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Abstract

Identification of responsive genes to an extra-cellular cue enables characterization of pathophysiologically crucial biological
processes. Deep sequencing technologies provide a powerful means to identify responsive genes, which creates a need for
computational methods able to analyze dynamic and multi-level deep sequencing data. To answer this need we introduce
here a data-driven algorithm, SPINLONG, which is designed to search for genes that match the user-defined hypotheses or
models. SPINLONG is applicable to various experimental setups measuring several molecular markers in parallel. To
demonstrate the SPINLONG approach, we analyzed ChIP-seq data reporting PolII, estrogen receptor a (ERa), H3K4me3 and
H2A.Z occupancy at five time points in the MCF-7 breast cancer cell line after estradiol stimulus. We obtained 777 ERa early
responsive genes and compared the biological functions of the genes having ERa binding within 20 kb of the transcription
start site (TSS) to genes without such binding site. Our results show that the non-genomic action of ERa via the MAPK
pathway, instead of direct ERa binding, may be responsible for early cell responses to ERa activation. Our results also
indicate that the ERa responsive genes triggered by the genomic pathway are transcribed faster than those without ERa
binding sites. The survival analysis of the 777 ERa responsive genes with 150 primary breast cancer tumors and in two
independent validation cohorts indicated the ATAD3B gene, which does not have ERa binding site within 20 kb of its TSS,
to be significantly associated with poor patient survival.
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Introduction

The identification of genes whose expression patterns are

altered due to a stimulus is essential as it provides a basis to

understand which signaling and metabolic pathways are influ-

enced as a consequence of a stimulus. The majority of approaches

to identify stimulus-regulated changes in gene expression rely on

the relative abundance of mRNA molecules, either measured with

microarrays or with RNA-seq, as an indirect indication of

transcriptional initiation [1–3]. A major issue with using full

length mRNA molecules as an indication of a transcriptional

response is that the time needed to transcribe full length mRNA

molecules depends strongly on the length of the genes: Whereas

the transcription of short genes (v20 kb) can be completed within

less than 10 minutes, longer genes may take over an hour to be

transcribed. Consequently, secondary responses, which may occur

before the longest genes are fully transcribed, make identification

of primary responsive genes challenging.

Transcription is a dynamic process that is regulated by

transcription factors and is reflected in local histone modifications.

A reliable indication of an actively transcribed gene is the presence

of RNA polymerase II (PolII) protein complex in the body of the

gene. PolII generates the precursors of most mRNA, snRNA and

miRNA molecules, and its activity is modulated by histone

modifications [4]. Chromatin-level phenomena predict the

majority of RNA level changes [5], and the changes in PolII

activity after a stimulus are detectable earlier than changes in

mature RNA levels. Thus, we hypothesized that considering PolII

together with histone modifications could provide a reliable

indication of changes in the rate of transcriptional activity at

responding loci.

Genome-wide PolII activity can be measured with ChIP-seq

(chromatin immunoprecipitation combined with massive parallel

sequencing) [6] and with GRO-seq (global run-on sequencing) [7].

The PolII machinery moves through the body of a transcribed

gene, and following stimulation this motion can be seen as a ‘wave’

of increased reads along the responding genes. Conceptually, the

PolII wave is a spatio-temporal pattern. Here, we introduce a

data-driven computational approach, SPINLONG (Spatial Pat-

tern Identification by Non-Linear OptimizatioN with Global

PLOS Computational Biology | www.ploscompbiol.org 1 June 2013 | Volume 9 | Issue 6 | e1003100



constraints), that identifies spatio-temporal patterns in deep

sequencing data. To accommodate for various experimental

setups, SPINLONG allows users to define custom searchable

patterns. For instance, such spatial patterns could be: ‘low-low’

(little PolII activity without stimulation), ‘high-low’ (increased

number of reads at the beginning of a gene, but not at the end) and

‘high-high’ (fully transcribed gene characterized by a large number

of reads along the gene). To our knowledge, SPINLONG is the

first approach that allows identification of such spatio-temporal

patterns from deep sequencing data.

Estrogen receptor a (ERa) is over-expressed in w65% of breast

cancers and is a major therapeutic target in breast cancer [8].

Extra-cellular estradiol actives ERa, which triggers cytoplasmic

signaling cascades as well as transport of the activated ERa
complex to the nucleus where ERa acts as a transcription factor.

These lead to changes in expression patterns of hundreds of ERa
responsive genes that govern cell phenotypes, such as cell growth

and proliferation. The importance of ERa-mediated gene

regulation in breast cancer was highlighted in a recent study that

showed that genes with an elevated expression pattern and an

ERa binding site within 20 kb from their transcription starting

sites are correlated with patient survival [3].

In order to demonstrate the utility of SPINLONG, we

characterized estradiol-induced early responsive genes in MCF-7

breast cancer cells with SPINLONG analysis based upon ChIP-seq

data for PolII, H3K4me3 and H2A.Z occupancy at 5+2 time points

following estradiol stimulation. Time points 0, 10, 20, 40 and

80 minutes were used to capture early transcriptional responses.

Additionally, information from 160 and 640 minutes was used as

auxiliary data points to supplement the main analysis. We used also

ChIP-seq data for measuring the binding of ERa to DNA at

5 minutes time point to identify genes that are directly regulated by

ERa binding. After identifying the ERa early responsive genes, we

used 150 primary breast cancer samples from The Cancer Genome

Atlas [9] to assess the survival effect of the ERa response genes. All

results are available at http://csbi.ltdk.helsinki.fi/spinlong/mcf7/

and in Supporting Information. All deep sequencing data are

available at http://csblsynergy.fimm.fi/.

Results

The SPINLONG method
SPINLONG is a computational method for ranking genomic

regions, such as genes, based on how closely they match a spatio-

temporal deep sequencing pattern defined by the user. The overall

schematic of the SPINLONG approach is shown in Figure 1 and a

detailed description is in Materials and Methods. Briefly, the user

first encodes a set of hypotheses, or models, as patterns for

SPINLONG. These patterns divide each genomic region into one

or more contiguous segments that are expected to contain a ‘‘low’’

or ‘‘high’’ number of sequencing reads. Patterns are configured

using an expressive notation based on linear algebra, supporting

complex experimental setups such as time series and multiple

molecular markers. A deep sequencing experiment, such as ChIP-

seq, is followed by preprocessing in SPINLONG. In the primary

analysis step scores are assigned to each pattern for each defined

genomic region utilizing Hidden Markov Models. The scores are

computed by a non-linear optimization procedure which assigns

lengths to each segment in the patterns and estimates numeric

short read thresholds for ‘‘low’’ and ‘‘high’’ segments. The scoring

method and parameters can be configured by the user. The

resulting scores and accompanying metrics indicate how well the

pattern observed in the data matches the anticipated pattern

defined by the user. Scores can be used to classify genes as induced

or repressed, whereas assigned segment lengths can be used in

downstream analyses, such as estimating PolII elongation speed.

