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Abstract

Background: Endochondral ossification, the process through which long bones are formed, involves chondrocyte
proliferation and hypertrophic differentiation in the cartilage growth plate. In a previous publication we showed that
pharmacological inhibition of the PI3K signaling pathway results in reduced endochondral bone growth, and in particular,
shortening of the hypertrophic zone in a tibia organ culture system. In this current study we aimed to investigate targets of
the PI3K signaling pathway in hypertrophic chondrocytes.

Methodology/Principal Findings: Through the intersection of two different microarray analyses methods (classical single
gene analysis and GSEA) and two different chondrocyte differentiation systems (primary chondrocytes treated with a
pharmacological inhibitor of PI3K and microdissected growth plates), we were able to identify a high number of genes
grouped in GSEA functional categories regulated by the PI3K signaling pathway. Genes such as Phlda2 and F13a1 were
down-regulated upon PI3K inhibition and showed increased expression in the hypertrophic zone compared to the
proliferative/resting zone of the growth plate. In contrast, other genes including Nr4a1 and Adamts5 were up-regulated
upon PI3K inhibition and showed reduced expression in the hypertrophic zone. Regulation of these genes by PI3K signaling
was confirmed by quantitative RT-PCR. We focused on F13a1 as an interesting target because of its known role in
chondrocyte hypertrophy and osteoarthritis. Mouse E15.5 tibiae cultured with LY294002 (PI3K inhibitor) for 6 days showed
decreased expression of factor XIIIa in the hypertrophic zone compared to control cultures.

Conclusions/Significance: Discovering targets of signaling pathways in hypertrophic chondrocytes could lead to targeted
therapy in osteoarthritis and a better understanding of the cartilage environment for tissue engineering.
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Introduction

PI3Ks phosphorylate the 39-OH position of the inositol ring of

inositol phospholipids, producing three lipid products: PtdIns(3)P,

PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3). These lipids bind to the

pleckstrin homology (PH) domains of proteins such as PKB (Akt)

and control the activity and subcellular localisation of a diverse

array of signal transduction molecules [1]. Akt is a serine-

threonine kinase and is one of the main targets positively regulated

by PI3K. It transduces signals from numerous extracellular stimuli

and controls processes such as glucose metabolism, cell cycle

progression, gene expression, protein synthesis and cell survival in

a wide variety of cell and tissue systems [2,3]. While several

transcription factors are known to be regulated by Akt, including

AP-1, glucocorticoid receptor and E2F [3], our knowledge of the

actual genes controlled by this pathway is relatively limited. Some

of the reported Akt-regulated genes are GLUT-1, PEPCK, VEGF,

Bcl-2 and p27 [3–10].

The PI3K/Akt pathway is generally associated with tissue

growth. We have shown earlier that inhibition of PI3K signaling

results in reduced growth of tibiae [11]. Long bones, such as tibia,

grow and elongate through the process of endochondral

ossification where skeletal elements are first laid down as cartilage

precursors and then this cartilage is replaced by bone [12,13].

During endochondral bone development, the cartilage template is

organized in 4 chondrocyte subpopulations: resting (closest to the

articular end of the bone), proliferative (the next zone towards the

middle of the bone) (which express type II collagen, Sox family

members 5,6,9, etc.), prehypertrophic and hypertrophic (the zones

closer to the mineralized area, which is located in the middle of the

bone) (expressing collagen X, Mmp13, VEGF etc) [14,15].

Hypertrophic chondrocytes are localized between proliferating

cartilage and bone and form an essential functional interface by

facilitating the transition from cartilage to bone and coupling

chondrogenesis to osteogenesis and angiogenesis [16]. Hypertro-

phic chondrocytes express and secrete numerous factors that

contribute to this coupling process such as Bone morphogenetic

proteins (BMPs), Wnts, and Ihh, all of which are important for

osteogenesis, as well as RANKL and VEGF, which promote

osteoclast activation and vascular invasion [16,17].
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Hypertrophic differentiation is not only an essential step in

endochondral ossification, but it also seems to be a pathological

event in early osteoarthritis. For example, it was shown that

formation of very early age-related OA-like lesions in the knee is

accompanied by expression of chondrocyte differentiation-related

genes associated with hypertrophy [18–20].

In a previous publication [11] we showed that Akt is activated in

the prehypertrophic/hypertrophic zone of the growth plate and

that PI3K inhibition reduces hypertrophic differentiation and

longitudinal bone growth. In the current study, we aim to identify

the target genes of the PI3K/ Akt pathway in differentiated

chondrocytes.

Methods

Ethics Statement
All animal studies were approved by the Animal Use

Subcommittee of the Council of Animal Care at the University

at Western Ontario.

Materials
Chemical reagents were purchased from Sigma, unless stated

otherwise. Timed pregnant CD1 mice were purchased from Charles

River Laboratories. Cell culture and organ culture medium

components and general chemicals were purchased from Sigma

and Invitrogen. LY294002 was purchased from Calbiochem.

Antibodies were purchased from Abcam (Factor XIIIa- # ab1834

(AC-1A1)), Sigma (anti b-actin clone AC-15) and Santa Cruz

(Phlda2 (TSSC3 (E-14) - # sc-66298), HRP conjugated goat anti-

mouse - # sc-2005, HRP conjugated donkey anti-goat - # sc-2020)

(HRP conjugated goat anti-mouse - # sc-2005). AEC substrate-

chromogen was purchased from Dako and cocktail protease and

phosphatase solutions for protein harvest from Roche (protease

inhibitor cocktail tablets –complete mini- # 836153001), Sigma

(phosphatase inhibitor cocktail 2 # P5726-5 ml) and Calbiochem

(phosphatase inhibitor cocktail IV # 524628). 10% NuPAGEHBis-

Tris Pre-Cast Gel System from Invitrogen was also used.

