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Abstract
Isotropic chemical shifts measured by solution nuclear magnetic resonance (NMR)

spectroscopy offer extensive insights into protein structure and dynamics. Temper-

ature dependences add a valuable dimension; notably, the temperature dependences

of amide proton chemical shifts are valuable probes of hydrogen bonding,

temperature-dependent loss of structure, and exchange between distinct protein

conformations. Accordingly, their uses include structural analysis of both folded

and disordered proteins, and determination of the effects of mutations, binding, or

solution conditions on protein energetics. Fundamentally, these temperature depen-

dences result from changes in the local magnetic environments of nuclei, but corre-

lations with global thermodynamic parameters measured via calorimetric methods

have been observed. Although the temperature dependences of amide proton and

nitrogen chemical shifts are often well approximated by a linear model, deviations

from linearity are also observed and may be interpreted as evidence of fast

exchange between distinct conformational states. Here, we describe computational

methods, accessible via the Shift-T web server, including an automated tracking

algorithm that propagates initial (single temperature) 1H 15N cross peak assign-

ments to spectra collected over a range of temperatures. Amide proton and nitrogen

temperature coefficients (slopes determined by fitting chemical shift

vs. temperature data to a linear model) are subsequently calculated. Also included

are methods for the detection of systematic, statistically significant deviation from

linearity (curvature) in the temperature dependences of amide proton chemical

shifts. The use and utility of these methods are illustrated by example, and the

Shift-T web server is freely available at http://meieringlab.uwaterloo.ca/shiftt.
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1 | INTRODUCTION

Nuclear magnetic resonance (NMR) chemical shifts are sen-
sitive probes of protein structure and dynamics. Logically,
the determinants of chemical shifts must also be responsible
for temperature dependences thereof; however, these deter-
minants may not all vary with temperature to the same
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coherence spectroscopy; NMR, nuclear magnetic resonance;
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extent. Variable-temperature NMR (VT-NMR) therefore
offers unique insights into the phenomena underlying chemi-
cal shift dispersion in general. VT-NMR may also facilitate
the resolution of peaks that are significantly overlapped, that
is, they may separate due to differing temperature depen-
dences. Here, we focus on the temperature dependences of
amide proton and nitrogen chemical shifts, which may be
easily and inexpensively measured via a series of 1H 15N
heteronuclear single quantum coherence (HSQC) spectra
collected at different temperatures.

Empirically, the temperature dependences of both amide
proton and amide nitrogen chemical shifts are frequently lin-
ear.1 The linear temperature coefficients (i.e., slopes deter-
mined by fitting chemical shift vs. temperature data to a
linear model) of amide protons have been used to probe the
hydrogen bond status of individual amides,2–4 interpreted as
a measure of temperature-dependent loss of structure,1,5–8

and grouped sequentially to distinguish between ordered and
disordered protein regions.7,9–11 To our knowledge, no simi-
larly straightforward interpretations of amide nitrogen tem-
perature coefficients have been proposed,1,12 although the
determinants of amide nitrogen chemical shifts have been
studied in some detail.13–16 Systematic deviations from line-
arity (curvature) are also of great interest, as they may be
interpreted in terms of fast exchange between distinct
conformations,8,17–21 but such curvature is often subtle and
may be difficult to detect and validate.

In the following, we describe algorithms, accessible via
the Shift-T web server (Figure 1), for automated tracking of
1H 15N cross peaks (e.g., from 1H 15N HSQC spectra)
over temperature, decomposition of this motion in the

1H 15N plane into amide proton and nitrogen chemical shift
temperature dependences, and subsequent analysis in terms
of linear temperature coefficients and curvature. Although
not demonstrated here, it may also be feasible to use these
methods to analyze other types of 2D NMR spectra, for
example, 1H 13C HSQC or 1H 1H TOCSY. We illustrate
the utility of these algorithms by applying them to disulfide-
reduced, unmetallated superoxide dismutase 1 (apoSOD12SH)
VT-NMR data. ApoSOD12SH is an immature form of human
Cu, Zn SOD1, various mutants, and maturation states of
which have been implicated in a progressive neurodegenera-
tive disease called familial amyotrophic lateral sclerosis
(fALS).22 Our analysis of this VT-NMR data reveals confor-
mational heterogeneity in the native ensemble and rational-
izes differences in the biophysical characteristics of closely
related variants.

