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Type 2 diabetes (T2DM), Alzheimer’s disease (AD), and insulin resistance are age-related conditions and increased prevalence is of
public concern. Recent research has provided evidence that insulin resistance and impaired insulin signallingmay be a contributory
factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimer’s disease (AD) is the most common
subtype of dementia. Reduced release (for T2DM) and decreased action of insulin are central to the development and progression
of both T2DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and
AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in
both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological
and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T2DM, the common
molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic inflammatory
response and oxidative stress associated with T2DM, amyloid-𝛽 (A𝛽) protein accumulation, and mitochondrial dysfunction link
T2DM and AD.

1. Introduction

In the last few decades changes in lifestyle, especially
related to overnutrition, physical inactivity, and ageing have
increased the global incidence of Type 2 diabetes (T2 DM).
According to the International Diabetes Federation (IDF),
currently 387 million people have diabetes mellitus world-
wide, and this number is expected to reach 592 million
by 2035. T2DM is by far the most common form of dia-
betes, representing about 90–95% of DM cases. In older
age people (>65 years), the prevalence of T2DM is 12–25%

and is characterized by cell and tissue insulin resistance,
metabolic dysregulation, and chronic inflammation. These
clinical abnormalities have also been described in dementia
cases [1, 2]. Hoyer first suggested the concept of disturbances
in glucose metabolism and insulin resistance as underlying
causes of neurodegeneration and dementia [3, 4].

More recently, epidemiological studies have provided
further evidence for this link where T2DM was shown to be
associated with accelerated cognitive decline and increased
risk of dementia (by 1.5- to 2-fold). Indeed 10% of world-
wide cases of dementia maybe attributable to the metabolic
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Figure 1: Neurodegeneration, insulin resistance, obesity, and T2DM.Metabolic overload, chronic inflammation, and oxidative stress promote
cellular dysregulation in both T2DM and AD. Brain IR may occur in the absence of diabetes suggesting that AD may develop in the earlier
stages of insulin resistance. Chronic inflammation and oxidative stress are considered two key factors linking diabetes and AD [2].

disturbances associated with T2DM [5]. Moreover, cross-
sectional and longitudinal studies have indicated that global
brain atrophy is strongly associated with T2DM and the rate
of atrophy is greater than that seen in normal ageing [6, 7].
Very recently in the FraminghamHeart study it was reported
that diabetes, and in particular the resulting hyperglycaemia,
was associated with reduced cognitive performance and
reduced brain grey matter volume in young and middle-aged
adults [8].

Strengthening the relationship between diabetes and
reduced cognition, it can be postulated that metabolic
changes associated with diabetes can potentially drive early
neurodegenerative processes in dementia. The molecular
underpinnings of this relationship are both complex and
poorly understood. The purpose of this review is to exam-
ine the common and disparate metabolic, oxidative, and
inflammatory processes with the aim of collating in one place
current understanding linkingT2DMwith themost common
cause of dementia, Alzheimer’s disease (AD).

2. The Involvement of Chronic Inflammation
in Insulin Resistance, Obesity and Diabetes

Obesity and related metabolic diseases are associated with
chronic low-grade inflammation (Figure 1). In 1993, the
relationship between obesity and T2DM was described

in vivo, when investigators demonstrated that adipose-
derived tumour necrosis factor-𝛼 (TNF-𝛼) levels in mice
were increased during the development of obesity [9]. When
TNF-𝛼 was neutralised, insulin sensitivity was improved [9],
linking adipose tissue inflammation with insulin resistance.
In normal circumstances, interaction of insulin with insulin
receptor (IR) will promote conversion of fatty acids into
triacylglycerols, using glucose-derived glycerol 3-phosphate
as a substrate for esterification, in adipocytes. Consequently,
insulin induces a coordinated uptake of fatty acids and
glucose into adipose tissue, followed by esterification into tri-
acylglycerol. Obviously, any dysregulation of these pathways
will lead to excess levels of circulating glucose and fatty acids,
which is observed in T2DM.

Interestingly, adipose tissue also releases adipocytokines
(adipokines) into the circulation, such as leptin and adi-
ponectin. In 1994, leptin was shown to modulate food con-
sumption and energy expenditure via neuroendocrine sig-
nalling in the hypothalamus [10]. Comparably, adiponect-in
was demonstrated to promote improved insulin sensitivity,
and mice with adiponectin-deficiency were severely insulin
resistant [11]. Thus, adipokines are believed to modulate
insulin sensitivity in the principal organs targeted by insulin,
such as liver, adipose, and skeletal muscle.

As a component of the development of obesity and related
metabolic dysfunction, immune cells such as macrophages
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accumulate in the adipose tissue, secreting proinflamma-
tory cytokines that impact glucose and lipid metabolism
[11]. The infiltration of excessive numbers of macrophages
into adipose tissue and subsequent activation is critical to
TNF-𝛼 and interleukin- (IL-) 6 production and release,
which can reduce lipoprotein lipase enzyme activity, thus
increasing blood lipid levels. In parallel, hormone-sensitive
lipase activity can be enhanced in adipose tissue by TNF-
𝛼, which further increases the release of nonesterified fatty
acids (NEFAs) into the blood, while concomitantly reduc-
ing insulin-stimulated glucose uptake via impaired insulin
signalling. Taken together, these effects would significantly
increase plasma lipid levels and, in combinationwith reduced
lipid disposal by adipose tissue, would lead to damaging
levels of blood LDL in T2DM. In addition, other proinflam-
matory cytokines can negatively affect metabolic pathways
responsible for correctly storing/oxidising glucose and lipids
in tissues that are physiological targets for insulin. These
inflammatory exchanges may lead to hyperglycaemia and
dyslipidaemia, which are important parameters indicative of
insulin resistance, obesity, and T2DM [6, 11] (Figure 1).

3. Mechanisms Driving Peripheral
Insulin Resistance

Insulin resistance is a phenomenon that plays a significant
role in the progression and development of metabolic dis-
eases associated with neurodegeneration and obesity (Fig-
ure 1). Insulin resistance refers to impaired or failed cell
response to insulin receptor-activated signalling in insulin-
sensitive tissues such as the liver, skeletalmuscle, adipose [12],
and brain [2, 13].This results in a reduction of glucose uptake
by these tissues, with a concomitant increase in hepatic
glucose output, both leading to elevated plasma glucose con-
centrations. The subsequent change in glucose homeostasis
places an increased burden on pancreatic 𝛽-cells to produce
and secrete more insulin in order to restore normal blood
carbohydrate levels. While this compensatory mechanism
may alleviate glucose levels in early or prediabetes, persistent
insulin resistance and continued exposure of 𝛽-cells to excess
blood glucose and lipids promote 𝛽-cell dysfunction, failure,
and ultimately death, culminating in overt diabetes (Figure 1).