Primary Chondrocyte Culture
E15.5 mouse long bones were dissected, enzymatically digested

and the obtained chondrocytes were plated in 6-well NUNC plates

at a density of 2.56105 cells per ml in monolayer and incubated

overnight as described [21]. The following day the cells were

incubated with fresh medium containing either 10 mM LY294002

or DMSO (equal volume) for an additional 24 hours.

Organ Culture and Immunohistochemistry
Tibiae were isolated from E15.5 mice and cultured for 6 days in

serum-free medium containing either DMSO control or

LY294002 inhibitor (10 mM), as described [11]. Medium and

treatments were changed every second day. Immunohistochem-

istry protocols were performed as described [11]. Sections were

incubated in 3% H2O2 for 15 min at room temperature, followed

by incubation in preheated (2 min at 100uC) 10 mM sodium

citrate solution (pH 6.0) for 30 min at 97uC. They were then

blocked with 5% goat serum. Sections were incubated with

0.10 mg/ml factor XIIIa primary antibody over night at 4uC. The

UltraVision LP Large Volume Detection System AP Polymer was

used to recognize the primary antibody according to manufactur-

er’s instructions. After washing, the HRP (horseradish peroxidase)

conjugated polymer complex was visualized by incubation for

,5 min with AEC (3-amino-9-ethylcarbazole) substrate-chromo-

gen; sections were then counterstained with hematoxylin for

30 seconds, washed and mounted. All images were taken at room

temperature with a Retiga EX camera connected to a Leica

DMRA2 microscope. Primary image analyses were performed

using Openlab 4.0.4 and Photoshop software.

Protein Extraction
Protein samples were harvested both from primary monolayer

chondrocytes and from tibial explants. After 24 hours of primary

chondrocyte culture, the medium was replaced with ice-cold PBS;

cells were harvested and then centrifuged for 5 min at 4uC and

1000 X g. The supernatant was removed and samples were

resuspended in ice-cold RIPA lysis buffer containing protease and

phosphatase cocktails and stored at 280uC or immediately used

for western blotting [22].

Protein samples were also isolated directly from tibial explants

after 6 days of incubation with DMSO or 10 mM LY294002. Six

bones were combined from each treatment to obtain better protein

yield. The explants were washed with PBS and then weighed in

order to add a proportional amount of RIPA/cocktail buffer (1 ml

of buffer for 3 g of tissue). The tissue samples were then flash-

frozen and stored at 280uC; they were homogenized and

sonicated before protein quantification with Bicinchoninic Acid

(BCA) assay.

Western Blotting
Western blotting was performed as described [22] with minor

modifications. 20–30 mg of proteins were loaded and size-

fractioned on a 10% NuPAGEHBis-Tris Pre-Cast Gel System,

followed by gel transfer to a nitrocellulose membrane, using the

Invitrogen I-blot system. The membrane was blocked in 5% BSA-

TBST buffer for 1 hour and then incubated with primary antibody

against factor XIIIa, over-night at 4uC. The membrane was

washed in TBST and incubated with 1:3000 goat anti-mouse IgG

–HRP conjugated secondary antibody (Santa Cruz Biotechnology,

Santa Cruz, CA). Signals were visualized using the enhanced

chemiluminescence Advance Western blot detection system

(Amersham Biosciences, Piscataway, NJ) and Alphaimager 2200.

Microarray Analysis of Primary Chondrocytes
All data is MIAME compliant and the raw data has been

deposited in a MIAME compliant database (GEO). Microarray

analysis was performed as described [21–23]. Total RNA was

extracted from cultures treated with DMSO (control) or 10 mM

LY294002 for 24 hours, in 3 independent experiments. The

variability between trials was minimal (Figure S1). RNA quality

and quantity was assessed using the Agilent 2000 Bioanalyzer

system and subsequently hybridized to MOE 430 2.0 mouse chips

from Affymetrix�, as previously described [21,22]. Bioanalyses,

microarray hybridization, scanning and M.A.S. 5.0 normalization

were completed at the London Regional Genomics Facility. Data

were deposited in the GEO database (NCBI Accession number:

Series GSE8488 for the inhibitor microarray data normalized with

GC_RMA algorithm to be used in GSEA analysis; NCBI

Accession number: Series GSE15069 for the inhibitor microarray

data normalized using the M.A.S 5.0. algorithm for single gene

analysis). Following the initial normalization, data was filtered

based on reliable signal using the SG1a-1 script (Signal intensity

filter) from GeneSpring GX 7.3.1. The default settings were

applied: lowest threshold-signal detection intensity = 50; percent-

age of conditions in which a signal has to be higher than threshold

in order to pass = 25%, where the experimental condition is

represented by samples (replicates) grouped together based on

their parameter values (e.g. DMSO treatment condition vs.

LY294002 treatment condition). As a result of this analyses, the

fold changes reported for different genes in the following results

PI3K in Chondrocytes
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section represent an average of the 3 trials. The microarray data

was also normalized using the GC-RMA algorithm in order to

perform GSEA analysis [21].

Microarray Analysis of Microdissected Growth Plate
Microarray analysis was performed as described [21,22]. Total

RNA was extracted from microdissected growth plates from E15.5

mouse tibiae, as described [24], in 3 independent experiments.