2 | RESULTS AND DISCUSSION

2.1 | Cross peak tracking and temperature
coefficients

In order to combat slow drift in the strength of the field gen-
erated by the electromagnet, modern NMR spectrometers
use a feedback control system (commonly referred to as the
“lock”) that dynamically adjusts the strength of the magnetic
field to maintain the resonant frequency of a particular
nucleus at a fixed offset to the base frequency. In aqueous
solutions such as those suitable for protein NMR, the reso-
nance of deuterium nuclei from D2O/HDO is monitored for
this purpose. The chemical shift of water (including H2O,

FIGURE 1 ShiftTrack job submission via the Shift-T web server: peak lists (one per temperature) and temperature-invariant reference peaks
(e.g., DSS). The Shift-T server can be found at http://meieringlab.uwaterloo.ca/shiftt
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D2O, and HDO) is intrinsically temperature dependent,23,24

but the feedback control system compensates. Thus, the
chemical shift of water appears to be temperature invariant,
while all other peaks shift (because of change in the strength
of the magnetic field) from their “true” positions by an
amount equal to the temperature dependence of water. To
recover 1H and 15N temperature-dependent chemical shifts
unbiased by this “deuterium lock artefact,” spectra must be
referenced to a standard with negligible temperature depen-
dence, for example, 4,4-dimethyl-4-silapentane-1-sulfonic
acid (DSS)24,25 (Figure 2c). In spectra that have not been
referenced to such a standard, the temperature dependence
of water is often the largest contributor to the observed

changes in chemical shifts (Figure 2a). Because the set point
of the spectrometer temperature controller is not a suffi-
ciently accurate measure of the actual temperature, the
chemical shift of DSS (or apparent movement thereof
induced by the deuterium lock artefact) may also be used in
temperature calculations (see the Methods section).

Empirically, movement of cross peaks in the 1H 15N
plane is often approximately linear with respect to tempera-
ture, even after referencing all chemical shifts to DSS. How-
ever, prior to such referencing a much greater degree of
regularity is apparent (Figure 2a); as temperature increases,
cross peaks tend to move downfield in both dimensions in a
highly linear fashion. From 1H 15N cross peak coordinates

FIGURE 2 An example of overlaid 1H 15N data from HSQC spectra collected over a range of temperatures (blue: low; red: high).
(a) unreferenced HSQC spectra; the deuterium lock artefact is evident. (b) peaks picked from the indicated region of the 1H 15N plane—line
segments join peaks in a ShiftTrack candidate line, and the search radius for the final point is indicated by the dashed circle (peaks are tracked in
unreferenced spectra in order to take advantage of deuterium lock artefact-induced regularity). (c) HSQC spectra referenced to DSS, showing the
true temperature dependences of amide chemical shifts
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for a given amide, specified at a single temperature, our
ShiftTrack algorithm finds the set of cross peaks (one per
temperature, selected from peaks picked automatically from
unassigned spectra, for example, by TopSpin; see the
Methods section) with the smallest deviation from linearity,
that is, the set for which a simple linear regression gives the
lowest residual sum of squares, subject to a weak constraint
on the spacings between points. We prefer to apply this
algorithm before referencing the spectra to DSS, turning
artefact-induced regularity to our advantage.

