

9.3.1(Graphpad software).

In vesicle formation assays, PC were isolated as described above and 100 U of isolated PC

(~1.5×104 cells/well) were seeded in 96 well plates with 200 μl of conditioned medium (50%

A6 medium + 50% B4 medium) for 21 d under nitrogen atmosphere. The number of newly

formed vesicles was counted using an optical microscope (Nikon eclipse Ts2-FL) essentially as

previously described [41]. Kruskal-Wallis test followed by Dunn’s multiple comparisons test

was used in GraphPad Prism version 9.3.1(Graphpad software) to analyze the difference of

vesicle numbers in control and treatment groups. In this analysis, all concentrations were com-

pared with the negative control DMSO. Experiments with SGI-1776 and CX-6258 were per-

formed in three biological and technical replicates. Experiments with SGI-1776 and

Z196138710 were performed in three technical replicates.

Mammalian cell cultivation and drug treatment

The toxicity of inhibitors against mammalian cells was evaluated by treatment of the com-

monly used cell lines HEK293T [42] and HepG2 [43], which were cultivated and passaged

as described in [43,44]. Semi-confluent cultured cells up to ten passages after vial thawing

were trypsinized and 1.0 × 103 cells were seeded in 384 well plates with 50 μl of DMEM

(Dulbecco’s Modified Eagle Medium) + GlutaMAX-I (life technologies) including 10%

Fetal Bovine Serum Superior (life technologies). 24 h after seeding, 50 μl of DMEM+-

GlutaMAX-I including FBS and inhibitors were added. Final concentrations of inhibitors

were adjusted to 0–30 μM as indicated, DMSO alone was used as a control. Plates were incu-

bated for 3 d under aerobic conditions and cell viability was measured using the Cell Titer

Glo 2.0 system (Promega) according to the manufacturer’s instructions. Luminescence was

measured by a Spectramax iD3 Multi-mode Microplate reader (Molecular Devices). Three

independent experiments with three technical replicates were carried out for both cell lines.

Luminescence units were normalized to the DMSO control of each independent experiment

and expressed as percentage of luminescence unit. One-Way-ANOVA test followed by

Tukey’s multiple comparisons test was used in GraphPad Prism version 9.3.1 (Graphpad

software) for statistical analysis. Based on the cell viability data, dose-response curves were

drawn and IC50 (best fit value) were calculated using GraphPad Prism version 9.3.1 (Graph-

pad software).

Nucleic acid isolation, cloning and sequencing

RNA isolation from in vitro cultivated axenic MV and PC was performed using a Trizol

(5Prime, Hamburg, Germany)-based method as previously described [45]. For reverse tran-

scription, 2 μg total RNA was used for cDNA synthesis using oligonucleotide CD3-RT (5’-

ATC TCT TGA AAG GAT CCT GCA GGT26 V-3’). PCR products were cloned using the PCR

cloning Kit (QIAGEN, Hilden, Germany) or the TOPO XL cloning Kit (Invitrogen). The com-

plete list of primer sequences used for empim and emcdc25 cDNA amplification and character-

ization is given in S2 Table. Upon cloning, PCR products were directly sequenced using

primers binding to vector sequences adjacent to the multiple cloning site by Sanger Sequenc-

ing (Microsynth Seqlab, Göttingen, Germany). The sequences of all genes newly characterized

in this work have been submitted to the GenBank database and are available under the acces-

sion numbers ON005010 (empim) and ON005011 (emcdc25). Accession numbers of all other

proteins or genes analysed in this work are listed in S3 Table.
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In situ hybridization and 5-ethynyl-2’-deoxyuridine (EdU) labeling

Digoxygenin (DIG)-labeled probes were synthesized by in vitro transcription with T7 and SP6

polymerase (New England Biolabs), using the DIG RNA labelling kit (Roche) according to the

manufacturer’s instructions from empim-cDNA fragments cloned into vector pJET1.2

(Thermo Fisher Scientific). Primers for probe production are listed in S2 Table. Probes were

subsequently purified using the RNEasy Mini Kit (Qiagen), analysed by electrophoresis, and

quantified by dot blot serial dilutions with DIG-labeled control RNA (Roche). Whole-mount

in situ hybridization (WISH) was subsequently carried out on in vitro cultivated metacestode

vesicles as previously described [4], using vesicles (isolate H95) of at least 1 cm in diameter to

avoid losing material during washing steps. Fluorescent specimens were imaged using a Nikon

Eclipse Ti2E confocal microscope and maximum projections created using ImageJ as previ-

ously described [46]. In all cases, negative control sense probes yielded no staining results. In
vitro labelling with 50 μM EdU was done for 5, 8, or 16 hours (h) and fluorescent detection

with Alexa Fluor 555 azide was performed after WISH essentially as previously described [4].

Series of pictures were taken at randomly chosen sections of the germinal layer of 5 MC vesi-

cles with 40 × objective lens as Z-stack. Among the picture of each Z-stack, the layer of stron-

gest signal was selected by the function of Z project in Fiji/ImageJ and processed [47]. EdU

positive cells, WISH positive cells and double positive cells were counted manually and inde-

pendently. The number of cells with each signal were calculated to cell number per mm2 on

the germinal layer.