The growth plates were manually separated into 3 main zones:

Proliferative/Resting (Zone I), Hypertrophic (Zone II) and

Mineralized (Zone III). RNA extracted separately from each zone

was then hybridized to MOE 430 2.0 mouse chips from

Affymetrix�, as described above. Data normalization was

performed using the GC-RMA algorithm [21]. Data were

deposited in the GEO database (NCBI Accession number: Series

GSE7685). Data filtering was performed as described above.

RNA Isolation and Real-Time RT PCR
RNA was isolated from primary chondrocytes in monolayer

culture after 24-hour incubation with DMSO or 10 mM

LY294002, as previously described [21,22]. Taqman real-time

PCR was performed as described [22,25,26] with primers and

probe sets from Applied Biosystems. Amplified transcripts were

quantified using the standard curve method. Data were normal-

ized to Gapdh (Glyceraldehyde 3-phosphate dehydrogenase)

mRNA levels and represent averages and SE from direct

comparison of LY294002 and DMSO treatments from at least 4

different trials, determined by GraphPad Prism 4 software. The

results are presented as fold change between DMSO and

LY294002 treatments, using DMSO from each trial as reference.

A 2 sample unequal variance t-test was used –with a *p-value ,

0.05 considered significant. The expression of Phlda2 was also

analyzed by real-time PCR using RNA isolated from the 3 growth

plate zones. In this case, One-way analysis of variance with the

Newman-Keuls Multiple Comparison Test was used and a *p-

value ,0.05 was considered significant.

FatiGO Analysis
Gene lists identified by single gene microarray analysis were

compared using the FatiGO web application from BABELO-

MICS v3.1 ([27,28], http://www.babelomics.org). FatiGO asso-

ciates Gene Ontology (GO) terms (functional categories) to a

group of genes with respect to a gene set of reference [27]. The

Biological Process at level 6 was selected for functional annotations

based on the relevance of GO terms at this level for our analyses.

Functional categories were organized based on their adjusted p-

value, corrected for multiple testing.

GSEA Analysis
In addition to the single gene analyses, we used Gene Set

Enrichment Analysis (GSEA) algorithm, which is a microarray

data analysis method that uses predefined gene sets to identify

significant biological changes in microarray data sets [21]. GSEA

is especially useful when the gene expression changes in a given

microarray data set are relatively small [29,30].

In order to implement the GSEA algorithm, data was

normalized by Robust Multichip Analysis using RMAEXPRESS

software v.0.4.1 developed by B. Bolstad, University of California,

Berkeley as previously described [31]. Logarithmically trans-

formed expression values were used to implement GSEA. The

GSEA algorithm was implemented with GSEA v2.0 software

[30,32]. Ranked expression lists were derived from RMAEX-

PRESS and GeneSpring GXH 7.3.1.

Using an a priori defined set of genes (e.g. the C2 and User-

defined (UD) gene sets), the aim of GSEA is to determine if the

members of these gene sets are randomly distributed throughout

the analyzed gene list (e.g. 1.4-fold changes between DMSO and

LY294002) or mostly found at the top or bottom of the list. An

enrichment score (ES) was calculated for each of these gene sets

and it reflects the degree to which a gene set is overrepresented at

the extremes (top or bottom) of the entire gene list [30]. ES was

normalized for each gene set to account for differences in gene set

size, yielding a normalized enrichment score (NES). The false

discovery rate (FDR) corresponding to each NES was then

calculated [30]. For further analyses we used the gene sets meeting

these cut-off requirements: false discovery rate (FDR) ,25% and

p-value ,0.05. Enriched gene sets were identified in both

LY294002 and vehicle (DMSO) data. If a high number of

functional categories had FDR above 25% cut-off, then the top 20

gene sets were selected for further analysis.

User Defined (UD) Gene Sets
UD Gene sets were generated by us using the probe set search

tool and the molecular function class of Gene Ontology annotations

from GeneSpring GX 7.3.1., as described [21]. Probe set

redundancy was eliminated in all gene sets using the CollapseDa-

taset function in GSEA. All probe set identifiers were converted to

the Human Genome Organization (HUGO) annotations, and

probe sets lacking corresponding HUGO annotations were

excluded. A total of 90 user-defined gene sets were generated.

Gene Sets from the Molecular Signature Database
To provide an additional set of functional categories, we used

GSEA in combination with C2 gene sets from the GSEA

Molecular Signature Database (MgSigDB), as described (James et

al, PLoSONE, accepted December 15th, 2009). The C2 data base

is represented by a collection of gene sets containing information

about specific biological processes, metabolic and signaling

pathways, chemical and genetic perturbations, disease phenotype

and animal models and also gene sets from the biomedical

literature. At the time of the analyses, C2 was comprised of 1137

gene sets. The gene sets from the C2 data base are separated in 2

categories: CP canonical pathways- canonical representations of

biological processes compiled by domain experts) and CGP

(chemical and genetic perturbations- gene set representing genes

induced or repressed by the perturbation) (http://www.broad.mit.

edu/gsea/msigdb/collections.jsp#C2).

Results

Genes Differentially Regulated between DMSO and
LY294002 Treatments

We performed microarray analyses to identify genes regulated

by the PI3K/Akt pathway in primary chondrocytes. We first

filtered the gene list generated with Gene Spring GX 7.3.1 based

on fold change between the DMSO and LY294002 treatments.