Once released into the circulation by 𝛽-cells in response
to elevated blood glucose levels, insulin elicits its anabolic
effects via association with the transmembrane insulin recep-
tor (IR) in target tissues.The interaction with insulin induces
autophosphorylation of the receptor and the recruitment and
phosphorylation of insulin receptor substrate (IRS) proteins
and activation of associated downstream signalling cascades,
for example, phsosphatidylinositol-3-kinase (PI3K) and pro-
tein kinase B (Akt) [14, 15]. Akt is an important regulator
of GLUT-4 vesicle translocation to the plasma membrane,
which is critical for the intracellular uptake of free glucose
in insulin-sensitive tissues [16, 17]. Further details and a full
description of nutrient regulated insulin action have recently
been published [12].

Insulin resistance can occur due to interference in the
common insulin signalling cascade due to either genetic

mutations or structural modifications to any of the signalling
nodes in the insulin signalling pathway. In particular, muta-
tions and serine associated hyperphosphorylation of IRS
proteins have been linked with development of insulin resis-
tance and it was speculated that this is because of decreased
interaction with PI3K [18]. Homozygous interruption of IRS1
expression in mice led to mild insulin resistance [19], while
complete depletion of IRS2 expression in rodents resulted in
severe insulin resistance [20].

Structural modification by hyperphosphorylation of ser-
ine at residues Ser302, Ser307, Ser612, and Ser632 in IRS1 was
suggested to be an important mechanistic element respon-
sible for increased insulin resistance in rodent models [18].
Indeed, excessive expression of proinflammatory cytokines
and signalling proteins such as TNF-𝛼 and JNK1, which
may be derived from adipose expansion, can induce serine
hyperphosphorylation of IRS1 [21, 22], particularly at residue
Ser636. However, it is not entirely clear which individual
residues or combination of residues must be hyperphospho-
rylated to promote the insulin resistant phenotype.

Another possible molecular mechanism that may lead
to impaired insulin signal transduction is the dysfunctional
regulation of PI3K activity. It was previously suggested that
elevated expression of individual regulatory domains of PI3K
(e.g., p85) in skeletal muscle, promoted pregnancy-induced
insulin resistance by preventing the binding of the signalling
heterodimer with IRS [23]. Conversely, genetic deletion of
PI3K p85 regulatory domains in the liver of mice boosted
hepatic and peripheral insulin sensitivity [24].

On the other hand, the insulin resistant phenotype may
be a consequence of a more direct mechanism that promotes
decreased IR expression or desensitisation to the insulin
ligand. It is speculated that chronic hyperglycaemia and
prolonged hyperinsulinaemia, along with increased reactive
oxygen and nitrogen species (ROS and RNS, resp.) levels may
affect IR gene expression via dysfunction of key transcription
factors such as high mobility group AT-hook 1 (HMGA-1)
[25] or may induce IR-desensitisation which under normal
conditions is a process under negative-feedback control
[26]. Chronically, hyperinsulinaemia is a key pathological
characteristic of insulin resistance but it is not clear whether
this is a cause or a consequence [26, 27].

Interestingly, excessively high carbohydrate levels can
also promote decreased insulin binding and reduced IR
mRNA expression in skeletal muscle [28]. High glucose
and high insulin in combination may reduce insulin bind-
ing to the IR in adipocytes [29], resulting in a negative
impact on Akt activity. Increased production of ROS/RNS
or decreased antioxidant capacity as a result of increased
carbohydrate metabolism in insulin target tissues may alter
the phosphorylation status of these signalling nodes causing
deactivation. It has been shown that oxygen peroxide (H

2
O
2
)

exposure can induce a significant loss in proximal and distal
insulin signalling along with decreased glucose transport in
adipocyte and muscle cell lines in vitro [17].

More specifically, H
2
O
2
promoted Ser307 phosphoryla-

tion of IRS1 and this led to the enhancement of IRS proteolysis
[30, 31]. Indeed, proinflammatory cytokines such as TNF-𝛼
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can also promote phosphorylation of similar IRS residues
and thereby decrease the interaction of the protein with the
IR. Proinflammatory cytokines are elevated in obesity and
T2DM and when coupled with excessive oxidative stress
maintain a proinflammatory environment, which leads to
further activation of proinflammatory pathways (NF𝜅B and
JNK) and enhances the recruitment of immune cells to
insulin target tissue. Consequently, inflammation also plays
a significant role in T2DM progression and insulin resistance
(Figure 2).

4. Insulin Resistance Can Result in the
Development of Neuronal Dysfunction in
Alzheimer’s Disease (AD)

As in peripheral tissues, insulin through its action on the
hypothalamus has important roles in the brain to regulate
appetite, glucose, and lipid homeostasis [32, 33]. Insulin and
its receptor are also abundant in other areas of the brain
including the hippocampus [34] where insulin signalling
is becoming increasingly recognised to have function in
modulating memory and learning and being required for
synaptic plasticity [35, 36] and neuronal stem cell activation
and has neuroprotective properties [37, 38]. Although not
the main function in the brain, insulin can promote glucose
uptake through its regulation of GLUT-4 transporter (GLUT-
4) [39]. But GLUT-4 is only expressed in certain neurons
(i.e., hippocampal neurons) [40] and is not considered as
the primary transporter of glucose in the brain. This role
is primarily carried out by the major GLUTs expressed in
the brain, GLUT-1 (in astrocytes) and GLUT-3 (neurons),
independently of insulin [41]. The disruption of insulin
signalling and glucose transport in neurons can contribute
to the progression of neurodegenerative diseases such as AD
(Figure 2).