Identifying PolII activity regions in MCF-7 after estradiol
stimulus

An essential first step in identifying ERa genes with the SPINLONG

pattern matching process is to accurately establish genomic regions of

PolII activity that correspond to gene promoter and body. These

regions correlate with transcribed units delimited by transcription start

sites (TSSs) and termination sites (TTSs). While a priori coordinates of

transcribed regions can be obtained from genomic databases that list

annotated genomic features, these do not take context dependent

factors into account. For instance, individual transcripts often have

multiple TSSs, with specific TSSs utilized in response to particular

signaling processes [10,11]. Consequently, we used SPINLONG to

determine regions of PolII activity directly from the deep sequencing

data in a data-driven fashion.

In addition to PolII ChIP-seq profiles, local histone modifica-

tions and substitution by the variant histone H2A.Z correlate with

the location of TSSs and thus provide information that can be

used in localizing the gene bodies [4,12]. We therefore used PolII

in conjunction with H3K4me3 and H2A.Z ChIP-seq data to

delimit estrogen responsive gene regions in MCF-7. Occupancy of

PolII over an annotated transcript is used to locate both PolII

activity start and termination sites (corresponding roughly to TSSs

and TTSs), while the location of H3K4me3 and H2A.Z correlate

with the location of start sites. Initial coordinates of transcribed

loci were obtained from Ensembl v.61 [13] and then extended in

the 59 and 39 directions by 50% of the gene length, to generate a

total region for analysis twice the length of the transcribed unit.

Regions associated with the presence of PolII are computed from the

lengths of PolII body segments assigned by the SPINLONG score

optimizer (see Materials and Methods). The scores ranged from 0 to

1.08, and the threshold used here (0.60) corresponds to a gene whose

spatial short read coverage matches the evaluated pattern in 60% of

genomic locations. The spatial pattern searched from the PolII profile

Author Summary

Cellular processes in mammalian cells are tightly regulated
to ensure that the cells function properly as a part of an
organism. Dysregulation of some of these processes, such
as apoptosis, cell proliferation and growth, can lead to
cancer. One of the most important regulation mechanisms
for cellular processes is via activation of membrane
receptors by extra-cellular stimulus. Such cues trigger
signal cascades that lead to altered expression of a
number of genes in the cell nucleus; a key challenge in
biomedicine is to identify which genes respond to a
specific stimulus. These so called response genes can be
investigated on a whole-genome scale with genomic
sequencing, which is a technology that can quantify
protein binding to DNA or gene activation. Analysis of
such whole-genome data, however, is challenging due to
billions of data points measured in the experiments. Here
we introduce a novel computational method, SPINLONG,
which is a widely applicable novel computational method
that integrates multiple levels of deep sequencing data to
produce experimentally testable hypotheses. We applied
SPINLONG to breast cancer data and found early respon-
sive genes for estrogen receptor and analyzed their
regulation. These analyses resulted in a gene whose high
activity is associated with decreased breast cancer patient
survival.

Deep Sequencing Identifies Estrogen Response Genes
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is ‘low-high-low’, i.e., a gene body with a large number of PolII reads is

flanked by areas of low PolII signal. If there are overlapping transcribed

genes within the area of search, the resulting spatial distribution

matches poorly with this pattern and produces a low score. For such

genes and others with a low score, Ensembl regions are used. This

criterion, when combined with local H3K4me3 and H2A.Z profiles,

identified 4,275 genes that were considered as active PolII regions.

Two high scoring putative estrogen responsive genes, MYEOV2 and

DNPEP, are shown in Figure 2. MYEOV2, which has score of 1.05, has

proximal promoter PolII enrichment that colocalizes with H3K4me3

and H2A.Z peaks, and the PolII signal in the body of the MYEOV2 is

well above that of the 59 and 39 flanking regions. The extent of

occupancy of PolII, H3K4me3 and H2A.Z on MYEOV2 makes

locating the PolII activity region relatively straightforward. In contrast,

DNPEP (score 0.96) has multiple known potential promoter regions

and over 20 alternative transcripts. Taking into account H3K4me3

and H2A.Z occupancy, the SPINLONG optimizer selected a region

that initiates 10 kb downstream from the annotated TSS.

Figure 1. (A) Schematic workflow of SPINLONG. Red and green boxes denote implementation of SPINLONG and input from a user, respectively.
SPINLONG produces tabulated and graphical results that can be interpreted in the context of the hypotheses. (B) Illustration of the pattern matching
step with two samples and four segments in the context of a gene R. User-provided information is shown with blue labels. Short reads (gray) for each
sample are assigned into fixed length bins and bin counts are normalized. A user-defined pattern describes the expected spatial distribution of bin
counts in the samples, formulated by dividing each sample into one or more segments (Si). Segment classes H and L indicate whether the segment is
expected to contain a ‘‘high’’ (red) or ‘‘low’’ (blue) amount of short reads, respectively. The user defines the segment divisions and their classes, while
nonlinear optimization is used to assign segment lengths (li) by maximizing score function g and taking into account linear constraints. The
composite score g is composed of segment scores fi , which are computed based on bin counts and segment lengths. Constraints include structural
constraints, such as the requirement that segment lengths of a sample sum up to gene length DRD, as well as custom constraints (blue).
doi:10.1371/journal.pcbi.1003100.g001

Deep Sequencing Identifies Estrogen Response Genes
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Early responding genes upon estradiol stimulus of MCF-7
cells

Using five time-points of PolII ChIP-seq measurements (0, 10,

20, 40 and 80 minutes after stimulation), in conjunction with a

non-specific antibody background sample as a subtraction control

and utilizing a conservative score threshold (0.65) for an estrogen

regulated gene, SPINLONG analysis characterized 699 genes as

induced and 78 as repressed following estradiol stimulus. The

results are available at http://csbi.ltdk.helsinki.fi/spinlong/mcf7/.