The starting gene list for the fold change filter was represented by

probe sets showing a reliable signal. A number of 5035 probe sets

was changed at least 1.4-fold between the 2 conditions (DMSO

and LY294002). 2703 probe sets were at least 1.4-fold up-

regulated under PI3K inhibition with LY294002 while 2332 genes

were at least 1.4-fold down-regulated by LY294002. Progressively,

416, 9 and 1 genes were 2-, 5- and 7-fold up-regulated by

LY294002, respectively, and 596, 14, 1 genes were 2-, 5-, 7-fold

down-regulated by LY294002 (Table 1). Overall the gene

expression changes were modest under PI3K inhibition with most

of the differentially expressed genes being located in the , 2-fold

PI3K in Chondrocytes
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change category; this finding is not unusual for the PI3K pathway

as other authors noticed similar patterns in previous publications

[3,7]. This is one of the reasons we used the 1.4-fold change cut-

off, in addition to previous observations from our published

microarray data, showing that numerous markers of chondrocyte

differentiation and targets of our studied signaling pathways had

less than 1.5-fold change in gene expression between experimental

conditions [21].

Intersection between Genes Up-Regulated in Zone II and
Down-Regulated by LY294002 (List #1)

The main focus of this study was to identify targets of the PI3K

pathway in chondrocyte differentiation. Therefore we intersected

the genes at least 1.4-fold up-regulated in zone II (hypertrophic

zone) compared to zone I (proliferative/resting zone) (James et al,

PLoSONE, accepted December 15th, 2009.) with the genes at least

1.4-fold down-regulated by LY294002, as potential genes up-

regulated by PI3K signaling under physiological conditions. As

before, the initial gene set for this experiment was a gene list

filtered on the reliable signal. This resulted in the identification of

371 shared genes: both up-regulated during the chondrocyte

hypertrophy and down-regulated upon PI3K inhibition (Figure 1B;

Figure 2 - #1). Considering that filtering the gene lists on both

statistical significance and reliable signal might be too stringent for

all the intersections, we decided to use only the reliable signal as

the filter for the intersected gene lists.

Intersection between Genes 1.4-Fold Up-Regulated in
Zone II and 1.4-Fold Up-Regulated by LY294002 (List #2)

The probe sets up-regulated in Zone II were also compared to

the genes up-regulated by LY294002. 297 probe sets were both

1.4-fold up-regulated in zone II and 1.4-fold up-regulated in the

LY294002 treatment (Figure 2 - #2). These genes were both up-

regulated in differentiated chondrocytes and up-regulated upon

PI3K inhibition with LY294002, opposite to the genes from the

previous results section that were down-regulated by LY294002.

Therefore, these genes appear to be down-regulated by PI3K

during chondrocyte hypertrophy.

FatiGO Functional Enrichment Identified Metabolic
Categories Associated with List #1

We compared the genes from List #1 and List #2 in order to

observe which class of genes up-regulated in zone II were down- or

up-regulated by LY294002. The previous results have shown that

a considerable number of probe sets (297) were up-regulated by

LY294002 during chondrocyte differentiation; therefore not all

probe sets associated with hypertrophy are also down-regulated by

LY294002. We wanted to investigate in more detail which specific

biological categories associated with chondrocyte differentiation

were also down-regulated by PI3K inhibition.

We observed that a number of metabolic processes from GO

Biological Process analysis was associated with List #1. Here we

only present the most significant five Biological processes. The first

two categories identified by GO biological process at level 6 are

Table 1. Number of genes differentially regulated between
DMSO and LY294002 treatments.

Fold
change

DMSO vs.
LY294002 (Total)

DMSO.

LY294002
LY294002.

DMSO

1.4 5035 2332 2703

2 1012 596 416

5 23 14 9

7 2 1 1

10 0 0 0

doi:10.1371/journal.pone.0008866.t001

Figure 1. Intersection between genes differentially regulated
in DMSO and LY294002 treatments and genes differentially
expressed between zone II and zone I. (A) Schematic of the growth
plate dissection used for the microdissected growth plate microarray
analysis. (B) Intersection between genes up-regulated in zone II and
down-regulated in LY294002 Genes 1.4 fold up-regulated in Zone II
compared to Zone I (James et al, in revision) were intersected with
genes 1.4 fold down-regulated by LY294002. 371 shared genes were
identified. (C) Intersection between genes down-regulated in zone II
and up-regulated in LY294002.Gene lists up-regulated by LY294002
were intersected with gene lists down-regulated in zone II. 912 probe
sets were common to both categories. (D) Expression pattern of
selected genes through out the growth plate. Adamts5 and Nr4a1 are
both decreased in zone II compared to I and III. Phlda2 is highly
increased in zone II compared to I and III. F13a1 shows increased levels
of expression from zone I to zone III.
doi:10.1371/journal.pone.0008866.g001
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represented by ‘‘steroid metabolic process’’ and ‘‘lipid biosynthetic

process’’ (Figure 2). 9.27% of the genes in List #1 are represented

in the ‘‘steroid metabolic process’’ and 11.22% in the ‘‘lipid

biosynthetic process’’. The ‘‘Translation’’ category was also highly

associated with List #1 (8.78% of the genes in List #1).

Intersection between Genes Down-Regulated in Zone II
and Up-Regulated by LY294002

Similar to the previous analysis, gene lists up-regulated by

LY294002 were intersected with gene lists down-regulated in zone

II, as potential gene targets down-regulated by PI3K activity under

normal conditions and with a role in earlier stages of chondrocyte

differentiation. 912 probe sets were common to both categories

(Figure 1C).