Peripheral hyperinsulinaemia, but reduced insulin sensi-
tivity in fasting and during glucose tolerance tests, has been
reported in AD patients [1]; however, the impact on insulin
levels and sensitivity in CNS remain to be fully determined.
An initial study by Fujisawa and colleagues showed that
compared to controls both peripheral and CSF insulin levels
were higher in AD subjects following a glucose tolerance
test and fasting [42]. Subsequent studies have either shown a
reduction [43] or no change [44] in fasting CSF insulin levels
in AD subjects compared to controls. As discussed by Reger
and colleagues, differences in potential confounding factors
such as BMI and control for AD genetic risk factors (i.e.,
presence of APOE𝜀4) or AD severity may have accounted
for differences between these studies. More recently, findings
from Suzanne Crafts group have shown that CSF insulin
levels are reduced in early stages of AD or in the mild
cognitively impairment [45] and diets rich in fats and sugar
lower CSF insulin levels in healthy adults and this was
associated with reductions in cognitive functioning [46].
Whether changes in peripheral insulin levels reflect changes
in brain insulin levels is unclear. However, it is possible that
increases in peripheral insulin levels acutely elevates CSF
and brain insulin levels, but prolonged hyperinsulinaemia

reduces insulin transport to the brain, by downregulating
insulin receptors at the BBB [47].

Cerebral glucose metabolism is reduced in AD brain
and FDG-PET imaging studies have shown that this is an
early feature of disease progression [48]. In imaging studies
of AD pathology (i.e., PET amyloid imaging), associations
with hyperglycaemia, insulin resistance, and cerebral glu-
cose hypometabolism are less clear with conflicting findings
among studies [49–52]. Factors such as age of disease onset,
stage of disease (preclinical, early, and late), co-morbidities,
different populations, cohort sizes, and type (longitudinal
versus cross sectional) require consideration in future studies.
Despite this, in vitro and in vivo animal studies have provided
insight into the associations between T2DM and AD pathol-
ogy.

Key pathological hallmarks of the AD brain include brain
atrophy (due to neuronal loss), extracellular deposition of
amyloid plaques, accumulation of intracellular neurofibril-
lary tangles (NFTs), inflammation, and oxidative stress. Amy-
loid plaques result from the accumulation of the amyloid-
𝛽-protein (A𝛽). Together with A𝛽, the accumulation of the
major component of NFTs, hyperphosphorylated tau protein,
is thought to drive neurodegeneration [53, 54]. The accumu-
lation and deposition of A𝛽 in the brain is thought to occur
early in the disease process [55] and initiate downstream
events, including tau phosphorylation, inflammation, and
oxidative stress that leads to neurodegeneration.The accumu-
lations of nonfibrillar, soluble small aggregates (“oligomers”)
of A𝛽 (rather than larger aggregates/plaques) are major
contributors to neurotoxicity where they inhibit synapse
formation, impair memory and learning in animal models,
and correlate well with the severity of neurodegeneration
[56, 57]. Although underlyingmechanisms remain to be fully
elucidated, A𝛽 accumulation can alter number of cellular
processes resulting in neuronal dysfunction [57], including
brain insulin signalling.

As demonstrated in T2DM for muscle or adipose tissue,
the ability of insulin to activate specific signalling pathways
is weaker than normal in the AD brain. Brain levels of
insulin and binding to the insulin receptor are reduced
with age [58] and are markedly reduced in the AD brain
compared to the controls [59, 60]. The accumulation of A𝛽
oligomers can inhibit the autophosphorylation of the insulin
receptor (IR) [61]. Oligomers can also markedly reduce IR
levels and activity within dendrites of hippocampal neurons
[62], leading to dendritic and synaptic loss [63]. Both in
vitro [63] and in vivo [13] studies have shown that IR loss
and subsequent loss of synapses can be prevented through
administering insulin. The loss of IR expression or impaired
activity has many downstream cell signalling consequences.

Studies have shown elevated serine phosphorylation of
IRS1 [2, 64, 65] resulting in the inability to transmit signals
to secondary messengers, such as PI3K as described above
[66]. This has downstream effects on other brain patho-
logical markers including tau phosphorylation and neu-
roinflammation. PI3K/Akt signalling can mediate a number
of downstream pathways including Wnt/𝛽-catenin pathway
[67], mTOR signalling [68], and regulating GSK3𝛽 activ-
ity. GSK3𝛽 is a kinase involved in the phosphorylation of
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Figure 2: Molecular mechanisms linking insulin resistance with neurodegeneration. Obesity is characterized by chronic low-grade
inflammation, which impacts all tissues and organs. Inflammatory cytokines bind to their receptors (1) activating the nuclear factor-kappaB
(NF-𝜅B/I𝜅B𝛼) pathway, which stimulates a proinflammatory condition (2). Nutrient imbalance may also activate inflammatory pathways
and DNA damage, adversely impacting redox regulation (via glutathione peroxidase (GPx); glutathione (GSH); and oxidised glutathione
(GSSG) levels) and so promoting oxidative stress (3). 𝛽-cell metabolism and ATP production are affected by nutrient imbalance via glycolytic
dysfunction and reduced activation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) reducing pyruvate (PYR) generation but
promoting 𝛽-oxidation (4). As a result of the metabolic dysfunction, superoxide and subsequently hydrogen peroxide generation (which
can combine with nitric oxide, NO, to create peroxynitrite, an example of RNS) may occur due to compromised mitochondrial electron
transport chain, ETC, and action, and so reducing ATP synthesis (5). All these processes impact endoplasmic reticulum (ER) stress, leading
to a reduction in the ability to secrete insulin (6). High circulating levels of lipids and glucose and chronic inflammation increase amyloid
beta (A𝛽) aggregation, which together with low insulin reduce the transport and utilisation of glucose in the brain (7) via impairment
in insulin signalling (8), including the negative regulator of glycogen synthase kinase 3 (GSK3). Activated GSK3 is associated with tau
hyperphosphorylation (9). The vicious cycle mediated by ROS/RNS and A𝛽may eventually result in enzyme inhibition (e.g., alpha-enolase
(ENO1), malate dehydrogenase (MDH), ATP synthase, and GAPDH), lowering ATP generation, which together with tau promotes neuronal
loss (10). Protein kinase B (AKT); fructose bisphosphate enolase (FBE); fructose bisphosphate aldolase (FBA); calcium (Ca2+); iron (Fe2+);
glucose transporters (GLUT); hydrogen peroxide (H

2
O
2
); interleukin- (IL-) 1 and interleukin- (IL-) 6; insulin receptor substrate (IRS);

Janus kinase (JNK); potassium (K+); nitric oxide (NO); anion superoxide (O
2

−); hydroxyl radical (OH−); peroxynitrite (ONOO−); pyruvate
dehydrogenase kinase, isozyme 1 (PDK1); pancreatic and duodenal homeobox 1 (PDX-1); Phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K); superoxide dismutase (SOD); tumour necrosis factor alpha (TNF-𝛼); ubiquitin-proteasome system (UPS).