ShiftTrack maintains a list of candidate “lines” (sets of
points). As the unassigned peak list from each temperature is
processed, new candidate lines are constructed through
extension of existing candidates by a single point
(Figure 2b). In order to avoid a combinatorial explosion,
new candidates are constructed using only points found
within a user-defined radius of the cross peak from the previ-
ous temperature and filtered to remove candidates with pro-
nounced nonlinearity from consideration. After peak lists
from all temperatures have been processed, the list of candi-
date lines may contain entries with varying numbers of
peaks, for example, if no suitable points with which to
extend a given candidate were found at one or more temper-
atures. Preference is shown for full-length (i.e., one peak per
temperature) solutions. If no full-length solutions below the
residual sum of squares linearity threshold are found, shorter
solutions are considered. If these are also rejected on the
basis of the residual sum of squares linearity criterion, no
solution will be reported for the assignment in question. The
output of ShiftTrack includes plots of chemical shifts versus
temperature, a line determined by simple linear regression,
and regression residuals; these plots, particularly the resid-
uals, facilitate verification of ShiftTrack solutions (Figure 3).
At the discretion of the user, residuals more than two SDs
from the mean (which is typically zero) may be flagged for
manual review.

Amide proton temperature coefficients determined by the
ShiftTrack algorithm for pseudo wild-type (pWT) and H46R
apoSOD12SH are illustrated in Figure 4. Both maturation
state and mutations (such as H46R) of SOD1 have been
associated with the onset and progression of ALS.22 Fully
mature pWT SOD1 (holoSOD1) is an exceptionally thermo-
stable (Tm = 92.0�C)29 homodimeric metalloenzyme, each
153 amino acid subunit of which binds one Cu2+ and one
Zn2+ with very high affinities. Also, the interface between
the immunoglobulin-like β-barrel subunits is stabilized by a
disulfide bond, and the “electrostatic loop” (Loop VII;
Figure 4b) contributes to metal binding and function.30 In
contrast, pWT apoSOD12SH adopts a dynamic, predomi-
nantly monomeric structure with much lower thermostability
(Tm = 47.6�C).31,32

Consistent with this dynamism, we find that the
magnitudes of pWT apoSOD12SH temperature coefficients
(Figure 4a) are frequently greater than those of
corresponding pWT holoSOD1 residues,8 indicating that the
magnetic environments of the amide protons change more
with temperature. Relative to pWT apoSOD12SH, some
H46R apoSOD12SH temperature coefficients increase, while
others decrease, with the greatest differences concentrated
near the site of mutation and in the electrostatic loop (Loop
VII; Figure 4b). Notably, H46R is an fALS-associated
mutation,22 and despite being more stable than pWT apoS-
OD12SH, H46R apoSOD12SH exhibits increased propensity
to misfold and aggregate.31,33 There is also evidence that the
H46R apoSOD12SH electrostatic loop can participate in aber-
rant, non-native intermolecular interactions33; interestingly,
we show that the magnetic environments of amide protons
in the H46R apoSOD12SH electrostatic loop actually change
less with temperature than the corresponding pWT apoS-
OD12SH protons (Figure 4b), which may further clarify this
possible mechanism of H46R-induced disease.

We previously found that the average of the temperature
coefficients can report on protein global stability changes.8

Here we compare the temperature coefficient averages of
103 amides for pWT and H46R apoSOD12SH, which are
−5.30 ppb/K and − 5.10 ppb/K, respectively. Consistent

FIGURE 3 Chemical shifts (referenced to DSS; open circles,
top) and residuals (filled circles, bottom) illustrating both temperature
coefficient calculation (slope of black line) and curvature detection (red
quadratic). The probability that the linear model is correct (from the
extra sum of squares F test) is reported as p value 1. The probability
that the curvature observed is the result of random errors (from
numerical simulation of residual errors) is reported as p value 2
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with our previous results, the magnitude of the average tem-
perature coefficient of pWT apoSOD12SH (Tm = 47.6�C) is
greater than that of the more stable H46R apoSOD12SH

(Tm = 52.6�C).31 Insight into the molecular basis for global
stabilization of H46R apoSOD12SH relative to pWT

apoSOD12SH is obtained from examination of individual
temperature coefficients; the positively charged guanidinium
group of R46 is situated between the vacant Zn2+ and Cu2+

binding sites in H46R apoSOD12SH 33 where it may electro-
statically stabilize the protein.