Yeast two hybrid (Y2H) analyses

The Gal4-based Matchmaker System (Takara Bio, USA) was used as described by Zavala-Gón-

gora et al. [48,49] and Stoll et al [46]. Full-length cDNAs encoding EmPim kinase and

EmCdc25 phosphatase were PCR amplified from parasite cDNA using primers as listed in S2

Table and cloned into pGADT7 or pGBKT7 (Takara/Clontech). The Saccharomyces cerevisiae
Gold strain (Clontech) was transformed with these plasmids by a one-step protocol described

in Tripp et al. [50] and inoculated on Leu-/Trp- double dropout agarose plates. After incuba-

tion at 30˚C for 2 d, three colonies were picked from each transformation and inoculated inde-

pendently in 2 ml of liquid Leu-/Trp- medium and incubated at 30˚C and 200 rpm until above

OD660 = 1.0. Yeast cultures were then diluted to equalized densities of OD660 = 1.0, 0.1 and

0.01. Diluted yeast cultures were then dropped (5 μl each) onto Leu-/Trp-/His- triple dropout

plates and Leu-/Trp-/Ade-/His- quadruple dropout plates. After 48–72 h incubation at 30˚C,

pictures of plates were taken with ProtoCOL SR colony counter (Synbiosis). The pictures were

then converted into gray scale and processed using Fiji/imageJ [47] according to the protocol

described in [51]. The level of growth on quadruple dropout plates with the inoculation den-

sity OD660 = 1.0 was quantified as gray value. The quantified level of growth was statistically

analysed with one-way ANOVA with Tukey’s multiple comparison tests in Graphpad prism

9.3.1 (Graphpad software).

Bioinformatic procedures

Amino acid sequences of human Pim-1, Pim-2, Pim-3, Cdc25A, Cdc25B, and Cdc25C were

used as queries in BLASTP searches against the E. multilocularis genome on WormBase Para-

Site [29,52,53]. Reciprocal BLASTP searches were performed again the SWISSPROT database

as available under the KEGG database at Genomenet [54]. Domain structure was analyzed

with SMART8.0 [55–57]. Percent identity/percent similarity values of amino acid sequences

were calculated through Sequence Manipulation Suite [58]. Multiple sequence alignments

were performed using Clustal omega [59] or CLUSTALW2.1 [60] in MEGA11 [61] under the

PLOS NEGLECTED TROPICAL DISEASES Echinococcus multilocularis PIM kinase

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010483 October 3, 2022 6 / 24

https://doi.org/10.1371/journal.pntd.0010483


following settings: Gap Opening Penalty = 10.00, Gap Extension Penalty = 0.20, Delay Diver-

gent Cutoff = 30%. Aligned sequences were visualized by SnapGene Viewer (Snapgene soft-

ware). Based on these alignments, phylogenic trees were generated by MEGA11. The statistical

method for tree building was maximum likelihood, substitution model was Jones-Taylor-

Thompson model, ML Heuristic method was Nearest-Neighbor Interchange. All transcripts of

Echinococcus genes were analysed using Integrative Genomics Viewer [62,63] and previously

published transcriptome data [29] to check for correct prediction of the sequences available

through UniProt.

For virtual compound identification procedures, the target of interest (EmPim) was

screened against Fluency, a proprietary deep learning-based platform [64]. The EmPim

sequence tested was retrieved from Uniprot, functional domains were retrieved from the Pfam

database. The target of interest was screened against 2 small molecule libraries: the Enamine

Hinge Binders library [65] (n = 24,000), and Enamine Diverse REAL drug-like library [66] ver-

sion 2021q1-2, further filtered for drug-like properties based on Lipinski’s rule of 5 [67]

(n = 21.4M). We applied predictions from 2 versions of the Fluency model, termed model 1

and model 2, which were trained on varying data sets and settings. Every combination of pro-

tein, compound library, and model was predicted by Fluency, resulting in 4 sets of predictions,

ranking molecules from strongest predicted binder to weakest. Out of the 200 top-ranked in
silico hits from the Fluency screen, 20 compounds were selected for purchase and profiling

based on their Fluency Screen score, diversity of structures representing best the chemical

space of the 200 hits and molecular modeling in hPIM (6VRU) employing SeeSAR modeling

software from BioSolveIT (version 11.2.). The generated poses were assessed for a meaningful

binding mode into the ATP-pocket, absence of intra- and intermolecular clashes and torsion

quality.

Modeling of SGI-1776 and Z196138710 against human Pim-1 was performed using model-

ing software SeeSAR Version 12.0.1 (BioSolveIT). To create broad diversity and to continue

further, 200 poses were demanded within SeeSAR [68] per structure; the integrated Analyzer

Mode was used to select those poses that were clash-free and only exhibited green torsions, i.e.,

torsions that are statistically prevalent in small-molecule crystal structures [69].