Gene Set Categories from C2 and UD Databases Enriched
in DMSO or LY294002 Conditions

As described in the Methods section, in addition to the single

gene analyses we used the GSEA algorithm, which is a

microarray data analysis method that uses predefined gene sets

and ranks of genes to identify significant biological changes in

microarray data sets [21]. After performing the GSEA

algorithm in association with the UD and C2 data sets, we

found a number of functional categories enriched in either one

of the 2 analyzed conditions, DMSO (Table 2, Table S1) and

LY294002 (Table S2, S3). The gene sets are organized in tables

based on their NES. UD gene sets were found to be associated

either with the control condition or the LY294002 treatment.

Some examples of the genes sets enriched in the LY294002

phenotype are: Cartilage, TGFB, Adipose, Wnt3, ECM, while

sets enriched in the DMSO phenotype include Sugar__bind,

Structure, Interleukin-related, Hormone, Blood and
Metabolism. The complete explanation of the C2 categories

names can be found in the supplementary tables S1 and S2.

Among the C2 gene sets, Adip__diff__cluster2, St__Wnt__Beta__
Catenin__Pathway, Vegf__Huvec__30min__up are associated

with the LY294002 treatment and Cholesterol__Biosynthesis,

IGF__vs__Pdgf__Up, Human__Tissue__Placenta are associated

with DMSO.

Figure 2. Functional categories identified by GO Biological Process associated with List #1 or with List #2. Functional categories
identified from GO biological process at level 6 were presented in the order of the adjusted p-value. The first two categories identified were mostly
associated with List #1 (genes both up-regulated in zone II and down-regulated by LY294002) and were represented by ‘‘steroid metabolic process’’
and ‘‘lipid biosynthetic process’’. The ‘‘Translation’’ category was also highly associated with List #1. In contrast, 11.19% of genes in List #2 (genes
both up-regulated in zone II and up-regulated by LY294002) were found in the ‘‘skeletal development’’ class. The percentage with term column
represents the percentage of the number of genes in each particular list (List #1 top red: List #2 bottom blue) related to the total number of genes
with annotations in both lists.
doi:10.1371/journal.pone.0008866.g002
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Intersection of Single Gene Analyses and GSEA
The GSEA functional categories obtained from the previous

analysis were then intersected with genes differentially regulated

between DMSO and LY294002 treatments from the single gene

analysis array data. We intersected the gene sets associated with

the DMSO phenotype from the C2 and UD categories with genes

1.4-fold down-regulated in LY294002 treatment (Table S4, S5,

Column A). Similarly we intersected gene sets associated with the

LY294002 phenotype with genes 1.4-fold up-regulated in the

LY294002 treatment (Tables S6, S7, Column A).

Intersection of Genes in GSEA Categories, 1.4-Fold Down-
Regulated by LY294002 Treatment and 1.4-Fold Up-
Regulated in Zone II Compared to Zone I

Genes obtained from the intersection of the GSEA C2 or UD

categories with genes 1.4-fold down-regulated by LY294002 were

further intersected with genes up-regulated in the hypertrophic

zone (Zone II) (Table S4, S5, column B). From the final

intersection we selected specific genes for confirmation, based on

their identification in multiple C2 or UD categories and

information from the literature. F13a1 (coagulation factor XIII,

A1 subunit) was identified in both C2 and UD categories: in C2

Carries__Pulp__High__Up and Stossi__Er__Up and in UD

Blood and is 2-fold decreased in LY294002 compared to DMSO

(Table S4, S5). In addition, factor XIIIa has already been

implicated in chondrocyte hypertrophy [33], making it an

interesting candidate for further investigation. Phlda2 (pleckstrin

homology-like domain, family A, member 2) was identified in C2

Nakajima__Mcsmbp__Mast and Human__Tissue__Placenta
and is largely decreased in LY294002 (8-fold) compared to DMSO

(Table S4, S5). Phlda2 is also substantially increased in zone II

compared to I (,8-fold). There is no information on the role of

Phlda2 in bone growth and our study identified this gene as a

novel marker of chondrocyte hypertrophy. Phlda2 is known to be

involved in placental growth regulation and contains a PH domain

[34,35].

Intersection of Genes in GSEA Categories, 1.4-Fold Up-
Regulated by LY294002 Treatment and 1.4-Fold Down-
Regulated in Zone II Compared to I

Similar to the previous section, genes obtained from the

intersection of C2 or UD categories with genes 1.4-fold up-

regulated in LY294002 treatment were further intersected with

genes down-regulated in zone II of the growth plate compared to

zone I (Table S6, S7, column B). Nr4a1 and Adamts5 were selected

from the resulting gene list for further analyses. Nr4a1 (nuclear

receptor subfamily 4, group A, member 1) was 2.7-fold up-

regulated in LY294002 (Table S6, S7) and identified in

C2 AD12__Any__DN, AD12__24 hrs__DN and Vegf__Huvec__
30 min__UP and UD 2__DNAbind and Nucleus__2. It is also 2-

fold decreased in zone II compared to I. Nr4a1 (also known as

Nur77) is an orphan member of the nuclear receptor superfamily

and exerts opposing biological effects: proliferation, survival and

death after induction by extracellular stimuli. The mitogenic

activity of Nr4a1 requires DNA binding and translocation to the

nucleus [36]. It was suggested that Akt plays a positive a role in the

translocation of Nr4a1 from the nucleus to cytoplasm in

HEK293T cells [36] and that PI3K inhibition might be related

to Nur77 activation leading to apoptosis in HepG2 cells [37]. Our

data suggest that there is also regulation at transcriptional level. All

these findings make Nr4a1 a potential candidate as a target of the

PI3K/Akt pathway in growth plate. Adamts5 (a disintegrin-like and

metallopeptidase (reprolysin type) with thrombospondin type 1

motif, 5 (aggrecanase-2)) was found in UD Adipose, ECM and

Integrin__rel and is 4.7-fold down-regulated in zone II compared

to I. It is also 1.45-fold up-regulated in response to LY294002

treatment (Table S7). Adamts5 is mostly studied in connection

with osteoarthritis and in articular cartilage due to the observation

that Adamts52/2 mice are protected from cartilage degradation in

a model of osteoarthritis [38].

