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Abstract

The activity of a border ownership selective (BOS) neuron indicates where a foreground

object is located relative to its (classical) receptive field (RF). A population of BOS neurons

thus provides an important component of perceptual grouping, the organization of the visual

scene into objects. In previous theoretical work, it has been suggested that this grouping

mechanism is implemented by a population of dedicated grouping (“G”) cells that integrate

the activity of the distributed feature cells representing an object and, by feedback, modulate

the same cells, thus making them border ownership selective. The feedback modulation by

G cells is thought to also provide the mechanism for object-based attention. A recent model-

ing study showed that modulatory common feedback, implemented by synapses with N-

methyl-D-aspartate (NMDA)-type glutamate receptors, accounts for the experimentally

observed synchrony in spike trains of BOS neurons and the shape of cross-correlations

between them, including its dependence on the attentional state. However, that study was

limited to pairs of BOS neurons with consistent border ownership preferences, defined as

two neurons tuned to respond to the same visual object, in which attention decreases syn-

chrony. But attention has also been shown to increase synchrony in neurons with inconsis-

tent border ownership selectivity. Here we extend the computational model from the

previous study to fully understand these effects of attention. We postulate the existence

of a second type of G-cell that represents spatial attention by modulating the activity of all

BOS cells in a spatially defined area. Simulations of this model show that a combination of

spatial and object-based mechanisms fully accounts for the observed pattern of synchrony

between BOS neurons. Our results suggest that modulatory feedback from G-cells may

underlie both spatial and object-based attention.

Author summary

Vision allows us to make sense out of a very complex signal, the patterns of light rays

reaching our eyes. Two mechanisms are essential for this: perceptual organization which

structures the input into meaningful visual objects, and attention which selects only the
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most important parts in the input. Prior work suggests that both of these mechanisms are

implemented by neurons called grouping cells. These organize the object features into

coherent entities (perceptual grouping) and access them as needed (selective attention).

For technical reasons it is difficult to observe grouping cells but their effect can be seen in

the influence they have on responses of other classes of cells. These responses have been

measured experimentally and it was found that they depend in unexpected ways on where

the subject was attending. Using a computational model, we here demonstrate that the

responses can be understood in terms of the interaction between two kinds of selective

attention, both of which are known to occur in primate perception. One is attention to a

specific area in the environment, the other is to specific objects. A model including both

of these attentional mechanisms generates neuronal responses in agreement with the

observed patterns of neural activity.

Introduction

In this study, we focus on the interplay of two features of intermediate vision. The first is selec-

tive attention which enhances perception of particular sensory stimuli [1–5]. Top-down visual

attention can be categorized into at least three distinct types: spatial, feature-based, and object-

based attention [6–8]. In this study, we focus on spatial and object-based attention. It has been

suggested that these types of attention rely on distinct cortical pathways [9] for enhancing the

related neural responses and for improving the discriminability of visual stimuli [10–12].

The second feature is figure-ground segregation, the integration of visual features into

objects and the segmentation between different objects and the background. This is an impor-

tant step in understanding complex scenes, with images of many objects projected simulta-

neously onto the retinae. It has been proposed that an early step in figure-ground segregation

is to establish on which side of the border of a foreground object (figure) this object is located.

This has been called border ownership since the foreground object, which is closer to the

observer, determines the fate of the border (e.g. when the object is moving) and therefore

“owns” it [13–15].

The majority of neurons in intermediate-level visual area V2 are border ownership selec-

tive, with their responses depending on which side of a border owns the border. These are the

Border Ownership Selective (BOS) neurons [16]. Various characteristics and mechanisms of