tau and the deficiencies in PIK3 signalling are thought to
lead to a reduction in Akt signalling resulting in reduced
ability to regulate GSK3𝛽 activity, thereby promoting tau
hyperphosphorylation and the formation of NFTs [69, 70]
(Figure 2). However, very recent findings argue against this

notion [71] but show that instead of deficiencies in signalling,
an upregulation of PI3K/Akt/mTOR pathway occurs in brain
tissue from AD and MCI subjects. In addition, compared
to control brain, the authors found that GSK3𝛽 expression
was reduced in AD brain and reduction in Ser9 and increase
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in Tyr216 phosphorylated GSK3𝛽 were also observed in AD
brain. Phosphorylation of Ser9 or Tyr216, respectively, can
attenuate or stimulate GSK3 𝛽 activity [72–74]. Therefore,
the findings by Tramutola and colleagues are in contrast to
the notion that overactivation of GSK3𝛽 leads to tau hyper-
phosphorylation and questions strategies to inhibit/attenuate
GSK3𝛽 as therapeutics for AD as to date inhibitors have
shown little benefit in clinical trials [75].

A𝛽-mediated phosphorylation of Akt can also occur
in the absence or presence of insulin [62], suggesting the
involvement of IR-independent pathways, possibly through
inflammatory cytokines. Proinflammatory cytokines TNF-𝛼,
IL-1𝛽, and IL-6 are increased in both T2DM and AD [76] and
this can have neurotoxic effects in the CNS [77].This increase
could exacerbate the effects observed from the activation of
microglia by A𝛽 oligomers which promotes the secretion
of further proinflammatory cytokines. The accumulation of
these cytokines can induce neuronal death by increasing
apoptosis, reducing synaptic activity, and inhibiting neuro-
genesis [78].

One potential mechanism by which inflammation can
potentiate its neurotoxic effects is through blocking of intra-
cellular actions of insulin, as proinflammatory cytokines
can activate kinases to phosphorylate IRS1 at specific serine
residues associated with downstream inhibition of insulin
signalling events [79]. Other mechanisms could involve the
receptor for advanced glycation end products (RAGE), which
in the CNS is expressed in neuronal cells, microglia, astro-
cytes, and brain endothelial cells. RAGE levels are increased
in AD and T2DM [80] and are a potential mechanism for
vascular dysfunction [81] in these diseases and interactions
between disturbed glucose metabolism, oxidative stress, and
accumulation of AGEs are important in the vicious cycle that
contributes to ADprogression and T2DM [82]. In addition to
its role in transport of A𝛽 across the BBB from the periphery
into the brain [83] which can promote neurodegenerative
pathways, its expression in many cell types within the CNS
and binding to A𝛽 can induce cerebrovascular dysfunction
and promote the release of cytokines (TNF-𝛼 and IL-6)
from microglia, potentially through inducing the expression
in neurons of macrophage-colony stimulating factor (M-
CSF) [83] and subsequent neuronal damage [81], further
perpetuating the vicious cycle. RAGE-ligand interactions can
lead to BACE1 expression, promoting the amyloidogenic
processing of APP and more A𝛽 generation [84]. The BACE1
promoter also contains an NF-𝜅B binding site [85] which
is activated during RAGE-ligand interaction [86], leading to
enhanced expression of RAGE resulting in further oxidative
stress and inflammation which in turn sustains the formation
of advanced glycation products (AGEs), A𝛽, and impaired
insulin signalling [87].

There is also evidence that suggests that the RNA-
dependent protein kinase (PKR) is a critical mediator of
the inflammatory response in insulin resistance [88–90] and
in AD [91–94]. The proapoptotic kinase, PKR, controls the
initial step in protein translation and modulates cell death
and survival pathways. It is an important regulator of the pro-
duction of proinflammatory factors through the activation
of NF-𝜅B [95] and in the control of the inflammasome [96].

Inducing systemic inflammation (via administering LPS) can
promote brain neuroinflammation increase A𝛽 production
and PKR phosphorylation, which is downregulated in PKR
knockdown mice [93], providing evidence for a role of
PKR signalling in AD pathogenesis. The PKR signalling
pathway and eIF2a phosphorylation may also be a potential
molecular link between T2D and neurodegeneration that
occurs in AD (recently reviewed in [97]). Lourenco and
colleagues (2013) [94] showed that phosphorylated PKR and
its target eukaryotic translation initiation factor 2a (eIF2𝛼)
were increased in brains of AD mice. Exposure of neurons
to A𝛽 oligomers or administering A𝛽 oligomers to monkeys
via i.c.v. also increased phosphorylation of PKR and eIF2𝛼.
In mice lacking PKR or TNF receptor or mice treated with a
TNF-𝛼 neutralising antibody, A𝛽 oligomers failed to induce
phosphorylation of PKR and eIF2𝛼. Further, activation of
the TNF-𝛼/PKR/eIF2𝛼 pathway was linked to synapse loss
and memory impairment in mice. Insulin, or glucagon-like
peptide 1 (GLP-1) receptor agonists inhibited A𝛽 induced
phosphorylation eIF2𝛼, indicating that stimulating insulin
signalling may prevent inflammation mediated synaptic loss
andmemory impairment through inhibiting/downregulating
the PKR signalling pathway.

Failure of the endoplasmic reticulum (ER) adaptive
capacity and subsequent activation of the unfolded protein
response (i.e., ER stress) intersects inflammatory and other
stress pathways (reviewed in [89]) and plays a key role
in the pathogenesis of both T2D and AD. In metabolic
disorders, such as obesity, inflammatory mediators and lipids
can activate signalling cascades that trigger inflammatory
mediators such as JNK and IKK. This in turn can lead to
serine phosphorylation of IRS1/2 and subsequent inhibition
of insulin signalling [89]. The activation of inflammatory
signalling pathways can trigger ER stress which can lead to
further inhibition of insulin action in addition to generation
of reactive oxygen species (ROS) through mitochondrial
dysfunction [89].