Results and discussion

Initial screen of broad-range kinase inhibitors against E. multilocularis cell

cultures

Based on sequence similarities between the catalytic domains and the presence of accessory

domains, conventional PKs are basically divided into seven sub-groups, against which specific

kinase inhibitors are available [70]. Homologs belonging to all these sub-groups are also

expressed by E. multilocularis [29]. To identify kinase sub-groups that are important for Echi-
nococcus stem cell function, we carried out an initial screen of 14 available kinase inhibitors

covering all sub-groups, against E. multilocularis PC, which are strongly enriched in germina-

tive (stem) cells [4] (Fig 1). To assess for direct cytotoxic effects, we performed cell viability

assays with all inhibitors at a concentration of 10 μM and measured cell viability after 3 d and

7 d of drug exposure. As shown in Fig 1, several inhibitors against the AGC and the CAMK

groups showed clear effects against Echinococcus PC, whereas Dasatinib, directed against the

BCR-Abl subfamily of tyrosine kinases, even stimulated parasite cell proliferation under these

conditions. The strongest anti-parasitic effect was achieved using the PIM-specific inhibitor

SGI-1776, with approximately 60% and 80% growth inhibition after 3 d and 7 d, respectively.

In all further experiments we therefore decided to concentrate on the PIM kinase family and

their role in Echinococcus stem cell biology.
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Characterization of an E. multilocularis PIM kinase

Since SGI-1776 was originally designed to inhibit human PIM kinases and showed strong

effects against Echinococcus PC, we were interested in characterizing parasite PIM kinase

orthologs. To this end, we performed BLASTP analyses using all three human PIM isoforms as

queries against the published E. multilocularis genome sequence [29]. In all three cases we

identified one single locus (EmuJ_000197100), which encoded a protein with significant

homologies. Reciprocal BLASTP analyses against the SWISSPROT database using the

EmuJ_000197100 gene product as a query revealed high homologies to human Pim-1, particu-

larly within the kinase domain (47% identical, 65% similar residues) (Fig 2). Significant

homologies were also detected between the kinase domains of the EmuJ_000197100 gene

product and PRK2 (38%, 58%) and PSK2 (30%, 50%), which are PIM kinase orthologs of Cae-
norhabditis elegans and yeast, respectively. We thus named the Echinococcus gene empim,

encoding the serine/threonine kinase EmPim (657 amino acids, 74 kDa theoretical MW).

Since BLASTP searches against the E. multilocularis genome using the amino acid sequences

of EmPim or all three human PIM kinase isoforms did not reveal any other gene with signifi-

cant homologies, we concluded that empim is a single copy gene and that, in contrast to mam-

mals, E. multilocularis only encodes one single PIM kinase isoform.

We then conducted similar analyses for the genome of the related trematode parasite Schis-
tosoma mansoni, and, likewise, found one single locus (Smp_090890) encoding a PIM ortholog

with significant homologies to EmPim, which we named SmPim (S1 Fig). The presence in the

genome of just one gene encoding a PIM kinase ortholog appears to be a specific trait for para-

sitic flatworms since, as already mentioned, mammals express three PIM kinase isoforms

[72,73]. Furthermore, three isoforms have already been described to be expressed by the

related, but free-living, planarians, in which they belong to the group of ‘immediate early

genes’, the expression of which is drastically upregulated during wound-induced responses

Fig 1. Activities of selected kinase inhibitors against E. multilocularis PC. (A) Phylogenetic tree of human PKs, based on homologies within

the kinase domain. Seven groups according to current nomenclature [71] are indicated. (B) Heatmap showing the effects of different kinase

inhibitors, covering all 7 groups, on E. multilocularis PC. Colour-code below indicates percentage of luminescence signal (i.e. number of viable

cells), normalized to signals from DMSO controls, after 3 d and 7 d of incubation with 10 μM of inhibitor. Inhibitor names, human target

proteins, and kinase sub-families are indicated in the table to the left. Black arrow indicates the pan-PIM kinase inhibitor SGI-1776.

https://doi.org/10.1371/journal.pntd.0010483.g001

PLOS NEGLECTED TROPICAL DISEASES Echinococcus multilocularis PIM kinase

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010483 October 3, 2022 8 / 24

https://doi.org/10.1371/journal.pntd.0010483.g001
https://doi.org/10.1371/journal.pntd.0010483


Fig 2. Homologies and structural features of EmPim. (A) Amino acid sequence alignment of the kinase domains of human Pim-1 (HsPIM1),

E. multilocularis Pim (EmPim), human FLT3 kinase (HsFLT3), human haspin kinase (HsHASPIN) and an E. multilocularis haspin kinase

ortholog (EmHASPIN1). Residues identical to human Pim-1 are shown in black on grey. Kinase DFG motifs and the hinge regions are marked

in red. Black triangles indicate residues known to be involved in the interaction between human Pim-1 and compound CX-6258 (numbered
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[74]. Most interestingly, both EmPim and SmPim not only harbour the typical serine/threo-

nine kinase domain but also a large C-terminal extension (S1 Fig), which is missing in human

and planarian PIM kinase isoforms. Due to the absence of a regulatory domain, the human

PIM kinase isoforms are considered constitutively active kinases, the activity of which is largely

regulated at transcriptional, translation, and proteosomal degradation level [21,75]. Hence, in

contrast to these enzymes, the PIM kinases of parasitic flatworms are likely subject to more

elaborate regulatory mechanisms, although we could not identify consensus regulatory

regions, such as conserved phosphorylation sites, within the C-terminal extension.