FIGURE 4 (a) Amide proton temperature coefficients (determined using chemical shifts referenced to DSS) for pWT apoSOD12SH,
(b) temperature coefficient differences (relative to pWT) resulting from the H46R mutation, and (c) the metal-binding region of apoSOD12SH

showing overlaid H46 (pink) and R46 (purple, semitransparent) side chains. Light gray indicates that data are not available. The monomeric, rather
than dimeric form of apoSOD12SH predominates, but in (a) and (b), we project the data onto a dimeric SOD1 structure (PDB ID: 2AF2)26 with a
semitransparent second subunit in order to illustrate the residues that form the dimer interface and present two views (one rotated � 180� relative to
the other). In holoSOD1 (PDB ID: 1HL5),27 the H46 residue coordinates the Cu2+ ion (orange, semitransparent), while in H46R (PDB ID: 1OZT)
the positively charged guanidinium group of the R46 side chain sits between the vacant Cu2+ and Zn2+ (light gray, semitransparent) binding sites.
Figure prepared using PyMOL28
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2.2 | Detection and statistical validation of
curvature

Although the temperature dependences of amide proton
chemical shifts are predominantly linear, curvature is
not uncommon, and may be attributed to temperature-
dependent shifts in the population of distinct conformational
states.8,17–21 Here, we focus first on strategies for the detec-
tion of curvature, which may be subtle, then on statistical
validation that the curvature detected is likely to result from
changes in the population of conformational states rather
than a confluence of random errors. Collectively, these tests
(which we refer to as Curvalyzer) are designed to be quite
stringent, as detailed later. Temperature-dependent confor-
mational changes that do not result in curvature are possible;
absence of curvature is not particularly informative, there-
fore false negatives are unlikely to lead to incorrect conclu-
sions. In contrast, false positives (inference of curvature
where there is none) may result in serious errors.

Curvalyzer treats curvature detection as a “model selec-
tion” problem. Two nested models are considered for each
set of chemical shift versus temperature data: linear and
quadratic. There is no theoretical reason to believe that
experimentally observed curvature should fit a quadratic
model. However, as expected given our hypothesis that
temperature-dependent shifts in the relative population of
conformational states are causative, curvature generally
manifests as a gentle curve with a single minimum or maxi-
mum (Figure 3); thus, the quality of fit to a quadratic model
is an adequate test of nonlinearity. Unless the temperature
dependence is exactly linear, the quadratic model will have a
lower sum of squared errors; however, if the improvement
(relative to the linear model) is small, it may not be statisti-
cally significant. Curvalyzer uses an extra-sum-of-squares
F test to quantify the statistical significance of the improve-
ment.34 The p value resulting from this F test is reported
(using a significance threshold of 0.01), where the null
hypothesis is that the linear model is correct. To increase the
stringency of this test, we ensure that nonlinearity introduced
by a single outlier (and therefore unlikely to be attributable
to the sampling of distinct conformational states) does not
introduce false positives by requiring that for each set of
points generated by leave-one-out resampling without
replacement (i.e., from a set of amide proton chemical shifts
measured at N different temperatures, N subsets of N−1
points are possible), the quadratic fit must be significantly
better (p value less than .01, per the extra sum of squares
F test) than that of the linear fit in order for the temperature
dependence to be considered curved.

Once the existence of curvature has been established, we
must consider its source. The F test referenced above implic-
itly considers the possibility that deviations from linearity
are caused by errors in the data, but each set (one per amide

proton) of chemical shifts is evaluated separately. For the set
of all chemical shifts (at all temperatures) of amide protons
for which curvature was not detected, we can calculate resid-
uals and use them to better estimate the distribution of
errors. We find that distributions of residuals are bell shaped
with means near zero, but may have heavy tails that indicate
deviation from normality. We therefore fit residuals to a
“t distribution,” which includes the normal distribution as a
special case, but allows for the possibility of heavier tails
(Figure S1).34 Plausible sets of residuals can be simulated by
drawing random values from this fitted distribution; by
doing so many (100000) times, we calculate the probability
of observing curvature (due to random errors) of a given
magnitude. In our analysis of experimentally observed cur-
vature, these probabilities are equivalent to p values (using a
significance threshold of .01) where the null hypothesis is
that the curvature is due to measurement errors rather than
shifts in the population of distinct conformational states.
This statistical test complements the first by screening out
cases where, although curvature was detected, there is a sig-
nificant chance that it is a product of experimental or peak
picking error (e.g., as a result of overlapping peaks).