In the AD brain, markers of ER stress including
BiP/GRP78, pERK, and eIF2𝛼 are elevated [98, 99], and
expression of PKR-p is increased in AD brain [100]. A𝛽
oligomers can upregulate ER stress responses [94, 101] poten-
tially through activating PKR signalling and phosphorylation
of eIF2a via TNF-𝛼 pathway [94]. Ab can also lead to
synthesis and transport of the ATF4 transcription factor
within neuron axons, a potential mechanism by which neu-
rodegenerative signals are transmitted between neurons and
promote spreading of AD pathology and neurodegeneration
[102]. Further, eIF2𝛼-P can promote BACE1 expression and
subsequent A𝛽 production [103], suggesting that a feed-
forward cycle may perpetuate further stress and neuronal
dysfunction. Targeting these stress pathways may offer ther-
apeutic targets in AD. This is highlighted by recent work
in which the conditional knockout of eIF2a kinases (PERK
and GCN2) prevented A𝛽 induced impairment in long term
potentiation (LTP) (synaptic activity) and memory impair-
ment in AD transgenic mice [104]. This is further supported
by findings that insulin and GLP-1 receptor agonists reduces
eIF2𝛼 phosphorylation and prevents A𝛽-mediated neuronal
dysfunction [94].
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4.1. Insulin Resistance Is Associated with Elevated A𝛽. The
features of insulin resistance in T2DM including hypergly-
caemia, dyslipidaemia, and hyperinsulinaemia are all known
to promote A𝛽 accumulation [105–109] (Figure 2). It is
difficult to tease apart which of these metabolic disturbances
contribute as single or in combination with the development
of neuronal dysfunction, which disrupts the production or
clearance of A𝛽. Importantly, an excess of A𝛽 accumula-
tion in the brain establishes a vicious cycle of impaired
brain insulin signaling, inflammation, and oxidative stress
processes that promote neurodegeneration in the AD brain.
There is also some evidence that A𝛽 accumulates in periph-
eral tissues such as the pancreas [107, 110] and that A𝛽 can
induce insulin resistance in the liver [111] suggesting that not
only can insulin resistance promoteA𝛽 accumulation but also
the reverse could occur. Further confirmation for this inter-
esting scenario is required and in particular determining if
this is a cause or effect of insulin resistance/A𝛽 accumulation.

Studies of high fat feeding in transgenic mouse models
of AD or diabetic rodent models have shown that insulin
resistance can lead to an increase in the expression of key
enzymes that generateA𝛽 (BACE1 and 𝛾-secretase) [107, 108].
Upregulation of the autophagy pathway has also been shown
to contribute toA𝛽 accumulation,where autophagosomes are
sites of A𝛽 generation [112] and accumulate following insulin
resistance [108]. This could result from defects in insulin
signalling resulting in deficiencies in autophagic flux (and
removal of autophagosomes), resulting from the inhibition of
the signalling target molecule mTOR [108].

In sporadic AD cases, impaired clearance or removal
of A𝛽 from the brain is a major contributor to promoting
amyloid accumulation.The removal of A𝛽 from the brain can
occur via a number of mechanisms, including promoting the
efflux of A𝛽 from the brain and enhancing the degradation
of A𝛽 (for review see Bates et al. [113]). Degradation by the
insulin degrading enzyme (IDE) has been suggested to be
the primary regulator of A𝛽 [114, 115], where overexpression
has shown to dramatically reduce A𝛽 accumulation [116]
and depletion/reduction in levels has shown to promote
A𝛽 accumulation [117, 118]. Through competitive inhibition
of IDE increased insulin levels can inhibit IDE leading to
A𝛽 accumulation in the periphery and CNS [119, 120]. In
addition, depletion of IDE levels or reduced activity leads to
hyperinsulinaemia and impaired glucose tolerance associated
with a chronic elevation of A𝛽 [117]. Overall these findings
in various in vivo models suggest that reduced expression or
activity of IDE is a major contributor to the A𝛽 accumulation
and development of AD pathology.

In line with this notion are studies that show reduced
IDE levels in AD patients compared to controls [114, 121, 122].
A more recent study argues that in addition to enhancing
A𝛽 production, T2DM impairs the clearance of A𝛽 but not
through altering IDE expression [107, 123]. AD transgneic
mice fed a high fat diet showed gluose intolerance associated
with inuslin resistance and impaired insulin production
associated with accumulation of A𝛽 in the brain and the
periphery. This accumulation of A𝛽 and associated memory
impairments was reversed with the acute administration of
insulin [107]. Brain levels of IDE or transporter proteins

(LDL receptor-related protein 1 and RAGE) invovled in the
efflux/influx across the blood-brain-barrier were not altered.
Instead, insulin administration led to an increase of blood
A𝛽 associated with a reduction in brain A𝛽, indicating
clearance of A𝛽 into the blood. The authors concluded that
a combination of complementary mechanisms of CNS A𝛽
production and clearance towards the blood underlies the
benefits of insulin at reversing AD pathology in mice in this
study. However, it is unclear how A𝛽 is transported across
the blood-brain-barrier and into the blood, and the authors
did not explore the role of other A𝛽 transporters including
apolipoprotein J [123].

To attempt to tease out the effects of elevated blood
glucose levels independent of insulin resistance, a very recent
study combined glucose clamps and in vivo microdialysis to
assess changes inAD transgenicmice during a hyperglycemic
challenge [109]. The authors found that increased blood
glucose levels as a result of the clamp were associated with
and increased A𝛽 levels in the interstitial fluid (ISF) in
young mice and persisted after euglycaemia was restored.
Whilst total A𝛽 load in the brain did not change, hippocam-
pal metabolism and neuronal activity were reduced. This
effect was exacerbated in older mice with established plaque
pathology, indicating that age and pathology can influence
the brains response to the metabolic insults. The study also
suggests that repeated exposures to acute hyperglycaemia
can promote A𝛽 accumulation altering hippocampal and
neuronal functioning early in the disease process. This is
consistent with a recent study that showed that increased
fasting blood glucose was associated with reductions in
brain gray matter and hippocampal volume and was also
associatedwith impaired attention andmemory in young and
middle-aged adults [8]. A graded association was observed
between fasting blood glucose levels in normal, prediabetic,
and diabetic ranges and measures of brain atrophy. This
has clinical relevance as these studies suggest that even
at an early stage of diabetes (or prediabetes), increases in
blood glucose levels have detrimental effects on memory,
hippocampal integrity, and A𝛽 accumulation. In addition,
there are conflicting results amongst other studies that assess
improvements in memory following glycaemic control in
the elderly. For example, in the ACCORD memory study
of elderly patients with T2DM, intensive glycaemic control
showed a small difference in brain volume but no evidence
of cognitive improvement and furthermore the targeted
treatment was associated with increased mortality [124].
Taken together, these studies demonstrate that age, duration,
and severity of pathology impact the effects of diabetes on the
brain and that treatment in late-life may be not as effective as
preventative strategies that can be implemented at young age.