BOS neurons have been investigated through physiological methods [17–20], studies of

human perception [21–23] and computational models [24–31]. One computational method

that is designed to draw conclusions on the structure of the neuronal circuitry underlying the

observed activity patterns is the analysis of neuronal correlations. In particular, common input

plays a critical role for inducing synchronized responses between postsynaptic neurons. For

this reason, it is believed that analyses of spike train correlations and spike synchrony between

neurons can provide insights into neuronal connectivity [32–34] (but see ref [35] for a caution-

ary note). Intriguingly, several studies have indicated that common input may modulate the

activities of postsynaptic neurons rather than driving it, i.e. increase its mean firing rate by

itself. For example, modulatory input from higher visual areas increases the firing rates of stri-

ate (V1) and extrastriate (V2) neurons [25, 36] related to top-down attention [37] and figure-

ground segregation [16, 38]. In this case, common input spikes from a higher area may not

evoke action potentials in the target neurons by themselves but will transiently enhance the fir-

ing rate increase that is caused by feedforward input from bottom-up visual stimuli.
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Recently Martin and von der Heydt [39] have physiologically characterized effects of group-

ing structure and attention on spike train correlation between BOS neurons (Fig 1). Building

on previous work [18] that failed to support the “binding-by-synchrony” hypothesis (review:

ref [40]), their work showed that spiking synchrony between neurons depends on their border

ownership selectivity. For pairs of neurons with consistent border ownership preference, stim-

ulation by a common object increased spiking synchrony, but selective attention to the object,

while increasing firing rates, decreased spiking synchrony. A recently proposed computational

model explains both the firing rate changes and synchrony structure in these neurons [41].

The model is based on the assumption that feedback from hypothetical grouping cells (G-cells)

at higher visual areas modulates the activities of BOS neurons. Importantly, the feedback does

not drive the activity of neurons by itself but rather shapes the activity caused by visual input.

The model postulates that this modulatory feedback is implemented by glutamatergic synapses

of the N-methyl-D-aspartate (NMDA) type [42, 43]. Activation of NMDA receptors by itself

does not increase firing rates of postsynaptic neurons substantially, but it increases the effect

of excitatory input from other types of receptors, typically of the glutamatergic α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type.

A second major result of the study by Martin and von der Heydt [39] is that for pairs of

neurons with inconsistent BOS preference, attention to the common object increased spike

synchrony. This observation was not addressed in the computational model proposed in ref.

[41] which focused strictly on consistent neuronal pairs and the paradoxical reduction of syn-

chrony by attention. The main goal of the present study is to understand why attention can

increase synchrony between inconsistent pairs.

As in previous models, we assume that responses of model BOS neurons are modulated by

feedback from G-cells which organize the responses of BOS neurons and mediate top-down

attention [25, 26, 28]. Going beyond earlier work, we assume two distinct classes of G-cells,

one responsible for spatial attention and one for attention to objects (Fig 2). Both classes of G-

cells provide modulatory feedback to BOS neurons via NMDA synapses. Self et al. [42] have

reported that feedforward input to V1 is mainly provided by AMPA type synaptic currents

whereas feedback signals mediated by NMDA synaptic receptor underlie figure-ground mod-

ulation. Herrero et al. [43] showed the importance of NMDA receptors for mediating the feed-

back signals including selective attention. Simulations of the proposed model indicate overall

agreement with responses of BOS neurons as reported by Martin and von der Heydt [39].

These results suggest that feedback signals modulate the responses of feature selective neurons

in lower-level visual areas, and that there are two types of feedback signals, one that serves spa-

tial attention, and another that facilitates object-based attention.

In this study we hypothesize, and we support this hypothesis by computational studies, that

the feedback signals are responsible for the neurophysiologically observed correlation struc-

ture between BOS neurons. All BOS neurons that represent different parts of the same percep-

tual object receive input from those G cells that represent this object. This common input

generates correlation between their spike trains. The situation becomes more complicated,

however, when attention is taken into account. We showed in our previous study [41] the

non-monotonic effect of G-cell firing rates on synchrony between border ownership selective