Although the precise mode of interaction between SGI-1776 and PIM kinases is not known,

crystallographic studies have already been conducted for the binding mode of CX-6258 to human

Pim-1 [26]. These studies identified 14 amino acid residues of particular importance for the inhib-

itor-kinase interaction (indicated in Fig 2). Interestingly, of these 14 residues, 10 are invariantly

present in EmPim and two further residues represent exchanges with conserved biochemical

properties (Fig 2). In the case of human FLT3 kinase, which is also inhibited to a certain extent by

CX-6258, only 7 of these residues are conserved (Fig 2). We thus propose that CX-6258 (and most

probably also SGI-1776) binds to EmPim with intermediate affinities when compared to Pim-1

and FLT3. Notably, an FLT3 ortholog is apparently not expressed by E. multilocularis since

BLASTP genome mining using mammalian FLT3 as a query did not reveal clear orthologs. This

is supported by phylogenetic studies indicating that FLT3 kinases have evolved before the chor-

date/urochordate split, but after the divergence of protostomes and deuterostomes [76].

Apart from the tyrosine kinase FLT3, both SGI-17776 [16] and CX-6258 [27] have been

demonstrated to inhibit, although with lower affinities, the kinase haspin (haploid germ cell-

specific nuclear protein kinase), which mediates histone modification in mammals [77]. Inter-

estingly, a haspin ortholog is also expressed by the E. multilocularis genome

(EmuJ_000667600). Within the kinase domain, both the Echinococcus and the human haspin
kinases share 6 or 7, respectively, of the 14 residues involved in the CX-6258-kinase interaction

(Fig 2). It thus cannot be excluded that the parasite haspin kinase might also be targeted by

CX-6258, at least to a certain extent.

Taken together, our analyses indicated that E. multilocularis expresses a single PIM ortho-

log with substantial homologies to mammalian PIM kinases within the kinase domain. Unlike

PIM kinases of mammals or planarians, the PIM kinase enzymes of parasitic flatworms con-

tain a large C-terminal extension, indicating a more complex mode of regulation than in the

case of conventional (mammalian) PIM kinases. Based on the conservation of the majority of

amino acid residues that mediate binding of CX-6258 to PIM kinases, we also concluded that

available PIM kinase inhibitors should primarily target EmPim in Echinococcus cells. We can-

not rule out, however, that part of the effects of CX-6258 (and of SGI-1776) described below

might be due to inhibition of the Echinococcus haspin ortholog.

Expression of empim in Echinococcus stem cells

In mammalian cells, PIM kinases are involved in cell proliferation and cell cycle regulation

[78]. Since the germinative (stem) cell population is the only mitotically active Echinococcus
cell type [4], we would expect expression of empim in germinative cells if EmPim has

according to human Pim-1). (B) Presence of amino acid residues important for the interaction between human Pim-1 and CX-6258 in different

kinases. For each of the 14 known residues of human Pim-1 (HsPIM1), the corresponding residue and position in E. multilocularis Pim

(EmPIM), human FLT3 kinase (HsFLT3), human haspin kinase (HsHASPIN), and the E. multilocularis haspin kinase isoform (EmHASPIN1)

are shown. Residues identical to those of human Pim-1 are marked in yellow, residues with similar biochemical properties are marked in green.

The numbers of identical/similar residues compared to human Pim-1 are listed to the right as well as IC50 values of compounds CX-6258 and

SGI-1776 to human enzymes.

https://doi.org/10.1371/journal.pntd.0010483.g002
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equivalent functions as mammalian PIM kinases. According to transcriptome analyses that had

been produced during the E. multilocularis whole genome project [29], empim displayed higher

expression in primary cell cultures after 2 d of incubation when compared to metacestode vesi-

cles (S2 Fig). Since these cultures are highly enriched in germinative cells [4], we assumed that

empim might show a dominant expression in this cell type. To clarify the situation, we carried

out WISH analyses on MC vesicles that had been incubated with EdU, thus identifying the pro-

liferating stem cell compartment. As shown in Fig 3, in the germinative layer of in vitro culti-

vated MV we detected empim signals in both EdU+ and EdU- cells. After an 8 h EdU pulse,

around 25% of empim+ cells were also EdU+. For the majority of empim+ cells, however, we

could not detect co-staining with EdU, indicating that they either represent post-mitotic, differ-

entiated cells, or stem cells which were not in S-phase during the EdU pulse.

Previous studies on human chronic myelogenic leukemia cells indicated that Pim-1 is cell

cycle-regulated with highest expression levels at G1-S and G2-M transitions, whereas a signifi-

cant drop in Pim-1 expression occurs during S-phase [79]. Since EdU exclusively stains cells

that have been in S-phase during the 8 h pulse, it is thus possible that the fraction of germina-

tive cells which express empim is significantly higher than 25%, provided that the PIM kinase

gene is also cell cycle-regulated in Echinococcus. In any case, our WISH/EdU experiments

clearly indicate that a certain fraction of parasite stem cells expresses empim.