Pattern of Expression of Selected Genes Throughout the
Growth Plate

As shown in previous publications from our laboratory, well

known chondrocyte differentiation markers, such as Col10a1,

Mmp13, Ibsp and Sox family members, show the expected

expression pattern over the 3 zones in the growth plate

microdissection system [24] (James et al, PLoSONE, accepted

December 15th, 2009.). The expression of the above selected genes

was analyzed throughout the growth plate. Adamts5 and Nr4a1 are

Table 2. User defined (UD) gene sets enriched in DMSO.

NAME
SIZE of
gene set ES NES

NOM
p-val

FDR
q-val

SUGAR_BIND 104 0.423 1.858 0.0004 0.014

MUSCLE 198 0.352 1.724 0.0004 0.030

STRUCTURE 151 0.351 1.653 0.0004 0.042

INTERLEUKINRELATED 175 0.343 1.650 ,0.0001 0.032

HORMONE 75 0.388 1.626 0.0048 0.032

GLUCONEOGEN 31 0.461 1.581 0.0206 0.040

TNF_RECEPTOR 69 0.368 1.508 0.0134 0.064

BLOOD 111 0.326 1.451 0.0117 0.089

CATALYTIC 245 0.274 1.378 0.0059 0.135

PROTEASE_1 269 0.264 1.345 0.0105 0.155

CHEMOKINE 31 0.383 1.335 0.0990 0.151

CYTOKINE 127 0.286 1.308 0.0522 0.166

METABOLISM 196 0.257 1.256 0.0597 0.220

PROTEASE_2 268 0.240 1.219 0.0615 0.261

HEPARIN BIND 37 0.325 1.163 0.2339 0.350

WNT_2 19 0.381 1.159 0.2661 0.336

RGS_RELATED 44 0.312 1.157 0.2326 0.319

NEG_APOPTOSIS 50 0.295 1.119 0.2777 0.382

HEPATOCYTE 19 0.346 1.040 0.3997 0.576

ERK_RELATED 40 0.284 1.039 0.3946 0.548

PHOSPHATASE 473 0.187 1.010 0.4053 0.614

CYTOPLASM 411 0.186 0.991 0.4841 0.644

POS_APOPTOSIS 79 0.234 0.984 0.4839 0.637

ACTIN_CYTOSKEL 38 0.265 0.960 0.5223 0.685

DUSP 20 0.311 0.946 0.5225 0.701

MEMBRANE 260 0.176 0.893 0.7874 0.824

ANGIOGEN 57 0.225 0.885 0.6628 0.813

LIVER_2 260 0.173 0.876 0.8444 0.804

OBL_OCLAST 16 0.246 0.710 0.8549 0.987

APOPTOSIS 39 0.187 0.680 0.9331 0.969

ES, enrichment score.
NES, normalized enrichment score.
NOM p-val, the uncorrected p-value.
FDR q-val, false discovery rate and multiple testing corrections (q-value).
doi:10.1371/journal.pone.0008866.t002

PI3K in Chondrocytes

PLoS ONE | www.plosone.org 6 January 2010 | Volume 5 | Issue 1 | e8866



both decreased in zone II compared to I and III (Figure 1C).

While Phlda2 shows substantial increased expression in zone II

compared to the other two zones, F13a1 is also up-regulated in

zone III compared to zone II, maintaining high levels of

expression in terminal differentiated chondrocytes. Interestingly,

F13a1 shows a similar pattern of expression as genes with an

important role in terminal chondrocyte differentiation, such as

Col10a1, Ibsp and Mmp13 (Figure 1C, James et al, PLoSONE,

accepted December 15th, 2009

Confirmation of Array Data by Real-Time PCR
A set of genes was chosen for the real-time validation of the

microarray data. Expression of F13a1 and Phlda2, chosen as target

genes of PI3K in hypertrophic chondrocyte differentiation, were

confirmed by real-time RT PCR. These genes showed a similar

trend and fold change compared to the microarray data: F13a1

(Figure 3E) and Phlda2 (Figure 3F) were 1.65- and 5-fold down-

regulated by LY294002. In contrast, Nr4a1 (Figure 3H) and

Adamts5 (Figure 3G) were 1.9- and 1.65-fold up-regulated

by LY294002, again validating the trends observed in our

microarrays.