Figure 3 illustrates JAK2, which is induced after stimulation of

MCF-7 cells with estradiol; and COBLL1, which is repressed after

the stimulation. Both are relatively long (w250 kb) genes whose

Figure 2. Locating the transcribed region of (A) MYEOV2 and (B) DNPEP. PolII, H3K4me3 and H2A.Z read counts are shown vertically with
sample labels on the right. Sample data are the maximum of bin counts over all time points. The X-axis shows gene position in base-pairs (59 to 39
direction) and the Y-axis shows relative bin count. Green horizontal lines indicate Gaussian means of HMM states; the HMM state with lower mean is
interpreted as class L state and the higher as class H state. Green vertical lines indicate segment boundaries assigned using simulated annealing. Gray
vertical lines indicate gene locations obtained from Ensembl. The class and score of each segment is shown on top. For bin counts, black indicates a
bin count inside class H segment that contributes positively to segment score and blue is analogous for class L; red is a mismatching bin. Transcribed
regions are obtained by concatenating the two H class segments of PolII.
doi:10.1371/journal.pcbi.1003100.g002

Deep Sequencing Identifies Estrogen Response Genes
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spatio-temporal transcription dynamics can be clearly differenti-

ated throughout the 80 minute time course. JAK2 shows a leading

edge in the PolII cascade that reaches the 39 end by 80 minutes

time point, whereas COBLL1 shows a similar lagging edge.

To identify genes that respond rapidly to estradiol stimulus via

direct binding in cis of liganded ERa to estrogen response elements

(EREs), we identified genes having ERa binding in their promoter

region using ChIP-seq at 5 minutes after stimulus. Out of 17,218

genes in the annotated genome, we identified 5,553 genes (32%)

that had at least one ERa binding peak (pv0:01, FDR corrected)

within a 20 kb window of their annotated TSS. From the set of 699

estradiol induced genes, as defined by SPINLONG, 280 (40%) were

associated with ER binding peaks within a 20 kb window from TSS

(Supporting Information). The number of genes (280) with at least

one ERa binding peak within 20 kb is significantly higher for the set

of 777 genes identified by SPINLONG as compared to all

annotated human genes (5,553 genes, pv1:6:10{7, x2{test).

Survival associations of ERa responder genes
Adjuvant endocrine therapy with selective anti-estrogens or with

aromatase inhibitors is used to treat breast cancer patients with ERaz

tumors [14]. Not all ER+ patients respond to these regimes and

currently biomarkers able to predict the outcome of adjuvant therapy

do not exist. We hypothesized that a fraction of genes driving resistance

to ERaz therapy may belong to early responsive genes to estradiol.

Thus, we evaluated the survival association of the 777 ERa responsive

genes identified by SPINLONG in The Cancer Genome Atlas

(TCGA) breast cancer cohort [9]. The patients in the survival analysis

were selected so that they corresponded to the characteristics of the

MCF-7 cell line as follows. First, as menopause is a key clinical

parameter in deciding therapeutic regimen [15], we selected patients

who were either annotated as post-menopausal in TCGA or were

older than 55 at the diagnosis and thus likely post-menopausal. Second,

the ER pathway can be activated by HER2 in the absence of estrogen

and HER2+/ER+ tumors are reported to be resistant to endocrine

therapy [8]. Accordingly, we selected patients with known HER2-

status. Using these criteria our survival analysis consisted of 150 ER+/

HER2- primary breast cancer samples from post-menopausal patients.

Kaplan-Meier analysis with log-rank test resulted in 19 genes that

have a survival effect with a nominal pv0:01 out of 777 early ERa
responsive genes. The genes are shown in Table S1 and all Kaplan-

Meier curves in Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,

S12, S13, S14, S15, S16, S17, S18, S19. The gene ATPase family,

AAA domain containing 3B (ATAD3B), which is a c-MYC and

myogenin target gene and is expressed in highly proliferative tissues

[16], had the lowest survival p-value (pv5:1|10{4). The Kaplan-

Meier curve for ATAD3B is illustrated in Figure 4. Five years after

diagnosis, less than 40% of the patients with over-expression of

ATAD3B are alive, whereas 90% of patients without ATAD3B over-

expression are alive at this point. At the mRNA level as measured by

RNA-seq, ATAD3B is expressed in all time points and overexpressed in

time points 160–1280 minutes compared to the baseline (data not

shown).

In order to find out whether the survival association of ATAD3B

expression is correlated with disease progression, we performed a

Cox survival analysis for ATAD3B with tumor stage as a control

variable. This analysis indicates that ATAD3B has predictive

power independent from tumor stage (Cox pv0:019).

Estimating the propagation speed of PolII in E2
responder genes

The PolII transcription process consists of initiation, elongation

and termination phases, with elongation occurring at 0.5–4 kb/min

[4,17]. There is evidence, however, that under optimal conditions,

PolII speed can exceed 50 kb/min [18]. Through the time-series

measurement of PolII progression in conjunction with the SPIN-

LONG analysis, it is possible to estimate the speed of PolII on ERa
responsive genes. The PolII cascade forms a leading (induced genes)

or lagging (repressed genes) edge, whose position is obtained from

SPINLONG segment lengths. Comparing the locations of these

edges at each time point gives lower bound estimates for

propagation speed, i.e., a large difference in edge locations in

neighboring time points indicates high speed.

We observed that the transcription rate of PolII correlates

strongly with gene length (Figure S20), with long genes transcribed

at higher rates. The majority of estimates were between 1 and

10 kb/min, with some estimates exceeding 10 kb/min. High

speed estimates were primarily obtained for induced genes. Early

responding genes showed a rapid propagation of transcription

across the gene body, suggesting rapid PolII elongation probably

due to an open chromatin configuration in these genes [19]. While

rapid propagation of PolII initiated transcription is in line with

recent reports [18], the presence of multiple PolII cascades hinders

estimation of PolII synthesis and elongation speed directly from

sequencing data. Thus, the speeds reported here should be

interpreted as the speed of information propagation.

Interestingly, we noted that genes with an ERa site within 20 kb

of the TSS (n~280) had a median transcription rate of 1,983 bp/

min, which is significantly higher than the rate of 1,597 bp/min

for genes (n~419) without an ERa site (permutation test,

pv0:008). This effect is not explained by differing gene lengths

in the two gene sets, as the gene lengths are comparable

(permutation test, pv0:93).

Discussion

We have developed a novel data-driven computational

approach to facilitate the analysis of cell processes that are

characterized by spatio-temporal signals. The large degree of

freedom in defining patterns allows SPINLONG to scale to a

variety of experimental designs where the user is able to formulate

patterns to be identified within the data. Although the need to

define the patterns a priori may place some conceptual load on the

user, this approach offers a methodology to fuse hypothesis- and

data-driven experimental designs. Furthermore, the segmentation-

based paradigm allows clear visualization of the identified patterns

and input data, which facilitates interpretation of results.