Fig 3. Expression of empim in Echinococcus MV. (A) WISH on E. multilocularis MV directed against empim. Channels shown are DAPI

(blue, nuclear staining), WISH (green, empim+), EdU (red, S-phase stem cells), and merge as indicated. Green arrow indicates example of

empim+/EdU- cell, red arrow indicates example of empim-/EdU+ cell, yellow arrow indicates example of empim+/EdU+ cell. Size bar

represents 25 μm. A schematic illustration of MV regions where images have been taken is given in S3 Fig. (B) Average numbers of empim
+/EdU+ cells per mm2 of germinal layer are shown. Error bar indicates standard deviation.

https://doi.org/10.1371/journal.pntd.0010483.g003
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Interaction between EmPim and CDC25C phosphatase

Modulation of mammalian cell cycle progression through Pim-1 is mainly mediated by phos-

phorylation, and thereby activation, of dual specific phosphatases of the CDC25 family [23,24].

CDC25 phosphatases are highly conserved from yeast to mammals, are expressed in differing

numbers of isoforms (e.g. 3 in humans, 1 in yeast, 2 in Drosophila, 4 in C. elegans), and induce

the M-phase of the cell cycle by removing inhibitory phosphates from cyclin-dependent kinases

[23,80,81]. Provided that EmPim, despite its unusual C-terminal extension, also mediates cell

cycle progression in Echinococcus, we would expect that it physically interacts with CDC25 iso-

forms in this parasite. To investigate these aspects, we first mined the available E. multilocularis
genome sequence for the presence of CDC25 encoding genes. Using either of the three human

CDC25 isoforms (CDC25A-C) as a query against the E. multilocularis genome in BLASTP anal-

yses, we constantly identified one single locus (EmuJ_001174300) encoding a 762 amino acid

(theoretical MW = 85,3 kDa) protein tyrosine phosphatase. The EmuJ_001174300 product dis-

played relatively weak overall homologies to CDC25 family members of humans, insects, or

nematodes, but contained a Rhodanese domain, which is a hallmark of CDC25 family M-phase

inducers [82] (Fig 4). Furthermore, amino acid residues within the Rhodanese domain that are

critical for enzymatic function were highly conserved between the EmuJ_001174300 product

and human CDC25 orthologs (Fig 4). Furthermore, in reciprocal BLASTP analyses against the

SWISSPROT database using the EmuJ_001174300 gene product as a query, we detected highest

homologies with CDC25 orthologs of mammals and invertebrate model organisms. We thus

concluded that E. multilocularis genome contains a single locus encoding a CDC25 family phos-

phatase and named the respective gene emcdc25 (encoding the protein EmCDC25).

To investigate possible interactions between EmPim and EmCDC25 we employed the yeast

two-hybrid (Y2H) system which we had previously used to study protein-protein interactions

between Echinococcus factors [46,48,49,83]. To this end, we cloned the full-length cDNAs for

EmPim and EmCDC25 into vectors pGBKT7 and pGADT7, respectively, and assessed colony

growth under medium (triple dropout plates) and high (quadruple dropout plates) stringency

conditions. As shown in Fig 5, under medium stringency conditions we obtained growth for

the combination EmPim-pGBKT7 x EmCDC25-pGADT7 but we also observed some growth

capacity for EmPim-pGBKT7 with the empty vector control. Under high stringency condi-

tions, on the other hand, only EmPim-pGBKT7 x EmCDC25-pGADT7 yielded positive

results, indicating specific interaction between these proteins. Statistically significant differ-

ences between EmPim-pGBKT7 x EmCDC25-pGADT7 and empty vector controls were also

observed in quantitative assays measuring yeast growth on quadruple dropout plates

(OD660 = 1.0) (Fig 5). We thus concluded that, like in mammalian systems, the Echinococcus
Pim kinase acts upstream of a CDC25 family phosphatase. Whether this interaction is involved

in Echinococcus M-phase entry control remains to be established. Due to the expression of

EmPim in Echinococcus stem cells and the high conservation of Pim/CDC25-dependent M-

phase entry control from yeast to mammals [23,24], such a role is, however, highly likely.

We cannot yet tell whether the EmPim-EmCDC25 interaction indeed involves phosphory-

lation of the M-phase regulator by the PIM kinase, although this is clearly the case for human

Pim-1 and CDC25A [23]. Currently available PIM kinase activity assays rely on small peptide

substrates basing on known target consensus sequences (K/R-K/R-R-K/R-L-S/T-a; a = small

amino acid residue) for human PIM kinases [84]. Unfortunately, we could not identify a

sequence motif in EmCDC25 that exactly matches the consensus of human PIM kinases, thus

making it very difficult to establish a functional EmPim kinase assay at present. Hence, further

investigations are necessary to clearly define phosphorylation sites for EmPim to facilitate

kinase assays e.g. for high throughput screening.
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Effects of SGI-1776 and CX6258 on Echinococcus larvae and stem cells

Thus far, we had only measured effects of SGI-1776 on Echinococcus primary cells in a cell via-

bility assay. However, the actual target for anti-AE therapy are MC vesicles. Furthermore, for

effective elimination of parasite tissue, the capacity of stem cells to differentiate into MV

Fig 4. Domain structure and homologies of EmCDC25. (A) Amino acid sequence alignment of the Rhodanese homology domains of

EmCDC25 (EmCdc25), two S. mansoni CDC25 orthologs (SmCDC25A, SmCDC25B), and three human CDC25 orthologs (HsCDC25A-C).