Decreased Levels of Factor XIIIa in the Tibial Growth Plate
under PI3K Inhibition

The expression pattern of factor XIIIa has already been

analyzed in mammalian and avian growth plates [33,39,40] and

was shown to be increased in hypertrophic chondrocytes and areas

of mineralization. Factor XIIIa levels are also increased in

Figure 3. Real-time RT PCR confirmation of selected genes: F13a1, Nr4a1, Adamts5, Phlda2. Real-time PCR demonstrates that relative
transcript levels for F13a1 and Phlda2 were decreased in LY294002 treatment after 24 hours while Adamts5 and Nr4a1 transcripts were increased in
response to LY294002. Data were normalized to Gapdh (Glyceraldehyde 3-phosphate dehydrogenase) mRNA levels. The results represent average
fold change between DMSO and LY294002 treatments from 4 independent trials (n = 4). T-test -2 sample unequal variance was used and a *p-value ,
0.05 was considered significant.
doi:10.1371/journal.pone.0008866.g003
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osteoarthritic articular cartilage compared to age-matched normal

articular cartilage [39]. For these reasons, we decided to follow up

on factor XIIIa as an interesting target of the PI3K pathway in

differentiated chondrocytes. To examine regulation of the

corresponding protein in the authentic three-dimensional context

of the intact growth plate, we cultured E15.5 mouse tibiae for 6

days in the presence of DMSO or 10 mM LY294002 and

processed them for immunohistochemistry (Figure 4A). The

F13a1 microarray expression pattern in the growth plate was

confirmed at the protein level, with increased levels in the

hypertrophic zone (Zone II) compared to the resting/proliferating

zone (Zone I) and the maintenance of this expression in the

mineralized area (Zone III), adding confidence to the results of the

microarray data analysis (Figure 1C). Protein levels of factor XIIIa

were markedly decreased in the LY294002-treated tibiae com-

pared to the DMSO control (Figure 4A). Factor XIIIa expression

levels were also quantified by western blotting in both primary cell

chondrocyte monolayer cultures and tibia organ cultures

(Figure 4B), showing that LY294002 treatment results in decreased

factor XIIIa protein levels. Interestingly, the factor XIIIa protein

size identified in our system was 37 kDa, which was also identified

as the cell and tissue specific form of factor XIIIa in chondrocyte

and osteoblast cultures, bone tissue and macrophages [41].

Increased Expression of Phlda2 in Zone II
The microarray expression pattern of Phlda2 was confirmed by

real-time PCR. Phlda2 was highly expressed in the prehyper-

trophic/hypertrophic growth plate zone (Zone II) (Figure 5A). The

expression pattern in the growth plate was also confirmed by

immunohistochemistry (Figure 5B, C).

Discussion

We have identified that the PI3K/Akt pathway plays a role in

hypertrophic chondrocyte differentiation in a previous publication

[11]. Here we present a model of target screening in hypertrophic

chondrocytes by comparing two different microarray systems, one

of primary chondrocytes treated with an inhibitor of the PI3K/Akt

pathway and the other one of microdissected growth plate

chondrocytes. By intersecting data obtained from these two

systems, we identified possible targets of the PI3K/Akt pathway

in hypertrophic chondrocyte differentiation.

One of the microarray systems used in this study was represented

by the comparison of gene expression in primary chondrocytes

isolated from E15.5 mouse long bones treated with the PI3K

inhibitor LY294002 or DMSO. Most of the genes differentially

regulated between the two treatments showed less than 1.4-fold

changes, suggesting that interfering with the PI3K regulation results

in small changes in gene expression, as also reported in previous

publications [3,7]. Considering these subtle changes in gene

expression, we performed additional microarray data analysis to

increase the probability of finding biologically significant targets. For

example, subtle changes in the expression of multiple genes involved

in the same biological process could still have biologically

meaningful consequences, even if changes appear minimal when

looking at individual genes. Therefore we implemented GSEA

analysis, which was created for data sets showing small changes in

gene expression. This method allows for analysis of gene sets

grouped in functional categories associated with LY294002

treatment or control phenotypes. These gene sets were then

intersected with genes 1.4-fold differentially regulated between

DMSO and LY294002 treatments. The resulting genes from this

intersection were further intersected with genes differentially

expressed between two zones of the microdissected growth plate:

zone I and II. The starting gene lists for these intersections were

represented by the reliable signal and not the statistical analysis and

reliable signal, as used before in other microarray data analyses from

our laboratory [21,22]. This approach was taken due to the

multistep process for data analyses in which t-test analyses might be

too stringent, eliminating biologically significant data.

We hypothesized that our dual approach of single gene analysis

and GSEA algorithm generates highly relevant biological targets

of the PI3K/Akt pathway in hypertrophic chondrocytes. The gene

set 1.4-fold down-regulated in LY294002 was intersected with

gene sets enriched in DMSO phenotype from the UD and C2 data

bases. The resulted gene sets were then intersected with genes up-

regulated in zone II compared to I (1.4-fold I , II). Using this

approach, we aimed to identify genes up-regulated by the PI3K/

Akt pathway under physiological conditions in hypertrophic

chondrocytes compared to proliferative/resting chondrocytes.

The same approach was also used to intersect genes down-

regulated by the PI3K/Akt pathway (1.4-fold up-regulated by

LY294002), enriched in the LY294002 phenotype in the GSEA

analysis and up-regulated in zone I compared to II (1.4-fold I .