(BOS) cells (see Fig 4 of [41]). The observed lower correlation between BOS neurons repre-

senting parts of the same object when this object is attended compared to when it is not

attended could then be understood (see Fig 3 of [41]) since the effects of both grouping and

attention to objects modify the firing rates of BOS cells. That study did, however, not deal with

inconsistent BOS cell pairs. In the present report we show that increased synchrony due to

attention can be explained as a consequence of spatial attention, implemented in a separate

class of G cells.
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Results

Model structure

To investigate the neuronal mechanisms of border ownership selectivity in visual cortex, we

study the behavior of our model (Fig 2) with simulated versions of visual input and a simple

model for the animal’s attentional state. Border ownership relations are represented by BOS

neurons, four of which (BOS1
R, BOS1

L, BOS
2
R, BOS2

L) are shown in Fig 2. Their subscripts L and R

indicate their left and right side-of-figure preferences for the stimulus shown, the gray parallel-

ogram. Their retinotopic position is denoted by the superscript “1” for the receptive fields

(RFs) in the left side of the visual field (left ellipses) and “2” for the right side (right ellipses).

Per the definition in Fig 1B, BOS1
R and BOS2

L neurons form a consistent pair, all other neu-

ron pairs are inconsistent. BOS neurons integrate bottom-up input originating in visual sti-

muli and mediated by AMPA-type synapses with top-down modulatory feedback mediated by

NMDA-type synapses. Bottom-up inputs representing visual stimuli to each BOS neuron are

given by independent stochastic processes with Poisson statistics. In our model, the activity of

G-cells represents both the stimulus configuration as well as the attentional state of the animal.

We assume two types of grouping cells as the source of top-down feedback signals. One type

represents object-based grouping (Gobj) cells, which impart the grouping structure and

Fig 1. Pairs of BOS neurons and conditions for visual input and attention (modified from ref [39]). A: Stimulus displays for testing the effects of object

integration and selective attention. Ellipses on the borders of the keystone-like objects represent the receptive fields (RFs) of border ownership selective

(BOS) neurons. In each display, three separate objects are presented. In the left display the RFs of two neurons are on the borders of two different objects

(“unbound” condition). In the middle and right displays the two RFs lie on the borders of the same object (“bound” condition). Note that the visual stimuli

in and around the RFs are identical in all three conditions, but represent parts of two separate objects in the left display and parts of the same object in the

other two displays. In these experiments, the monkey attended one of the objects, as shown by a red star (not part of the display). Such an object is called

“attended” while objects that are not attended are referred to as “ignored.” B: Consistent and inconsistent pairs. Arrows from an RF point toward the

preferred side of the corresponding BOS neuron. Subscripts L and R indicate left and right side-of-figure preferences, respectively, while retinotopic

position is represented by the superscripts “1” and “2”. RFs of neurons whose border ownership preferences are consistent with representing a common

object are connected by black dashed lines (“consistent pairs”), while RFs of neurons with inconsistent preferences are connected by gray dashed lines

(“inconsistent pairs”).

https://doi.org/10.1371/journal.pcbi.1008829.g001

PLOS COMPUTATIONAL BIOLOGY Distinct top-down modulations for spatial and object-based attention

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008829 March 25, 2021 4 / 33

https://doi.org/10.1371/journal.pcbi.1008829.g001
https://doi.org/10.1371/journal.pcbi.1008829


mediate object-based attention. The other type consists of spatial grouping (Gsp) cells, which

implement attention to a purely spatially defined region of the visual field, independent of its

contents. In the example configuration of Fig 2, whereas feedback from G1
obj cells functions as

the common inputs to the BOS1
R and BOS2

L neurons, representing the same object (and there-

fore making the latter a consistent pair), signals from G2
obj and G3

obj are independently given

to BOS1
L and BOS2

R respectively. Additionally, the Gsp cell activates all BOS neurons homo-

geneously, irrespective of their RF location and their border ownership selectivity.

All results of our study are formulated in terms of changes of mean firing rates of BOS neu-

rons and of the spike-spike correlation functions of pairs of BOS neurons. Any pair of BOS

neurons can be in one of four possible states with respect to the activating visual object(s).