5. Redox Regulation Pathways: Common
Targets in T2DM and AD

Dysregulation of some metabolic, molecular, and cellular
processes is common inT2DMandAD, particularly in𝛽-cells
and neurons, respectively. Cell and tissue oxidative stress are
a key player in both diseases. Pathophysiologically, reactive
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oxygen species (ROS) and reactive nitrogen species (RNS),
such as superoxide anion (O

2

∙−), hydrogen peroxide (H
2
O
2
),

hydroxyl radical (OH∙), nitric oxide (NO), and the related
peroxynitrite (ONOO−), contribute to key metabolic and
physiologic processes. This includes mitochondrial function
[125], which if impaired will reduce ATP generation capacity
which will impact 𝛽-cell glucose stimulated insulin secretion
(GSIS), the NADPH complex, and Ca2+ signalling associated
with neurotransmission [126, 127].

With respect to insulin resistance and the progression
to T2DM, continuous overnutrition leads to chronic ROS
and RNS production, which promotes oxidative stress in
key cells, tissues, and organs. Eventually, oxygen and nitric
oxide based free radicals damage cell membranes, DNA,
and protein structures, as well as modulating the activity of
transcriptional factors through redox chemistry, including
NF-𝜅B, leading to chronic inflammation and cell apoptosis
[125]. Although every single cell can be potentially damaged
by oxidative stress, the reduced capacity of peroxidase based
antioxidant defence mechanisms can particularly expose
both 𝛽-cells and neurons to damage resulting in progression
of T2DM and AD (Figure 2). The sources of ROS from
mitochondrial dysfunction, inflammation, advanced glyca-
tion end products (AGEs), and increased cytosolic Ca+2 levels
can promote redox dysregulation and perpetuate oxidative
stress in AD and T2D (recently reviewed in [128].

The reduced capacity to scavenge free radicals is a major
avenue for increased ROS production. Glutathione (GSH) is
one such important free radical scavenger that is generated
from the reduction of glutathione disulphide (GSSG) by
the enzyme glutathione reductase. In addition to many
other reducing enzymes, NADPH is an essential cofactor
for the activity of glutathione reductase. Other metabolic
pathways that are favoured under conditions of overnutrition
or hyperglycemia can consume NAPDH, thereby reducing
the cells capacity to generate GSH. One example is the polyol
pathway flux in which glucose is reduced to sorbitol by aldose
reductase; sorbitol is then transformed to fructose by sorbitol
dehydrogenase. Although aldose reductase has a low affinity
for glucose, activity is increased under hyperglycemic condi-
tions and thus more NADPH is consumed [128]. In addition,
reduced levels of GSH can result from T2D, due to impaired
protein turnover or dietary deficiency in essential amino
acids required to synthesize GSH [129]. Similarly, GSSG
levels are reduced in AD patients and correlate with reduced
cognitive functioning [130, 131] and have been investigated as
potential for a biomarker [132]. Inhibiting the polyol pathway
has been shown to normalise sorbitol in the brain in the
presence of hyperglycaemia [133], suggesting that impaired
cognitive functioning associated with hyperglycaemia may
be attenuated through preventing the breakdown of sorbitol
(and thus minimising the consumption of NADPH).

The conversion of glucose to ribose-5-phosphate by
glucose-6-phosphate dehydrogenase (G6PD) is the first and
rate-limiting step of the pentose phosphate pathway and is a
major pathway that generates NADPH. A decrease in G6PD
activity can thereby lead to a reduction in NADPH, promot-
ing oxidative stress [134–136]. This reduction in activity can

in part be induced by the increased phosphorylation of G6PD
by protein kinase A (PKA) activation under high glucose
conditions [137]. Interestingly, an increased PKA activity
has been associated with tau phosphorylation [138, 139] and
impaired synaptic activity [36, 140, 141].

Other sources of NADPH include those generated from
isocitrate dehydrogenase (IDH) activity within the citric
acid cycle that converts NADP+ to NADPH and malic
enzyme which catalyses the formation of pyruvate, CO

2
, and

NADPH from malate and NADP+. When exposed to high
glucose, glucose 6-phosphate, and fructose, IDH undergoes
fragmentation and carbonylation leading to reduced activity
[142]. This reduction correlated with ROS generation, DNA
fragmentation, lipid peroxidation, and decreases in ATP
levels [143]. In the liver, malic enzyme supplies NADPH
for fatty acid biosynthesis, but in the brain mainly located
in oligodendrocytes malic enzyme generates NADPH for
myelin lipid synthesis for myelination of neuronal axons
(Rosales-Corral et al., 2015). Malic enzyme may also serve
to regenerate GSH in the brain as the enzyme is abundant
in mitochondria of neurons [144–146]. In adipose tissue the
levels of ME are diminished in T2D, linked to reduced lipo-
genesis [147]; however, more recently, although there were
reductions in other NAPDH synthesising enzymes, levels of
malic enzyme in islet pancreatic cells were not significantly
different in diabetics compared with controls [148]. Overall,
the failure to replenish endogenous antioxidants such as GSH
can occur due to diminished NADPH levels due to a high
demand in its utilisation in a number of pathways that are
promoted with T2D. This in turn diminishes the capacity to
scavenge ROS, favouring oxidative stress and progression in
T2D/AD.

The capacity to reduce oxidised proteins also plays a role
in promoting oxidative stress processes and this is regulated
by a number of proteins that act as redox sensors. A major
class of these redox proteins is thioredoxin (Trx) which
reduce oxidised proteins by cysteine thiol disulfide exchange
[149]. In the process, Trx is oxidised which is further reduced
by NADPH. Trx can be inactivated by alkylating agents or, as
in T2D, the oxidative stress mediator thioredoxin-interacting
protein (TxNIP), which is upregulated by glucose [150].
TxNIP canmediate glucotoxicity in islet cells [151] and trigger
activity of the NLRP3 inflammasome [152] and can promote
ER stress and apoptosis. TxNIP expression is also induced in
neurons after oxidative stress, ER stress, or ischemic injury
ultimately resulting in neuronal death [153, 154]. TxNIP is
also overexpressed in brains of and ADmousemodel and can
be induced by A𝛽, in vitro [155], suggesting a role for TxNIP
in AD pathogenesis.