Methodologically, SPINLONG is a machine learning algorithm

that can be used for classification, such as to determine whether a

gene is induced, repressed or neither, but also for ‘‘sequence

labeling’’ tasks, such as dividing a gene into flanking regions of

PolII activity and inactivity. In genomic data analysis, SPIN-

LONG shares some similarities with ChIP-seq peak detection

algorithms (e.g., [20–22]), as both aim to define spatial patterns in

quantified DNA data. The unique feature of SPINLONG is that it

permits more complex patterns to be discovered than peaks in

single samples, including temporal patterns in multi-marker time-

series experiments. This flexibility is achieved through the use of

simulated annealing [23], which allows for complex objective

functions, as well as linear algebra constraints for expressing

relationships between samples and spatial segments of target

regions.

When we applied SPINLONG to a time-series data from MCF-

7 breast cancer cell line after ERa stimulus, we identified 777 early

responsive genes. This set included several established ERa target

genes, such as XBP1, GREB1 and CCND1. Recently, Hah and

colleagues used GRO-seq in MCF-7 cells and listed 3,098 estradiol

Deep Sequencing Identifies Estrogen Response Genes
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response protein-coding transcripts [24]. For SPINLONG iden-

tified induced genes, 127 out of 699 (18%) genes were also induced

in the GRO-seq dataset (x2{test pv10{6 assuming a total of

10,000 profiled genes), whereas for repressed genes 31 out of 78

(40%) were found in both analyses (pv10{9). The main reason for

the relatively low number of overlapping genes is that SPINLONG

used more stringent criteria, which require that the spatio-

temporal profiles of a gene across all time points are consistent.

Additionally, there are differences in sequencing depths: Hah et al.

used 6–10 million mapped reads per sample whereas we used

approximately 100 million. The consequence of varying sequenc-

ing depths is illustrated in Figures S21 and S22 for the genes XBP1

and CCND1, which are classical ERa responsive genes and belong

to the top five in the SPINLONG results. CCND1 belongs to the

Figure 3. Examples of (A) an estradiol induced gene (JAK2) and (B) a repressed gene (COBLL1). PolII read counts are shown vertically. The
last pseudo-sample (locator) is an aggregate sample containing the maximum value of all time points used for fine-tuning the gene location. Initial
locations (gray vertical lines) are obtained from a previous optimizer run with PolII and histone markers. Gray bins indicate they are within ignored
area (class N). (A) JAK2 shows a leading edge that progresses gradually and reaches the end of the gene by 40–80 minutes. Transcriptional response
starts fading at 80 minutes. (B) COBLL1 shows a similar lagging edge that reaches the end of the gene by 80 minutes.
doi:10.1371/journal.pcbi.1003100.g003

Deep Sequencing Identifies Estrogen Response Genes

PLOS Computational Biology | www.ploscompbiol.org 6 June 2013 | Volume 9 | Issue 6 | e1003100



list of the 3,098 ERa responsive genes in [24] and it has relatively

good coverage. However, XBP1 is not detected as ERa responsive

genes in [24] and this is clearly due to insufficient sequencing

depth. In the SPINLONG analysis, XBP1 is the strongest

candidate for an induced gene with a score of 1.00, and its

expression has been reported to be 11-fold induced in MCF-7 cells

after estradiol stimulus [25].

In addition to recent PolII profiling-based efforts, ER responsive

genes have been investigated using microarrays, RNA sequencing

and low-throughput methods. These resources include ERGDB

[26], ERTargetDB [27] and Cicatiello et al. [28]. The numbers of

ER responsive genes in these studies were 1,208 (ERGDB), 1,570

(ERTargetDB) and 1,150 (Cicatiello et al.). We compared these

three and SPINLONG identified ER responsive gene sets using a

set overlap analysis (Figure S23). The overlap between any pairs of

the four ER responsive gene sets was small and there were only 13

genes that were common to all four sets. One reason for small

concordance is experimental factors. For example, the PolII-based

SPINLONG analysis captures early response genes, whereas

mRNA profiling at 24 hours includes secondary responses and

misses transient early responses.

Our results show that only 40% of ERa early responsive genes

have ERa binding within 20 kb from TSS at 5 min after estradiol

stimulus. This result is not unexpected as it is known that

liganded ERa can alter gene expression by directly binding to

estrogen response elements (genomic activation), or by non-

genomic activation via the MAPK cascade or mitochondria [29].

To further characterize the biological processes for ERa
responsive genes with and without ERa binding within 20 kb,

we conducted Gene Ontology (GO) enrichment analysis. The

GO enrichment analysis (pv0:05, FDR-corrected) for induced

genes having an ERa binding site produced only four enriched

GO terms (Table S2). These terms are unspecific and their

significance in ERa mediated responses is elusive. In contrast,

genes without ERa binding produced 71 enriched GO terms

(Table S3), including translational initiation and G1/S transition of

mitotic cell cycle, which are biological processes known to be

regulated by ERa activation.

Kaplan-Meier analysis with 150 primary breast cancer tumors

from TCGA resulted in 19 early ERa responsive genes that have

survival association (Table S1). ATAD3B had the strongest

statistically significant survival association. Its over-expression

has been associated with chemoresistance in several cancers [16].

Our results indicate, for the first time, that over-expression of

ATAD3B is also associated with significantly lower survival of post-

menopausal breast cancer patients with ER+/HER22 tumors.

Interestingly, there are no ERa binding sites within 20 kb of the

TSS for ATAD3B. This suggests that ATAD3B is activated through

an ERa mediated non-genomic MAPK pathway regulated

transcription factors, such as myogenin and c-Myc. To verify the

survival association of ATAD3B, we conducted a Kaplan-Meier

analysis in two other breast cancer cohorts, Miller et al. [30] and

Pawitan et al. [31], having 130 and 159 primary breast cancer

tumor samples with expression measurement for ATAD3B,

respectively. The results were consistent with the TCGA analysis,

with higher ATAD3B expression leading to poor survival (pv0:036
for Miller et al. and pv0:014 for Pawitan et al.; Figures S24, S25).

The significance of ERa binding in breast cancer patient

clinical outcome has been recently reported [3], whereas the role

of the non-genomic pathway has gained less attention. Our results

indicate that ERa responsive genes with direct ERa binding have

different function and median transcription speed than the ERa
responsive genes without ERa binding. The GO analysis suggests

that the non-genomic ERa activation is crucial in exerting the

transcriptional responses due to estradiol stimulus though we

cannot exclude the possibility of direct distal ERa regulation.

Furthermore, our results point to the direction that the non-

genomic pathway, via ATAD3B, may play a role in resistance to

anti-ERa therapeutics in breast cancer. Accordingly, inhibition of

the MAPK pathway leading to inactivation of myogenin or Myc

could lead to down-regulation of ATAD3B and thus provide a

putative therapeutic target for post-menopausal ER+/HER22

breast cancer patients. Even though more work is needed to firmly

establish the role of ATAD3B in this subtype of breast cancer, our

results demonstrate that SPINLONG is capable of producing

experimentally testable hypotheses from large-scale deep sequenc-

ing data.