Conserved Rhodanese domain DCR motifs and the active site are indicated. Residues identical to EmCDC25 are shown in black on grey. (B)

Phylogenetic tree based on Rhodanese domains of different CDC25-like phosphatases. Sequences derived from E. multilocularis (EmCDC25), S.

mansoni (SmCDC25A/B), H. sapiens (HsCDC25A-C), C. elegans (CeCDC25 1–4), D. melanogaster (TEW, STG), and Saccharomyces cerevisiae
(MIH1). Statistical method for the tree was maximum likelihood (ML), substitution model was Jones-Taylor-Thompson, ML heuristic method

was Nearest Neighbour Interchange. (C) Domain structures of EmCDC25, two different CDC25 orthologs of S.mansoni (SmCDC25A/B), and

three human CDC25 isoforms (HsCDC25A-C). Shown are Rhodanese domains and M-phase inducer phosphatase domains, which are typical

for mammalian isoforms.

https://doi.org/10.1371/journal.pntd.0010483.g004
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vesicles must be eliminated [5]. We thus employed in further experiments previously estab-

lished in vitro cultivation systems for mature MV and for the production of MV from stem

cells. Furthermore, since EmPim contained the majority of residues that mediate the interac-

tion between Pim kinases and CX-6258, we also included this inhibitor in our analyses. As

shown in Fig 6, both SGI-1776 and CX-6258 had a detrimental and dose-dependent impact on

the structural integrity of mature MV. Although incubation of MV with 3 μM of both inhibi-

tors for 28 d did not lead to statistically significant effects, a concentration of 10 μM of these

inhibitors led to a drastic loss of structural integrity of all (CX-6258) or almost all (SGI-1776)

vesicles (Fig 6). In the case of 3 μM of these inhibitors, many vesicles lost structural integrity

but still had the germinative layer attached to the parasite surface laminated layer (Fig 6). In

the case of 10 μM of both inhibitors, however, complete detachment of the parasite tissue from

the laminated layer was observed (Fig 6).

Since even after loss of structural integrity, parasite vesicles can in theory still harbor living

stem cells, we then tested both inhibitors for their capacity to affect the formation of MV from

cultivated stem cells. As shown in Fig 6, both inhibitors affected MV formation from stem cells

in a dose-dependent manner. In the case of SGI-1776, vesicle formation, which in this system

is usually achieved after 21 d [33], was completely prevented in the presence of 30 μM SGI-

1776, and almost completely in the presence of 10 μM. At 3 μM concentration, SGI-1776 did

not lead to statistically significant effects. CX-6258, on the other hand, already drastically

affected MV formation at 3 μM and completely inhibited MV development at higher concen-

trations (Fig 6).

Taken together, these analyses demonstrated clear detrimental effects of both PIM kinase

inhibitors on Echinococcus larvae and stem cells. Based on the homologies of EmPim to

human PIM kinases in regions that are important for inhibitor-kinase interaction (Fig 2), we

concluded that most of these effects should be due to an inhibition of EmPim, although we

cannot fully exclude that a certain degree of inhibition of the Echinococcus haspin kinase might

have contributed.

Fig 5. Interaction between EmPim and EmCDC25. (A) Representative pictures of yeast transformant growth on plates selecting for

plasmids (-Leu, -Trp) as well as triple dropout (-Leu, -Trp, -His) and quadruple dropout (-Leu, -Trp,—His, -Ade) plates for interaction

under medium and high stringency conditions, respectively. Plasmid combinations are indicated to the right, OD600 values for

dropout density above. (B) Quantitative assay measuring growth densities of yeast transformants. Plasmid combinations are indicated

below the graph. Error bar represents standard deviation. Tukey’s multiple comparison test, followed by one way ANOVA was used to

compare all experimental combinations, but only comparisons to the corresponding control are shown. ���� indicates p� 0.0001.

https://doi.org/10.1371/journal.pntd.0010483.g005
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In silico screening of EmPim inhibitors and effects against Echinococcus
larvae

Due to their effects on human kinases, the utilization of currently available PIM inhibitors for

chemotherapeutic approaches is associated with severe adverse effects [28,85–87]. At least in

the case of SGI-1776, clinical trials against different forms of cancer had to be terminated since

adverse effects on the cardiac electric cycle of patients were observed (NCT0084860,

NCT01239108). We thus aimed at the identification of small molecule compounds that more

specifically interact with the parasite enzyme isoforms when compared to human PIM kinases.

To this end, we first employed a very recently established in silico approach, the Fluency

computational platform [64], which predicts quantitative binding affinities of compounds to

target enzymes exclusively from amino acid sequences. Briefly, Fluency input consists of a pro-

tein amino acid sequence with domains optionally defined, and a small molecule structure in

the form of SMILES. For each input-pair, Fluency predicts the protein-molecule binding affin-

ity. Therefore, a natural application of Fluency is virtual screening of large molecular libraries

against a target of interest to prioritize a top list of tractable size for downstream analysis such

as medicinal chemistry analysis, docking, and experimental validation.