These four states are the combinations of two types, bound vs. unbound, and attended vs. not

attended. For the first state, the two members of the BOS neuron pair can represent parts of

the same object, or of different objects. In the first case, the neurons participate in the repre-

sentation of an integrated, or bound, object. In the second case, they represent parts of differ-

ent objects which are not bound to a coherent object. For simplicity, we call this an “unbound”

situation, see Fig 1. The second state regards attention. Attention may be either on an object

with some of its parts in the RF of one or both of the neurons, or attention can be at a position

elsewhere in the visual field, far from the RFs of the considered neurons. In the first case, atten-

tion is on the BOS neuron(s) while in the second case both are ignored. These two binary types

Fig 2. Model architecture. Two different types of G-cells (balls with “G”) are part of the model: spatial grouping cells

(Gsp) and object-based grouping cells (Gobj). Whereas Gsp-cells implement spatial attention, i.e. attention to everything

within a circumscribed spatially defined area, Gobj-cells impart grouping structure of objects in the scene and mediate

object-based attention. The latter are similar to the grouping cells from refs [25, 26, 41]. Feedback signals from these G-

cells modulate activity of BOS neurons (balls with “BOS”) by NMDA-type connections (gray downward pointing

arrows). Black and gray ellipses represent the locations of RFs of BOS neurons which are driven by visual input

through AMPA-type synapses (black upwards pointing arrows). Black and gray horizontal arrows from RFs point

toward the preferred side of the corresponding BOS neuron. For description of subscripts and superscripts of BOS cells

see text.

https://doi.org/10.1371/journal.pcbi.1008829.g002
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of states (attended vs. ignored, bound vs. unbound) are considered independent of each other,

therefore there are four possible combinations. We do not consider one of these conditions,

unbound-attended, since we are not aware of any neurophysiological experiments addressing

situations in which attention is directed towards disconnected visual features.

In our model, the attentional state is represented by the activity level of G cells. We assume

that G cells representing an attended object have a higher firing rate than those representing

an ignored object, see Table 1. Our model does not describe how these activity levels derive,

there are many models of the control of selective attention that describe possible mechanisms,

e.g. [44] for bottom-up attention or ref [45] for top-down attention.

Likewise, we assume that a G cell has a higher firing rate in the bound condition than in

the unbound condition, because in the bound condition it integrates features all around the

boundary of the object, each of which is represented by the activity of individual BOS neurons,

whereas in the unbound condition, it integrates only two edges, each from one of the lateral

objects (dashed outlines in Fig 2). Also the two grouping cells which would represent the lat-

eral objects, G3

obj and G3

obj would each receive input from BOS cells of only one edge, BOS1

L and

BOS2

R, respectively. Therefore, the G cell in the bound condition receives more bottom-up

input and, as a result, has a higher mean firing rate.

Mechanisms leading to increased G cell activity are quantitatively described in several pub-

lished computational studies [25, 26, 28–30, 46]. While the argument presented so far applies

only to isolated objects, new experimental results [47] show that also G cells representing fore-

ground objects in cluttered scenes likely have substantially higher firing rates than G cells rep-

resenting the partially obscured objects, see the section on cluttered scenes in the Discussion.

In this study, we therefore assume that differential activity levels (firing rates) are present for

bound (higher rates) and unbound conditions (lower rates), without explicitly implementing

how these differences arise.

The firing rates of model G-cells for all three stimulus and attention conditions are summa-

rized in Table 1 and in the Materials and methods section. For cell G1
obj, the situation shown in

Fig 2 and in the middle and right panels of Fig 1A illustrates the bound condition. As seen in

column ‘G1
obj’ of the Table 1, its firing rate is 30Hz if the object is ignored (middle panel of Fig

1A) and 60Hz if it is attended (right panel of Fig 1A) since we assume that the firing rate effects

of binding and attention are cumulative. In the unbound-ignored condition it fires with a low

spontaneous rate of 5Hz.

Columns ‘G2
obj’ and ‘G3

obj’ of Table 1 show the firing rates of the G cells representing objects

left and right of G1
obj, respectively, in the geometrical situation of Fig 2. In the Unbound-

ignored condition, each of these cells has an (ignored) object in its RF (left panel of Fig 1A).