The GSH/GSSG and thioredoxin pathways are examples
by which proinflammatory processes are aided by redox
sensors which are regulated by changes in redox potential and
are modulated by physiological or pathological situations.
Under conditions of T2D/AD where oxidative stress features
and persists the redox reduction of redox sensors diminishes
and shifts cells toward proinflammatory pathways promoting
apoptosis and more oxidative stress establishing a vicious
cycle that ultimately leads to cell dysfunction/death.
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5.1. 𝛽-Cell Oxidative Stress. Pancreatic 𝛽-cell responsiveness
to glucose, the major insulin secretagogue, is dependent on
the acute regulation of intracellular and, in certain cases,
extracellular ROS and RNS [126, 127]. Increased glycolytic
flux boosts oxidative phosphorylation and ATP production
but may also lead to O

2

∙− formation and release from the
electron transport chain [156]. In addition, conversion of
surfeit glucose to pentose via the pentose phosphate pathway
is an initial adaptive response to deviate glucose carbon away
from excessive glycolysis and oxidative phosphorylation,
but shuttling glucose in this direction may also promote
NADPH oxidase (NOX) activity leading to increased O

2

∙−

synthesis. Importantly, high glucose levels raise ROS via other
mechanisms, such as glucose autoxidation and generation of
AGEs.

Removal of O
2

∙− requires the action of superoxide dis-
mutase (SOD), generating the more stable but perhaps less
directly damaging H

2
O
2
. However, H

2
O
2
can subsequently

generate the highly reactive OH− by the iron-catalysed Fen-
ton reaction [126, 156, 157] and with nitric oxide (NO) forms
ONOO− [126]. ROS and RNS cause oxidative damage to
DNA, lipids, and proteins through nitration, carbonylation,
peroxidation, and nitrosylation reactions. These molecu-
lar modifications may alter enzyme activity, ion channel
transport, or receptor signal transduction and consequently
dysregulate gene expression, which may impact 𝛽-cell func-
tionality [126]. Moreover, ROS-mediated activation of JNK
signalling leads to decreased insulin secretion via nucleocy-
toplasmic translocation of PDX-1, a key transcription factor
that drives insulin expression through association with the
insulin gene promoter (Figure 2) [158].

Reactive oxygen and nitrogen species production is
critical to the regulation of metabolism. For instance, NO
regulates the interaction between glucokinase and insulin
secretory granules [159] and also affects insulin granule
docking with the plasma membrane through S-nitrosylation
of syntaxin 4 [160]. Generation of low- to mid-range H

2
O
2

levelsmay positively regulatemitochondrial Ca2+ influx [161],
which is critical for increasing tricarboxylic acid cycle activity
and thus the secondphase of insulin secretion [162].However,
low levels of physical activity and overnutrition at the whole
body level cause elevated blood glucose and lipids which
can promote higher generation rates of reactive oxygen and
nitrogen species leading to cellular dysregulation and thus
toxicity (Figure 1).

Pancreatic 𝛽-cells have a high metabolic activity; how-
ever, these cells are vulnerable to oxidative stress, since these
cells express low levels of ROS/RNS detoxifying enzymes,
such as catalase (CAT) and glutathione peroxidase (GPx)
[126, 157].Thereby, glutaredoxin and thioredoxin antioxidant
reactions, which are mediated by the glutathione (GSH)
system, are critical for 𝛽-cells [126]. GSH (L-𝛾-glutamyl-L-
cysteinylglycine) can directly react with ROS or be a cofactor
for GPx activity. GSH de novo synthesis is dependent on
cysteine and especially glutamate; however, the rate-limiting
step is glutamate, which is usually donated from glutamine
[163]. Glutamine is the most abundant amino acid in the
circulation and is considered a key metabolic mediator of

insulin secretion in the presence of glucose or leucine.
However, glutamine levels are decreased in T2DM [164].

Interestingly, glutamine is also an influential modulator
of the Heat Shock Protein (HSP) response, which may be
activated following an oxidative insult or increased endoplas-
mic reticulum (ER) stress. Although HSPs act as molecular
chaperones for proteins damaged by oxidative processes and
thus act intracellularly, they are recognised as cytoprotective
agents [163, 165]. Conversely, extracellular HSP72 decreased
𝛽-cell insulin secretion, modified cellular bioenergetics, and
initiated apoptosis in vitro [166]. This pathogenic extra-
cellular release of HSP70 from tissues reacting to adverse
metabolic conditions or trauma, may be common to many
chronic diseases and is under current investigation.

Oxidative stress in 𝛽-cell may also occur through heme
oxygenase-1 (HO-1), which degrades prooxidant heme into
equimolar quantities of biliverdin-IX𝛼 (further converted to
bilirubin), carbon monoxide (CO), and ferrous iron (Fe2+).
Simultaneous production of CO and Fe2+ may impact 𝛽-
cell insulin secretion [167]. Although CO gas may regulate
insulin secretion via mobilisation of cAMP and cGMP, high
iron concentration was associated with impaired insulin
elimination from the liver and reduced insulin secretion
and action [47]. Together with lipotoxicity and glucotoxicity
effects, excessive ferrous iron (Fe2+) raises ROS/RNS through
Fenton reactions. Similar effects can also be observed in
the brain where CO and Fe2+ can modulate hippocampal
synaptic activity and potentially be protective at low concen-
trations [168], whereas at higher levels they are neurotoxic
[169]. Other biproducts of HO-1 activity within the heme
oxygenase/biliverdin reductase pathway (BVR), biliverdin
(BV) and bilirubin (BR), also have well known activities in
scavenging ROS/RNS [170, 171]. These products from the
BVR pathway are markedly increased in brain and other tis-
sues when antioxidant systems (i.e., glutathione and catalase)
are reduced (i.e., such as that observed in neurodegeneration)
[172–174] and have been shown to have greater scavenging
capacity for ROS/RNS than dietary antioxidants such as 𝛼-
tocopherol in rat brain microsomes [171].