SPINLONG can be customized according to research hypoth-

eses, as demonstrated here for the propagation of PolII on a gene.

This, together with a computationally fast implementation that

allowed to process 1.2 billion data points in 8 hours, makes

SPINLONG a strong method to analyze multi-level deep

sequencing data. In addition to ChIP-seq data, SPINLONG can

be applied to data produced by other deep sequencing technol-

ogies, such as GRO-seq data, provided that the deep sequencing

depth is sufficiently deep (greater than 100 million reads per

sample) in order to identify patterns reliably. In summary,

SPINLONG is a widely applicable novel computational method

that integrates multiple levels of deep sequence data to produce

experimentally testable hypotheses.

Materials and Methods

SPINLONG
SPINLONG is implemented as a freely available command line

tool as well as a component to the Anduril workflow framework

[32] with a comprehensive user guide at http://csbi.ltdk.helsinki.

fi/spinlong.

Data import and preprocessing. In the sequencing data

import step, the genome is divided into fixed length bins of size B
nucleotides and short read counts in each bin are computed for

each sample. Default B is 300 nucleotides; a relatively large bin

size is used to reduce spatial noise. Each sample is normalized for

differences in sequencing depth by making the sum of bin counts

constant across the genome. Optionally, a control sample is used

to control for local variation in ChIP-seq by subtracting control

bin counts from each non-control sample bin count.

Figure 4. Kaplan-Meier survival plot comparing TCGA patients
with over-expression (52 patients) or neutral expression (88
patients) of ATAD3B. Vertical ticks represent censoring events. The X
and Y axes represent follow-up time in months and the percentage of
survival, respectively. The associated log-rank p-value is pv5:1|10{4 .
doi:10.1371/journal.pcbi.1003100.g004
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After data import, we focus on a pre-defined genomic region R,

which is a chromosomal interval overlapping with a number of

bins. To reduce spatial variation in bins, a median filter with a

window of nine bins is applied within R. To reduce noise caused

by low signal, background level of the region R is estimated as 10th

percentile in the bin count distribution within R and this level is

subtracted from all bins in the region. Negative counts are

clamped to zero. As a result of preprocessing, we obtain an array

of normalized bin counts for each sample.

Pattern matching. The core of the SPINLONG approach is

pattern matching by score optimization. A pattern encodes a

hypothesis, such as ‘‘transcription of a gene is initiated close to its

starting site after stimulus and transcription progresses from 59 to

39 direction.’’ A score indicates how well the bin counts of the

current region match the pattern. The user can define the

expected spatial arrangements of bin counts in the samples, a

scoring scheme and optional constrains for optimization.

Pattern matching is done in the context of a genomic region and

the pattern is evaluated against all defined regions, such as all

genes in a genome. A pattern divides the bins of each sample into

segments, which are non-overlapping sub-intervals of R. Each

segment is annotated with a label that describes the expected bin

count class of the segment. The classes L and H denote ‘‘low’’ and

‘‘high’’ bin counts, respectively, and N (ignored) denotes that the

segment does not participate in scoring. Together, segments and

their classes describe the expected spatial distribution of bin counts

within samples. The user can define the number and classes of

segments as well as their constraints, while their lengths are

assigned in the optimization step.

Formally, the segments of a pattern are denoted as S1, . . . ,Sn

and their assigned lengths (in nucleotides) as (l1, . . . ,ln)~l,

where li[N. The lengths l are assigned by a score-maximizing

optimization process. Segment lengths are constrained by struc-

tural and user-defined constraints. An example of a structural

constraint is the requirement that the segments in a sample must

cover all the bins of the sample:
P

k[K lk~ Rj j, where K denotes

segments belonging to the specific sample and DRD denotes the

length of the current region. Optional user-defined constraints are

used to fine tune and guide the optimization process. These

constraints include segment length boundaries XiƒliƒYi and

global constraints
Pn

i~1 ciliƒGi (where Xi,Yi,Gi[R). Global

constraints allow defining relationships within and between

samples. These allow, for instance, expressing constraints between

time points and distinct ChIP targets.

Pattern scoring. The pattern scoring step evaluates each

genomic region against the hypothesis and guides the optimization

step. The result of the pattern scoring is the primary outcome of

SPINLONG.

Pattern scoring uses assigned lengths (l) together with bin

counts and segment classes to obtain a composite score. Patterns

are scored in a two-step fashion, where individual segments are

scored first and then combined into a composite score. A general

scheme for segment scoring is to assign a score for each segment Si

using the current length li and state information (denoted Tj )

maintained by the optimizer. We denote by segment scorer a data

structure that is responsible for assigning scores to specific

segments and maintains its dynamic state information Tj .

All segments belonging to the same sample are scored with the

same scorer, but there may be several independent scorers for

independent sets of samples. Samples for distinct markers, such as

PolII and H3K4me3, use separate scorers because their data

ranges are different and segment scorers assume a common range

for all associated samples. Segment score for a segment Si and

scorer index j is denoted fi~f (li,Tj)[R.

Segment scoring using HMM. Segment scoring is done

using m{state Hidden Markov Models (HMM) [33]. Bin counts

are considered as Gaussian observations generated by m states of

the model. The default m is two. The model is trained from all bins

assigned to the scorer using the Baum-Welch method. HMM

states are ordered based on the expected values of the Gaussian

distributions in ascending order. HMM states of each bin are

obtained using the Viterbi algorithm. HMM processing is done

using JaHMM (http://code.google.com/p/jahmm/). Scorer state

Tj[f1, . . . ,m{1g is the number of HMM states which are

considered as low (L) class: this allows to use m{state HMMs in

the context of binary segment classes. The segment score is the

proportion of bins whose HMM state matches the segment class:

f (li,Tj)~
1
p

Pp
k~1 I(k), where

I(k)~

1, if (class~H and M(k)wTj)

or (class~L and M(k)ƒTj)

0, otherwise,

8<
:

p is the number of bins in the segment and M(k)[f1, . . . ,mg is the

HMM state of bin k.

Composite scores. Composite pattern scores g(f1, . . . ,fn)[R

are obtained from segment scores by interpreting them as fuzzy

truth values [34]. We derived four basic composite scoring

methods as follows. Composite scores gMin~min(S1, . . . ,Sn) and

gMax~max(S1, . . . ,Sn) correspond to logical conjunction and

disjunction, respectively. Of these, gMin is generally more relevant

for pattern matching: it means that ‘‘all segments match their

respective class labels’’. Between these extremes, gMean~
mean(S1, . . . ,Sn) includes information from all segment scores

into the composite value, which is a desirable feature for guiding

the optimization process. Combining gMin and gMean, we obtain

gMinMean~(gMinzgMean)=2 that includes a conjunctive compo-

nent while also taking into account all score values. In addition to

these four methods, users can define custom composite score

functions using nested min, max and weighted mean functions.