In a first Fluency screen of roughly 24 million compounds, using the EmPim amino acid

sequence as a query, we obtained a list of 19,000 potential binders with predicted affinities

between 10 nM and 1 μM for the parasite protein. Out of the 200 top-ranked in silico hits (S4

Table), 20 compounds were then selected for profiling based on (i) the Fluency screen score;

(ii) diversity of chemical structures; and (iii) molecular modelling using the seeSAR software,

Fig 6. Effects of SGI-1776 and CX-6258 on MV and PC. (A) Inhibitor effects on mature MV. E. multilocularis MV were

incubated for 28 d in the presence of different inhibitor concentrations as indicated below (with medium and inhibitor replacement

every 3–4 d), and the number of structurally intact MV was inspected microscopically. One way ANOVA followed by Dunnet’s

multiple comparison test was used for comparison to the control DMSO group. �� indicates p� 0.0021. (B) Representative

examples of MV incubated with different concentrations of inhibitors as indicated to the left. (C) Inhibitor effectos on the

formation of MV from PC. Parasite stem cell cultures were incubated for 21 d in the presence of different inhibitor concentrations

as indicated below. Numbers of fully mature MV were subsequently counted. Error bars represent standard deviation. Kruskal-

Wallis test followed by Dunn’s multiple comparison test was used for comparisons with control (DMSO) group. � represents

p� 0.0332.

https://doi.org/10.1371/journal.pntd.0010483.g006
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thus assessing the ATP pocket binding mode as well as the absence of intra- and intermolecu-

lar clashes (S5 Table).

We then tested the 20 selected compounds against E. multilocularis MV and stem cells.

First, we again employed the MV assay and found 4 of the compounds (Z30898879,

Z196138710, Z65225039, Z354576500) being highly effective in inducing structural vesicle

damage at concentrations of 3 and 10 μM (Fig 7). These 4 compounds were then employed in

Fig 7. Effects of Pim inhibitors on Echinococcus larvae and human cells. (A) Heat map showing the effects of 20 in silico screen compounds on

MV. Different concentrations (indicated below) of each compound (indicated to the left) were incubated in vitro with MV for 28 d and structural

integrity was assessed. Colour-code indicating percentages of surviving vesicles is indicated below. (B) Effects of four in silico screen compounds

on MV production from PC. 10 μM of each compound (indicated below) were incubated for 21 d with PC in vitro and the production of MV was

assessed. For comparison, SGI-1776 was tested at 10 μM. Error bars represent standard deviation. Kruskal-Wallis test followed by Dunn’s

multiple comparison test was used for comparisons with the control (DMSO) group. (C) Effects of Z196138710 and SGI-1776 on MV. Both

compounds were tested at different concentrations (shown below) on MV in vitro. Structural integrity was measured after 28 d. Error bar

represents standard deviation. One was ANOVA followed by Dunnet’s multiple comparison test was used in comparisons with control (DMSO)

group. p values less than 0.0001 are summarized with ���� and p values less than 0.0332 are summarized with �. (D) Effects of Z196138710 and

SGI-1776 on the in vitro formation of MV from PC. Both inhibitors were incubated at different concentrations (indicated below) for 21 d with

PC and the formation of mature MV was measured. Error bar represents standard deviation. Kruskal-Wallis test followed by Dunn’s multiple

comparison test was used in comparisons with control (DMSO) group. � represents p� 0.0332. (E) Effects of Z196138710, SGI-1776, and CX-

6258 on human HEK293T cells. HEK293T cells were incubated with different concentrations of inhibitors as indicated below. Cell viability was

measured after 3 d. (F) Effects of inhibitors on human HepG2 cells. For experimental procedure, see (E). Error bar represents standard deviation.

Tukey’s multiple comparison test followed by one way ANOVA was used to compare all experimental settings, only comparisons for equal

inhibitor concentrations are shown. P values less than 0.0001 are summarized with ���� and p values less than 0.0021 are summarized with ��.

https://doi.org/10.1371/journal.pntd.0010483.g007

PLOS NEGLECTED TROPICAL DISEASES Echinococcus multilocularis PIM kinase

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010483 October 3, 2022 16 / 24

https://doi.org/10.1371/journal.pntd.0010483.g007
https://doi.org/10.1371/journal.pntd.0010483


the PC vesicle formation assay, leading to the identification of compound Z196138710 which,

at a concentration of 10 μM, completely prevented MV formation (Fig 7). Finally, we focussed

on the thienopyrimidine Z196138710 (N-(4-(difluoromethoxy)-3-methoxybenzyl)-thieno-

[3,2-d]-pyrimidin-4-amine) and tested it in comparison to SGI-1776 on mature MV and the

PC cultivation system for MV development. As shown in Fig 7, a concentration of 10 μM

Z196138710 led to structural disintegration of 100% of MV after 28 d, which was even more

effective than SGI-1776. In the case of MV development from primary cells, Z196138710

showed effects similar to those of SGI-1776 (Fig 7).