The role of HO-1 in T2DM and AD is further highlighted
by the correlation between increased levels of HO-1 with
brain oxidative markers [47] and links with insulin resistance
and insulin signalling [175]. For example, IGF-1 administered
to rats following spinal cord injury inhibits HO overexpres-
sion and CO production in neurons [176]. Treating neuronal
cells with berberine, a herbal antidiabetic that improves
insulin sensitivity, attenuated H

2
O
2
induced cell toxicity,

reduced ROS production, and increased antioxidant defences
and HO-1 [177]. This effect was inhibited by PI3K inhibitor
indicating that the benefits of barberine were dependent on
PI3K/Akt signalling. Amore recent study showed further evi-
dence for a role inHO-1 in insulin resistance [178], although it
did not explore subsequent effects on the brain. The findings
from Jais and colleagues (2014), through several lines of evi-
dence, suggested thatHO-1 has a key role in insulin resistance
and diabetes. HO-1 expression increased in liver and adipose
biopsies from nondiabetic obese individuals and correlated
directly with metabolic dysregulation in these individuals
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and was a major predictor of increased HOMA-IR levels.
Similar findings were found in mice fed a high fat diet, where
liver HO-1 expression increased and correlated with insulin
resistance in these mice. The authors further found that
hepatocyte HO-1 knockout mice were insulin hypersensitive,
while overexpression of HO-1 exacerbated insulin resistance,
steatosis, and metabolic dysfunction. Similar findings were
reported in macrophage knockout HO-1 mice where reduced
secretion of proinflammatory cytokines, blunted NF-𝜅B sig-
nalling, and reduced oxidative phosphorylation and ROS
production and signalling indicated that these mice were
resistant to metabolic disease. Given the links between HO-
1 and insulin resistance and metabolic dysfunction, it would
be interesting to determine if changes in HO-1 expression
correlated with cognitive impairment or AD brain pathology
or if HO-1 has roles in neuronal dysfunction. Similar studies
to that of Jais and colleagues in AD mouse models may
provide further insight into the role of HO-1 in AD.

5.2. Neurons, Oxidative Stress, and Development of AD. The
high content of lipids, high requirement for oxygen, and the
scarcity of antioxidant defence mechanisms make the brain
highly susceptible to oxidative stress. Oxidative stress is well
recognised to play a major role in the neurodegenerative
process in theADbrain [179, 180].Markers of oxidative stress,
oxidised lipids, proteins, and ROS production all feature
prominently in AD and other neurodegenerative diseases.
Enzymes involved inmetabolic pathways including glycolysis
and the Krebs cycle are oxidised not only in the AD brain but
also from those that have mild cognitive impairment, sug-
gesting that these changes are an early feature of the disease
process [47, 181]. As a result of these changes cerebral glucose
metabolism is reduced leading to reduced ATP synthesis,
contributing to disruption of neuronal functioning, loss of
synapses, and overall neurodegeneration [41, 47].

As a major organelle for many biological functions
including ATP synthesis and also a major site for ROS
generation, it is not surprising thatmitochondria dysfunction
is prominent in both T2DM and AD [182]. Reductions in
mitochondrial enzyme activity and oxidative stress have been
shown to be early events in the disease process and in AD
mouse models occur prior to amyloid plaque accumulation
[183]. This may suggest that the resulting ROS generation
and oxidative processes occur before any significant accu-
mulation or A𝛽. However, in vitro evidence suggests that
the more neurotoxic A𝛽 oligomers can reduce cytochrome
oxidase activity and increase ROS generation [184]. It remains
to be determined if the oligomers are initiators of this process;
however, there is evidence that age-related impairments in
mitochondrial function and subsequent ROS generation are
a driving force for neurodegeneration [185]. Whether this
occurs prior to accumulation of A𝛽 (particularly oligomers)
requires further evaluation in in vivo experiments. However,
A𝛽-mediated mitochondrial impairment and ROS produc-
tion may induce a vicious cycle leading to further impair-
ments in insulin signalling in AD (Figure 2). This process
may be stimulated through JNK signalling pathways activated
by oxidative stress, leading to insulin resistance in skeletal
muscle and liver [2, 13, 65] and in the brain [186].

The oxidative processes described above as a result of
insulin resistance and 𝛽-cell dysfunction could also have
major contributions although whether there is a cause or
effect relationship remains to be determined. Animal models
of brain insulin resistance/deficiencies through intracre-
brovascular injections of streptozotocin show abnormalities
in mitochondrial function [187], which was associated with
increased levels of endogenous rodent A𝛽. Rodent A𝛽 does
not aggregate into oligomers; thus the effects ofA𝛽 accumula-
tion independent of the effects of impaired insulin signalling
could not be evaluated. More recently, injection of A𝛽 into
the hippocampus of diabetic and nondiabetic rats resulted in
metabolic disturbances in energy intake, fat oxidation, and
increased carbohydrate oxidation and energy expenditure
(Figure 2). These effects, however, were independent of
diabetes status (i.e., diabetes did not exacerbate conditions)
but are consistent with other studies that suggest that A𝛽
can cause metabolic dysfunction [107, 111]. Indeed, a very
recent study showed that i.c.v. injection of A𝛽 oligomers into
mice inducedmetabolic changes inmuscle and adipose tissue
consistent with insulin resistance (impaired signalling and
translocation of GLUT-4) and also increased noradrenaline
levels consistent with oligomers impairing peripheral sympa-
thetic control [188]. The authors further showed the binding
of Ab oligomers to dendrites of hypothalamic neurons and
the subsequent increased generation of ROS and a TNF-
𝛼-mediated increase in eIF2𝛼-P and suggest impairments
in function of the metabolic/weight control centre of the
brain; the hypothalamus can mediate in part the metabolic
changes in the periphery. This is consistent with studies in
experimentalmodels of obesity and in humans where inflam-
mation and neuronal injury are featured in the hypothalamus
[189, 190]. More relevant animal models that perhaps mimic
the clinical progression of both T2DM and AD patholo-
gies are required to study the relationship between A𝛽,
mitochondrial/dysfunction/oxidative stress, and peripheral
metabolic dysfunction to understand underlying molecular
mechanisms.

6. Conclusion

T2DM and AD are age-related pathological conditions,
which impact health quality. At present, there is no cure,
only symptomatic treatments for these diseases. Interestingly,
the methods to reduce the risk of complications associated
with insulin resistance and/or diabetes also shows benefits
for reducing risk of AD, for example, regular physical activity
and adherence to a fat and carbohydrate controlled diet.
The chronic overconsumption of foods rich in carbohydrates
and various saturated lipids affects insulin secretion and
has major impact on cerebral glucose metabolism. Common
intracellular mechanisms in T2DM and AD include aberrant
redox regulation, oxidative stress, and active inflammatory
processes resulting in impaired insulin secretion and sig-
nalling. Considering the alarming worldwide numbers of
people with chronic insulin resistance, diabetes, and AD,
intense research is now required for identifying risk, early
diagnosis, and optimal treatment for these costly, damaging,
and distressing diseases.
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