Nonlinear optimization. Simulated annealing (SA) [23] is

used to maximize composite score g. Valid solution vectors for SA

are (l1, . . . ,ln,T1, . . . ,Tn’) that satisfy linear constraints for

segment lengths (n’ is the number of scorers). In the SA step,

either the vector l or one of Tj is modified. Segment lengths are

modified using elementary operation vectors Ei so that

l’/lzcEi, where c[R. Elementary operations are obtained from

basis vectors of the linear space corresponding to valid vectors l: if

l satisfies constraints, l’ also does.

Experiments with MCF-7 cell line
The deep sequencing data are available at http://csblsynergy.

fimm.fi/. In addition to the data used in this work, the repository

also contains MBD (methyl binding domain) ChIP-seq data. The

database includes the protocol description for each of the

experiments, the short reads and the aligned data files for each

of the time points assayed.

Preparation of MCF-7 cells. The MCF-7 human breast

cancer cell line originates from a 69-year old Caucasian woman

and is estrogen receptor (ER) positive, progesterone positive (PR)

and HER2 negative. Here MCF-7 cells (a clonal isolate kindly

provided by Prof. Edison Liu, Jackson Laboratories, Maine, USA)

were grown in 15 cm plates to 80% confluency. Plates were then

washed 2 times with PBS and overlaid with 20 ml of phenol-red

free high glucose DMEM (Gibco) containing 2% charcoal stripped

FCS (Sigma). After 24 hours of incubation, the cells were again

washed with PBS and fresh media containing 2% charcoal
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stripped FCS was added. This process was repeated over a three

day period to generate cells devoid of estradiol signaling. The time

course (10, 20, 40, 80, 160, 320, 640 and 1280 min) was initiated

by replacing media with prewarmed media containing 10 nM E2.

In addition, an untreated sample was included in the experiment

as a zero time point.

ChIP-seq protocols and methods. For chromatin immu-

noprecipitation, cells were fixed for 10 minutes at room temper-

ature by the addition of formaldehyde to a final concentration of

1%, after which glycine was added to a concentration of 100 mM.

Cells were then washed twice with PBS and collected into 2 ml of

lysis buffer (150 mM NaCl, 20 mM Tris pH 8.0, 2 mM EDTA,

1% triton X-100, protease inhibitor [complete EDTA free, Roche,

04 693 132 001], 100 mM PMSF). The lysate was sonicated for

3630 seconds using a Branson ultrasonicator equipped with a

microtip on a power setting of 3 and a duty cycle of 90%. Samples

were cooled on ice between rounds of sonication. Alternatively, a

Bioruptor sonicator was used (power high, 15 mins total, 30 s on

30 s off; total volume of sample – 1 ml) to fragment chromatin. In

either case, the resulting sonicate was centrifuged at 40006g for

5 minutes, an aliquot of 10% retained for input and the remaining

material transferred to a fresh tube.

Four mg of anti-ERa antibody (HC-20, rabbit polyclonal, Santa

Cruz, sc-543), 2 ml of anti-RNA Polymerase II antibody (AC-055-

100, monoclonal, Diagenode, 001), 3 mg of anti-H3K4me3

antibody (pAb-MEHAHS-024, rabbit polyclonal, Diagenode,

HC-0010) and 2 mg anti-Histone H2A.Z (acetyl K4+K7+K11)

antibody (ab18262, sheep polyclonal, Abcam, 659355) were added

to the samples, which were then incubated overnight at 40C with

rotation. Chromatin antibody complexes were isolated, either by

addition of 10 ml of protein G labeled magnetic beads (Millipore

Pureproteome protein G magnetic beads, LSKMAGG10) pre-

washed in lysis buffer or with 20 ml protein A/G beads (Santa

Cruz). Afterwards, the complexes obtained with protein G

magnetic beads were washed three times with lysis buffer, then

reverse crosslinked in 0.5 ml 5 M guanidine hydrochloride,

20 mM Hepes, 30% isopropanol, 10 mM EDTA for a minimum

of 4 hours at 650C. Recovered DNA was then purified using a

Qiaquick spin column and eluted in 50 ml of 10 mM Tris pH 8.0.

Where protein A/G beads were used, the complexes were washed

sequentially with three different buffers at 40C: two times with

solution of composition 0.1% SDS, 0.1% DOC, 1% Triton,

150 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 20 mM HEPES

pH 7.6, once with the solution as before but with 500 mM NaCl,

once with solution of composition 0.25 M LiCl, 0.5% DOC, 0.5%

NP-40, 1 mM EDTA, 0.5 mM EGTA, 20 mM HEPES pH 7.6

and two times with 1 mM EDTA, 0.5 mM EGTA, 20 mM

HEPES pH 7.6. A control library was generated by sequencing

input DNA (non-ChIP genomic DNA). Immunopurified chroma-

tin was eluted with 200 ml of elution buffer (1% SDS, 0.1 M

NaHCO3), incubated at 650C for 4 h in the presence of 200 mM

NaCl, isolated using a Qiaquick spin column and eluted in 50 ml of

10 mM Tris pH 8.0.

To compute the associations between ERa binding peaks and

genes, we used an exponential distance model with a score

threshold of one and unit intensity for all peaks [35]. Peak

detection was done using MACS [20].

RNA-seq protocols. Total RNA was isolated using Trizol

(Invitrogen) according to the manufacturer’s recommendations,

followed by DNazol treatment (QIAGEN). 100–250 ng total RNA

was subjected rRNA depletion with the Ribo-Zero rRNA

Removal Kit (Human/Mouse/Rat; cat. no. RZH110424). The

rRNA depleted sample was purified by ethanol precipitation.

mRNA was fragmented by hydrolysis (56 fragmentation buffer:

200 mM Tris acetate, pH 8.2, 500 mM potassium acetate, and

150 mM magnesium acetate) at 940C for 90 sec and then purified

(RNeasy MinElute Cleanup Kit, QIAGEN). cDNA was synthe-

sized using 5 mg random hexamers using Superscript III Reverse

Transcriptase (Invitrogen). ds-cDNA synthesis was performed in

second strand buffer (Invitrogen) according to the manufacturer’s

recommendations and then purified (MinElute Reaction Cleanup

Kit, QIAGEN). ds-cDNA was prepared for Illumina sequencing

according to the manufacturer’s protocols (Illumina). Briefly, ds-

cDNA fragments were subject to sequential end repair and

adaptor ligation. ds-cDNA fragments were subsequently size

selected (approx. 300 base pair [bp]). The adaptor-modified

DNA fragments were amplified by limited PCR (14 cycles).