Curvature detected in the temperature dependences of
pWT apoSOD12SH amide proton chemical shifts is illus-
trated in Figure 5. Consistent with the aforementioned dyna-
mism of apoSOD12SH, curvature is apparent throughout the
protein, including within loops and regions of secondary
structure. Because the VT-NMR data were collected at tem-
peratures at temperatures >10

�
C below the start of the

global unfolding endotherm (measured by differential

FIGURE 5 pWT apoSOD12SH curvature, as determined by
Curvalyzer (using chemical shifts referenced to DSS). Curvature may
be interpreted as evidence of exchange between distinct conformations,
but the absence of curvature does not rule exchange out. The
monomeric, rather than dimeric form of apoSOD12SH predominates,
but here we project the data onto a dimeric SOD1 structure (PDB ID:
2AF2)26 with a semitransparent second subunit in order to illustrate
which residues form the dimer interface and present two views (one
rotated � 180� relative to the other). Figure prepared using PyMOL28
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scanning calorimetry),31 we hypothesize that the distinct
conformations contributing to curvature may be substates
within the apoSOD12SH native ensemble; interestingly, cur-
vature is observed in regions such as the dimer interface and
electrostatic loop that were previously found to have high
mobility by chemical exchange saturation transfer and Carr–
Purcell–Meiboom–Gill relaxation dispersion experiments.32

3 | CONCLUSIONS

Manually tracking 1H 15N cross peak movement with tem-
perature is a relatively straightforward, yet labor-intensive
task. Here, we implement an algorithm that automates the
bulk of this task, freeing the user to focus on ambiguous
cases. We also automate the detection and statistical valida-
tion of curvature, which requires stringent tests in order to
prevent false (curvature) positives. Overall, these methods
form the foundation upon which our analyses of protein VT-
NMR data are built. In general, temperature coefficients
and curvature may report on major loss of structure
(e.g., unfolding), but here we analyze data collected at tem-
peratures well below the onset of global unfolding. The
results of analyses such as these may be widely useful for
the characterization of hydrogen bonding in structured2–4,32

or disordered7,9–11 proteins, and identification of local
changes in energetics associated with protein mutation, mat-
uration, or function.1,8

4 | METHODS

4.1 | Expression and purification

BL21 Escherichia coli cells were transformed with
pHSOD1ASlacIq plasmids35 into which genes encoding
pWT SOD1 (wild-type protein with cysteines 6 and 111 rep-
laced by alanine and serine, respectively22,31,35) or its H46R
variant had been cloned. 15N-labeled protein was prepared
by growing these cells in M9 minimal media with 15NH4Cl
as the sole nitrogen source. Cu,Zn-SOD1 was purified using
a modification of the procedure described by Getzoff et al.35

in which a POROS HP2 hydrophobic interaction column
replaced the diethylaminoethyl column. Subsequently,
disulfide-reduced apo (metal free) SOD1 was prepared as
previously described.31,36

4.2 | NMR sample preparation

Purified 15N-labeled reduced apo SOD1 in buffer-containing
20 mM HEPES pH 7.4, 1 mM tris(2-carboxyethyl)phos-
phine (TCEP), 1 mM DSS, and 90% H2O/10% D2O was
concentrated using an Amicon Ultra-4 centrifugal filter
(EMD Millipore) to � 15 mg/ml.