II). However, the focus of our analysis was on the first intersection,

as the major effects of the PI3K/Akt pathway were identified in

Figure 4. Decreased factor XIIIa protein levels in the tibial
growth plate under PI3K inhibition. (A) E15.5 mouse tibiae
cultured for 6 days in the presence of DMSO or 10 mM LY294002 were
processed for immunohistochemistry. Protein levels of factor XIIIa were
decreased in the LY294002-treated growth plates compared to the
DMSO control, as shown by the red-brown stain (arrows). (B) Factor XIIIa
protein levels were also analyzed by western blotting in both primary
cell chondrocyte monolayer cultures after 24 hours and tibiae grown
for six days in organ culture, showing decreased factor XIIIa protein
levels under PI3K inhibition.
doi:10.1371/journal.pone.0008866.g004
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the hypertrophic zone [11]. Among the genes found in this

category, Phlda2 and F13a1 were also confirmed by real-time RT-

PCR. Factor XIIIa was found mostly intracellular in the

prehypertrophic-hypertrophic and mineralized areas, confirming

the microdissection microarray data. Factor XIIIa protein levels

decreased significantly upon PI3K inhibition, as noticed both in

the immunohistochemistry and western-blotting experiments. The

expression of factor XIIIa was also decreased in western blots from

monolayer and organ cultures, suggesting that our monolayer

microarray results are reflective of gene expression changes

occurring in the authentic three-dimensional context of the growth

plate. The size of the factor XIIIa protein identified in our cultures

was 37 kDa, which has been shown to be specific for cartilage/

bone tissues and macrophages and is an intracellular form of factor

XIIIa [41]. The factor XIIIa was also identified as having a role in

osteoarthritis [39], being associated with hypertrophic-like cells. In

future experiments it would be of value to test the effects of the

PI3K/Akt inhibition on the factor XIIIa in osteoarthritis models.

Considering the toxic effects of the LY294002 and the lack of

other non-toxic specific PI3K inhibitors for the moment, the

system in which this experiment could be performed is an organ

culture model of cartilage degradation.

In addition, we identified Phlda2 as a novel marker

for hypertrophic chondrocytes, showing high expression in

Figure 5. Increased expression of Phlda2 in the hypertrophic zone. (A) RNA was isolated from the 3 growth plate zones. Real-time PCR
analyses showed increased expression of Phlda2 in Zone II compared to Zone I and III. The lowest levels of expression were observed in zone III (13.6
fold change compared to zone II). The presented results are relative to Gapdh endogenous control; n = 3, *p,0.05. (B) Expression pattern of Phlda2
within the growth plate after 6 days of culture in the presence of DMSO. Immunohistochemistry analysis showed increased expression of Phlda2 in
prehypertrophic/hypertrophic chondrocytes (Zone II) (red-brown stain). (C) The inset shows a higher magnification of Zone II.
doi:10.1371/journal.pone.0008866.g005
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Zone II of the growth plate by both real-time PCR and

immunohistochemistry.

We observed that a high number of genes are both up-

regulated in zone II compared to zone I (therefore associated

with a chondrocyte hypertrophic phenotype) and down-regulat-

ed by LY294002 (371 genes). A large number of genes were also

up-regulated by LY294002 and in zone II (297 genes); therefore

we cannot conclude that the PI3K pathway has a general

stimulatory effect on expression of hypertrophic genes. Interest-

ingly, the genes down-regulated by LY294002, in contrast to the

ones up-regulated by LY294002, were identified by GO

Biological Process analysis as part of a few lipid metabolic

groups. It is known that hypertrophic chondrocytes are highly

metabolically active cells [42,43]. In addition, it was suggested

before that cholesterol signaling stimulates chondrocyte hyper-

trophy [23]. Therefore, even if some genes up-regulated in the

hypertrophic zone are also up-regulated by LY294002, they do

not seem to be associated with the changes in lipid metabolism

during hypertrophy.

In this study we propose a model for identification of PI3K/Akt

signaling pathway targets in the hypertrophic stage of chondrocyte

differentiation. This model could also be expanded to other

pathways and organ systems. Due to the combined microarray

approach, the possibility of identifying biologically significant

targets is high, as demonstrated by our identification of F13a1 as a

target of the PI3K/Akt pathway in hypertrophic chondrocytes and

Phlda2 as a novel hypertrophic marker.

Supporting Information

Figure S1 Heat-maps generated by GSEA analysis. Heat-maps

are shown for GSEA C2 and UD functional categories containing

genes selected for detailed analysis in the manuscript (F13a1,

Phlda2, Nr4a1 and Adamts5). The variability within the DMSO

and LY294002 trials was found to be minimal.

Found at: doi:10.1371/journal.pone.0008866.s001 (1.55 MB TIF)

Table S1 C2 gene sets enriched in DMSO control

Found at: doi:10.1371/journal.pone.0008866.s002 (0.02 MB

XLS)

Table S2 C2 gene sets enriched in LY294002 treatment

Found at: doi:10.1371/journal.pone.0008866.s003 (0.02 MB

XLS)

Table S3 User defined (UD) gene sets enriched in LY294002

treatment

Found at: doi:10.1371/journal.pone.0008866.s004 (0.02 MB

XLS)

Table S4 Genes found in the intersection of 1.4-fold change

I,II and 1.4-fold change D.LY and C2 enriched in DMSO

Found at: doi:10.1371/journal.pone.0008866.s005 (0.03 MB

XLS)

Table S5 Genes found in the intersection of 1.4-fold change

I,II and 1.4-fold change D.LY with UD enriched in DMSO

Found at: doi:10.1371/journal.pone.0008866.s006 (0.03 MB

XLS)

Table S6 Genes found in the intersection of 1.4-fold change

I.II and 1.4-fold change D,LY with C2 enriched in LY294002

Found at: doi:10.1371/journal.pone.0008866.s007 (0.03 MB

XLS)

Table S7 Genes found in the intersection of 1.4-fold change

I.II and 1.4-fold change D,LY and UD enriched in LY294002

Found at: doi:10.1371/journal.pone.0008866.s008 (0.04 MB

XLS)
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