Quality control and concentration measurements were made by

analysis of the PCR products by electrophoresis (Experion,

BioRad) and by fluorometric dye binding using a Qubit

fluorometer with the Quant-iT dsDNA HS Assay Kit (Invitrogen,

Q32851) respectively. Cluster generation and sequencing-by-

synthesis (36 bp) was performed using the Illumina Genome

Analyzer IIx (GAIIx) according to standard protocols of the

manufacturer (Illumina).

Alignment and preprocessing of sequencing data. To

align all reads, we used the GMS_map software (version 3.2.1) on

a Genomatix Mining Station. The reference genome used was

human hg19 (NCBI build 37). The software uses a seed-based

approach to align reads. Mapping a read to a reference sequence

involves two steps. In the first step, seeds for potential mapping

positions in the target sequence are identified via a mapping

library built of short unique subwords from the reference

sequence. In the second step, alignments of the complete sequence

read to the previously identified positions in the reference

sequence are calculated. Results are ranked by their alignment

score. We used the ‘deep’ seed search option allowing for point

mutations during seed search. The overall alignment quality

threshold was set to 92%, allowing for at most two point

mutations. Uniquely and multiply matching reads meeting these

thresholds were provided in BED and indexed BAM format.

SPINLONG patterns for identifying PolII activity

regions. To estimate PolII activity start and end sites, we

combined the time points 0, 10, 20, 40 and 80 min together into a

‘‘pseudo-sample’’ that contains the maximum of bin counts in

these time points. This was done individually for each marker

(PolII, H3K4me3 and H2A.Z). These pseudo-samples contain

information from all time points but also simplify pattern

formulation by including only one (pseudo-) sample for each

marker, instead of five samples for individual time points.

All pseudo-samples were divided into three segments with

classes L (low), H (high) and L, which correspond to the gene

upstream, body and downstream, respectively. We thus

obtained nine segments, denoted SPII,i (PolII), SH3,i

(H3K4me3) and SH2,i (H2A.Z), where i[f1,2,3g. Based on the

assumption that histone markers colocalize with PolII in

promoters, histone upstream segments were synchronized with

PolII using global constraints lH3,1~lPolII,1 and lH2,1~lPolII,1:

that is, the leftmost segments in each sample must be identical in

length for all valid solutions l.

Composite scoring was based on gMinMean, but takes into

account genes for which one or both histone markers are weakly

present. The score function is maxfgPII,gPII&H3z0:05,gPII&H2z

0:05,gPII&H3&H2z0:08g, where gPII is gMinMean taking only PolII

into account, gPII&H3 is gMinMean taking PolII and H3K4me3 into

account, and similarly for other components. Offsets of 0.05 and

0.08 were chosen to bias the scorer to use all markers when

possible.
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SPINLONG patterns for identifying ERa responder
genes. The assumption behind identifying genes whose activity

levels are increased after a stimulus is that initially and without

stimulation such a gene is transcribed with a low rate and thus

there is little PolII activity across the gene. Similarly, we assume

that genes whose activity is repressed after a stimulus initially show

high PolII activity, which is decreased after a stimulus. For genes

that are activated due to a stimulus, the PolII complex binds to the

genomic regions at the transcription start site (TSS) of a responder

gene. This is indicated by an increased number of reads in the 59

end of the gene. These assumptions are used to form hypotheses

used in SPINLONG.

Identification of estrogen responder genes is divided into

identifying induced and repressed genes. For this analysis, PolII

data were used at time points 0, 10, 20, 40 and 80 min; in

addition, time points 160 and 640 min were used to compute a

pseudo-sample (see below). The hypothesis for induced genes is

that they show low signal (class L) in 0 time point and a

progressively elongating high signal (class H ) in later time points

that represents a region of PolII binding. The H class segment at

time point 2:t is expected to be approximately two times longer

than at time point t, since time intervals increase geometrically and

PolII elongation is assumed to be constant. This is encoded as a

global linear constraint in the pattern, with the relaxation that

length at 2:t must be at least 1.5 longer than at t.

Patterns for induction are named inducedN, where

N[f10,20,40,80g is the time point at which the gene is fully

occupied with PolII, i.e., the H class segment covers the gene. The

pattern induced80 captures long genes that are not completely

transcribed at last time point. Repressed genes show similar

behavior but with classes H and L swapped; these patterns are

named repressedN.

The segment configuration of each pattern is visible in the result

visualizations (Figures 2 and 3 and result WWW site) and in

SPINLONG pattern XML files (Supporting Information). Scoring

is done using gMinMean. Genomic regions R that are used as the

search area are obtained from the predictions of PolII activity

regions above, or from pre-defined Ensembl gene regions when

the score in the activity prediction analysis is below 0.60. To allow

the optimizer to further fine-tune the search area, these regions are

extended by 25% in 59 and 39 directions and a pseudo-sample

containing the maximum bin count of the time points 0, 10, 40,

160 and 640 min is included.

SPINLONG patterns for PolII propagation speed. Estimation

of PolII propagation speed is done using the segment lengths obtained

in the identification of estrogen responsive genes above. For the patterns

induced10 and repressed10, speed lower bound is estimated as

v10~l(10)=10 nt/min, where l(10) is the length of class H PolII

segment at 10 minutes. For the patterns induced20 and repressed20, two

speed estimates were computed as v10~l(10)=10 nt/min and

v20~l(20)=20 nt/min, where l(20) is the length of class H segment

at 20 minutes. The minimum of these velocities gives the lower bound

for the speed estimate. For 40 and 80 minute time points, lower bounds

are computed in similar fashion using additionally v40 and v80.

Survival analysis. Survival analyses were conducted with the

Anduril framework [32]. In all analyses, death from breast cancer

was used as the event indicator. For the TCGA cohort [9], patients

having ER+, HER22 and either post-menopausal status or age

w55 were selected. In addition, 65 healthy tissue samples were

used as controls. For each gene, patients were divided into groups

having low, high or stable expression. This was done by computing

fold changes for each tumor and comparing them to a threshold

based on the distribution of the fold changes. That is, let

Ti (i~1, . . . ,n) and Cj (j~1, . . . ,m) be log2 expression values

for n tumors and m controls for a specific gene. Then, a median of

control samples C~median(Ci, . . . ,Cm) was computed. Sample-

specific fold changes are Ri~Ti{C and their standard deviation

is s~stdev(R1, . . . ,Rn). Now, a tumor was classified into the low

(high) group for this gene if Riƒ{1:5s (Ri§1:5s) and into the

stable group otherwise.