Effects of Pim inhibitors on human cell lines

Having shown that Z196138710 shows similar (PC) or even higher (MV) toxicity towards E.

multilocularis than SGI-1776, we were, in a final set of experiments, interested in possible tox-

icities of the thienopyrimidine compound on human cells. To this end, we employed the cell

lines HEK293T and HepG2, which, according to previous studies, strongly depend on func-

tional PIM kinases for cell viability [88–90]. As shown in Fig 7, at concentrations of 30 and

10 μM, both SGI-1776 and CX-6258 fully eliminated HEK293T and HepG2 cells within 3 d,

whereas at the same concentrations, Z196138710 only inhibited both cell lines to 40–60% (Fig

7). At all three concentrations tested, Z196138710 showed weaker toxicity than SGI-1776 and

CX-6258 against both cell lines, and these differences were statistically significant (Fig 7). This

was also reflected in IC50 analyses, in which Z196138710 yielded values of 11 and 16 μM

against HEK293T and HepG2 cells, respectively, whereas IC50 values in the case of SGI-1776

and CX-6258 were around 1 μM (S4 Fig). To assess whether the lower toxicity of Z196138710

towards human cell lines was due to reduced binding of the thienopyrmidine compound to

human PIM kinases, we finally performed in silico modelling assays of Z196138710 and SGI-

1776 on the structure of Pim-1. As shown in S5 Fig, these analyses revealed a binding affinity

of SGI-1776 in the nanomolar range, which is in line with the results of previous biochemical

assays [16]. For Z196138710, on the other hand, binding affinities in the micromolar range

were obtained (S5 Fig), indicating that the low toxicity of the thienopyrimidine compound

towards human cell lines is due to low binding to human PIM kinases. Although biochemical

assays for measuring EmPim activity in the presence of kinase inhibitors will have to be estab-

lished to verify these in silico analyses, our data at least point to Z196138710 as a promising

candidate of an anti-Echinococcus compound with low adverse side effects.

In summary, we herein characterized an E. multilocularis single copy gene, which is

expressed in parasite stem cells, and which encodes a PIM kinase family member that interacts

with an Echinococcus CDC25 ortholog in Y2H assays. These data at least point to a role of

EmPim in Echinococcus cell cycle regulation, which appears to be one of the conserved func-

tions of PIM kinases in vertebrate and invertebrate organisms [23,24,91]. An important role of

EmPim in Echinococcus stem cell function is further supported by our data on the detrimental

effects of known PIM kinase inhibitors, SGI-1776 and CX-6258, on in vitro cultivated MV

and, particularly, PC, which are highly enriched in stem cells [4]. Since EmPim shares 85% of

amino acid residues that are critical for inhibitor binding to mammalian Pim-1, it is highly

likely that these effects are primarily due to the inhibition of EmPim, although a certain level

of off-target effects, which might involve a parasite haspin ortholog, cannot be fully excluded.

Since the germinative (stem) cells are the crucial cell type for parasite growth within the host

[4], molecules that regulate their proliferative capacity are, per se, attractive targets for anti-par-

asitic chemotherapy, provided that small molecule compounds can be identified which dis-

criminate between these factors and their (usually) highly conserved mammalian orthologs. In

the case of Echinococcus, high-throughput screening approaches towards the identification of
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specific inhibitory compounds from extensive small-molecule libraries are hampered by the

fact that the complex conditions of parasite cultivation, particularly those for stem cell cultures,

only allow parallel screening of dozens to maybe a few hundreds of molecules, and usually

must be carried out over several weeks. Even though elegant approaches such as the PGI-assay

for measuring MV integrity [92] or PC-based cell activity assays [93] allow compound screen-

ing against E. multilocularis in shorter time, a pre-selection of molecules from complex com-

pound libraries is still necessary to narrow down screening procedures to manageable sizes.

We herein combined a novel, target-based computational approach and in silico modeling

techniques to select 20 compounds from complex libraries of roughly 24 million molecules. Of

these 20 compounds, 4 displayed detrimental effects on in vitro cultivated parasite larvae and

stem cells, and one of these, Z196138710, even out-matched known inhibitors against the tar-

get kinase family concerning side effects on immortalized human cells. Our in silico approach

thus effectively narrowed down the number of potential inhibitor molecules to a size that can

be handled by in vitro approaches.

The true capacity of Z196138710 as chemotherapeutic agent against AE still has to be estab-

lished in future studies. Those studies should include biochemical activity assays against Pim

kinases and, of course, in vivo testing in murine models for echinococcosis [93]. The concen-

trations of Z196138710 which were effective against the parasite in our studies (between 3 μM

in the case of stem cell cultures and 10 μM against mature MV) are well within the range of

comparable molecules that were effectively used in murine in vivo assays. SGI-1776, for

instance, displayed in vitro IC50 values around 1 μM against HEK293T and HepG2 cells (this

study) and 3 μM against a broad variety of other cell types [94], including chronic lymphocytic

leukemia cells [16]. Although upon in vivo application in mice around 95% of the compound

were bound to plasma proteins, it was still possible to achieve well tolerated plasma concentra-

tions around 3 μM of free compound (not bound to plasma proteins), which were effective

against solid tumour xenografts in mice [94,95]. The toxicity of SGI-1776 in clinical trials

against non-Hodgkin lymphoma and prostate cancer was attributed to off-target effects on the

human Ether-á-go-go-related (hERG) cardiac ion channel [95], a common problem in drug

development strategies. Interestingly, in an in silico approach similar to the one used by us, Xu

et al. [95] identified a hit compound with IC50 of 52 μM against human Pim-1 which, however,

did not bind to hERG. By combining the properties of the hit compound and SGI-1776,

together with the introduction of systematic chemical modifications, these authors were then

successful in developing compounds with very good affinity to Pim-1, but without the

unwanted side effects on hERG [95]. Through the application of similar strategies, it should

thus be feasible to develop Z196138710 into a chemical compound with potential against AE.

Experiments towards this aim are currently undertaken in our laboratory.
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