4.3 | Variable-temperature NMR

Backbone resonance assignments were determined as previ-
ously described.32 Variable-temperature 1H 15N HSQC
(Bruker pulse program “hsqcetfpf3gpsi”37–40) spectra were
acquired using a Bruker AVANCE 600 MHz spectrometer
equipped with a 5-mm triple resonance TXI probe. Amide
proton chemical shifts used for temperature coefficient cal-
culations and curvature analysis were directly referenced to
DSS (i.e., shifted by the same correction required to move
the DSS peak in a 1D 1H spectrum, acquired with appropri-
ate solvent suppression, to 0 ppm), while amide nitrogen
chemical shifts are indirectly referenced to DSS41 using a
15N/1H Ξ ratio of 0.101329118. Nominal temperatures
(Tnom) ranging from 279 K to 305 K (for pWT apoS-
OD12SH) or 283 K to 311 K (for H46R apoSOD12SH) in 2 K
increments were programmed into the temperature controller
via the Bruker TopSpin 1.3 spectrometer control software.
Actual temperatures can be determined from the separation
between “thermometer” resonances, for example, between
H2O and DSS proton chemical shifts (the method used here)
or the chemical shifts of methyl and hydroxyl deuterons in
methanol-d4,24,42 and provided to the Shift-T server. Alter-
natively, if spectra are collected over multiple temperatures
without varying the center frequency, the Shift-T server can
be instructed to calculate temperature differentials from
movement of the DSS peak (due to the deuterium lock arte-
fact described above) and the known temperature depen-
dence of water (−11.9 ppb/K)23 (Equation 1, where Tref is
the reference temperature):

ΔT =
δDSS Tnom½ �−δDSS T ref½ �ð Þ

11:9 ppb=K
: ð1Þ

Data processing, including automatic peak picking (with
parabolic interpolation) from unassigned 1H 15N spectra,
was performed using the Bruker TopSpin 4.0.6 software.
Peak lists were written to comma-separated variable (CSV)
text files. These data were analyzed by the ShiftTrack and
Curvalyzer algorithms via the “Shift-T: Automated
Variable-Temperature Data Analysis” web server (http://
meieringlab.uwaterloo.ca/shiftt).

The ShiftTrack and Curvalyzer algorithms are
implemented in Python, and the source files are freely avail-
able (https://github.com/meiering-lab/Shift-T). The primary
output file format is comma-separated variable (CSV),
which can be edited using a spreadsheet program such as
Microsoft Excel (an example output file is included in
Appendix S1). The first five lines consist of a header speci-
fying the project name, temperature data, and reference
shifts (e.g., DSS). The remainder of the file is in a columnar
format, with user-provided residue names and peak coordi-
nates, amide proton, and nitrogen temperature coefficients
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calculated by linear regression (along with the residual sum
of square errors for each), and both raw (subject to the deute-
rium lock artefact) and re-referenced (e.g., to DSS) chemical
shifts at each temperature.

4.4 | Practical Aspects

Here, we include general recommendations for acquiring
data that are likely to yield easily analyzed results. Two
important considerations are the number of temperatures at
which data are acquired and the temperature range. In princi-
ple, temperature coefficients (linear slopes) can be calculated
using data from as few as two temperatures. However, the
ShiftTrack algorithm will work more reliably with data col-
lected at five or more evenly spaced temperatures, and more
points will yield better linear approximations in the presence
of noise. The server will not currently accept submissions
with data from fewer than four different temperatures.

Curvature detection may be substantially improved by
increasing both the number of temperatures (we recommend
a minimum of eight) and the temperature range. We advo-
cate collecting data over the widest temperature range possi-
ble, given limitations imposed by your equipment (such as
probe, temperature controller, spinner material) and the bio-
physical characteristics of your protein. Unless you wish to
probe thermally unfolded states, it is advisable to select a
temperature range that avoids heat- or cold-induced global
unfolding transitions; such temperature limits can be
established using differential scanning calorimetry.

DSS or an equivalently temperature-invariant standard
for chemical shift referencing can often be added directly to
the sample; however, DSS has been observed to participate
in hydrophobic interactions with proteins.43 If your protein
unfolds (fully or partially) during the course of your experi-
ments or has exposed hydrophobic patches, you may wish to
use a coaxial insert containing DSS instead.
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