In the Cox regression model for ATAD3B we used TNM

tumor stage as a control variable [36]. TNM tumor stage is

determined by the size of the tumor (T), lymph node

involvement (N) and whether the cancer has metastasized

(M). There are five stage categories from which 0 represents

non-invasive cancer and IV means an invasive cancer that has

metastasized to distant organs. For instance, a stage I tumor is

an invasive cancer where the tumor is small (v2 cm) and

which has not metastasized. Here we excluded stage 0 and

combined subcategories for stage II (IIa and IIb) as well as for

stage III (IIIa, IIIb and IIIc). In the Cox model, tumor stage is

encoded as stage I = 1, II = 2, III = 3 and IV = 4.

The results published here are in part based upon data

generated by The Cancer Genome Atlas pilot project established

by the NCI and NHGRI. Information about TCGA and the

investigators and institutions who constitute the TCGA research

network can be found at http://cancergenome.nih.gov. The TSP

study accession number in the database of Genotype and

Phenotype (dbGaP) for the TCGA study used here is

phs000569.v1.p7.

In the first ATAD3B validation cohort, Miller et al. [30], control

samples and HER2 status were not available so patients having

ER+ and age w55 were selected. In the second validation cohort,

Pawitan et al. [31], ER status or age were not reported so we

selected all patients. Normalized microarray values were obtained

using RMA [37]. In both cohorts, patients were grouped into

‘‘low’’ and ‘‘high’’ groups based on whether ATAD3B expression in

the tumor sample was below or above expression median. A

Kaplan-Meier analysis with the log-rank test was conducted based

on these groupings for ATAD3B.

Supporting Information

Figure S1 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of GSTM4. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 2.304994e-03.

(PDF)

Figure S2 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of GPR157. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 4.788661e-03.

(PDF)

Figure S3 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of SLC37A4. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 3.828535e-03.

(PDF)
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Figure S4 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of EIF3B. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 7.649984e-03.

(PDF)

Figure S5 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of ATAD3B. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 5.12124e-04.

(PDF)

Figure S6 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of PPA2. Expression groups with less than

20 patients are omitted. Vertical ticks represent censoring events.

The X and Y axes represent follow-up time in months and the

percentage of survival, respectively. The associated log-rank p-

value is 1.315913e-03.

(PDF)

Figure S7 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of ZNF275. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 8.437339e-03.

(PDF)

Figure S8 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of VAPB. Expression groups with less than

20 patients are omitted. Vertical ticks represent censoring events.

The X and Y axes represent follow-up time in months and the

percentage of survival, respectively. The associated log-rank p-

value is 3.042901e-03.

(PDF)

Figure S9 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of CBX8. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 4.160872e-03.

(PDF)

Figure S10 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of BAG5. Expression groups with less than

20 patients are omitted. Vertical ticks represent censoring events.

The X and Y axes represent follow-up time in months and the

percentage of survival, respectively. The associated log-rank p-

value is 5.949707e-04.

(PDF)

Figure S11 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of C6orf141. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 8.628732e-03.

(PDF)

Figure S12 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of CTD-2526A2.1. Expression groups

with less than 20 patients are omitted. Vertical ticks represent

censoring events. The X and Y axes represent follow-up time in

months and the percentage of survival, respectively. The

associated log-rank p-value is 3.254192e-03.

(PDF)

Figure S13 Kaplan-Meier survival plot comparing TCGA patients

with overexpression (denoted 1), neutral expression (0) or under-

expression (21) of PVR. Expression groups with less than 20 patients

are omitted. Vertical ticks represent censoring events. The X and Y

axes represent follow-up time in months and the percentage of survival,

respectively. The associated log-rank p-value is 5.386878e-03.

(PDF)

Figure S14 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of ASPHD1. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 2.920611e-03.

(PDF)

Figure S15 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of USP36. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 3.151684e-03.

(PDF)

Figure S16 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of ADPRHL2. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 9.95715e-03.

(PDF)

Figure S17 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of UBE2J2. Expression groups with less

than 20 patients are omitted. Vertical ticks represent censoring

events. The X and Y axes represent follow-up time in months and

the percentage of survival, respectively. The associated log-rank p-

value is 1.76163e-03.

(PDF)

Figure S18 Kaplan-Meier survival plot comparing TCGA

patients with overexpression (denoted 1), neutral expression (0)

or underexpression (21) of ELF1. Expression groups with less than

20 patients are omitted. Vertical ticks represent censoring events.

The X and Y axes represent follow-up time in months and the

percentage of survival, respectively. The associated log-rank p-

value is 1.453872e-03.

(PDF)

Figure S19 Kaplan-Meier survival plot comparing TCGA patients

with overexpression (denoted 1), neutral expression (0) or under-
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expression (21) of PMP22. Expression groups with less than 20 patients

are omitted. Vertical ticks represent censoring events. The X and Y

axes represent follow-up time in months and the percentage of survival,

respectively. The associated log-rank p-value is 6.4615e-03.

(PDF)

Figure S20 PolII elongation speed lower bound estimates

compared to gene lengths. The gene set includes induced and

repressed estradiol early response genes. Genes are colored

accoring to the time point by which the leading or lagging end

reaches the 39 end; 80 minute time point includes genes for which

the transition remains incomplete. For gene length, transcribed

region lengths are used when this estimate is available; otherwise,

lengths obtained from Ensembl are used.

(PDF)

Figure S21 Short read counts of CCND1 in the GRO-seq

experiments of [24], based on the Wiggle files in that publication.

The screenshot is taken using IGV [38].

(PNG)

Figure S22 Short read counts of XBP1 in the GRO-seq

experiments of [24], based on the Wiggle files in that publication.

The screenshot is taken using IGV [38].

(PNG)

Figure S23 Venn diagrams for ER responsive gene set intersec-

tions. Each number denotes the number of genes in the intersection.

Data for the three external gene sets are from ERGDB [26],

ERTargetDB [27] and Cicatiello et al. [28] (denoted Cic10; blue).

(PDF)

Figure S24 Kaplan-Meier survival plot comparing patients from

[30] having above or below median expression of ATAD3B.

Vertical ticks represent censoring events. Log-rank probability

measure for the equality of these curves is 3.618236e-02.

(PDF)

Figure S25 Kaplan-Meier survival plot comparing patients from

[31] having above or below median expression of ATAD3B.

Vertical ticks represent censoring events. Log-rank probability

measure for the equality of these curves is 1.418654e-02.

(PDF)

Table S1 Survival-associated genes in the TCGA cohort

predicted to respond to estradiol stimulus by SPINLONG.

(PDF)

Table S2 Gene Ontology enrichment for induced genes with an

ERa binding site.

(PDF)

Table S3 Gene Ontology enrichment for induced genes without

an ERa binding site.

(PDF)
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