This is the same situation as G1
obj finds itself in the Bound-ignored condition and the same fir-

ing rates apply, 30Hz. In contrast, in the Bound-ignored condition (center panel of Fig 1A)

there is no object in the RF of these cells, the same situation as G1
obj finds itself in the Unbound-

ignored condition, and the firing rate is the same (5Hz). In the Bound-attended condition

Table 1. Firing rates of model G-cells in different stimulus and attention conditions. The labels in the first column

refer to the stimulus and attention conditions in the RF of G1
obj. Numbers in other columns are firing rates of G cells

listed in the first row of the respective column, under conditions in the RF of G1
obj that are described in the first column.

Stimulus in G1
obj RF G1

obj G2
obj G3

obj Gsp

Unbound-ignored 5Hz 30Hz 30Hz 3Hz

Bound-ignored 30Hz 5Hz 5Hz 3Hz

Bound-attended 60Hz 2.5Hz 2.5Hz 15Hz

https://doi.org/10.1371/journal.pcbi.1008829.t001
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(right panel in Fig 1A) there is no object in either of the RFs of G2
obj and G3

obj and attention is

away from both. In a previous model study, Mihalas et al. [26] have argued that attention to an

object suppresses activity of nearby G cells (via IB cells in their model, see their Fig 1). There-

fore, when attention is on the center object, bottom row in Table 1, the activity of G2
obj and G3

obj

is set to a low value, half of what it would be without a nearby attended object. Psychophysical

and fMRI human imaging studies have reported such inhibitory surround of orientation per-

ception and V1 responses for nearby locations, which are due to the influence of selective

attention [48, 49].

Finally, column ‘Gsp’ of Table 1 shows the firing rates of the second type of G cell, which rep-

resents the effect of spatial attention, see Fig 2. If attention is on the center region of the scene,

as shown in that figure, this cell fires with a frequency of 15Hz (row ‘Bound-attended’), if this

region is not attended, its firing rate is 3Hz (rows ‘Unbound-ignored’ and ‘Bound-ignored’).

In the following sections, we report numerical results of simulations of the model defined

above. Population results are given for two measures. One is the firing rate of subsets of BOS

neurons, the other are correlations (loose and tight, see below) between sets of pairs of neurons.
For the latter, we already have defined consistent and inconsistent pairs of neurons, see Fig 1.

For the former, it is important to note that firing rates are a property of neurons, not pairs of

neurons. We differentiate between those neurons whose border ownership preference is

towards the object centered between their RFs (gray keystone-like object in Fig 1 and gray par-

allelogram in Fig 2) and those whose border ownership preference is another object. We call

the former “preferred neurons” and the latter “non-preferred” neurons. Note that both mem-

bers of a consistent pair are preferred neurons. At least one of the members of an inconsistent

pair is a non-preferred neuron, the other can be preferred or non-preferred, see Fig 1.

Mean firing rates of BOS neurons

First, we investigate the influence of G-cell activity levels on the spiking frequencies of model

BOS neurons. Fig 3A shows spike raster plots of BOS neurons for 100 simulated trials where

G-cells are activated in the Unbound-ignored condition between 0 and 1000 ms, in the

Bound-ignored condition between 1000 and 2000 ms, and in the Bound-attended condition

otherwise. The feedback from G-cells modulates the activities of all BOS neurons.

Fig 3B and 3C show the mean firing rates of BOS neurons for the Unbound-ignored (gray),

Bound-ignored (black) and Bound-attended (red) conditions (see Fig 1 for definitions of these

terms), in the preferred (Fig 3B) and non-preferred conditions (Fig 3C). Note that the firing

rates of preferred neurons are significantly higher in the bound condition than in the unbound

condition (Fig 3B; t-test, p = 4.9 × 10−44, effect size r = 1.0). They are also significantly higher

in the Bound-attended condition than in the Bound-ignored condition (t-test, p = 3.6 × 10−44,

r = 1.0), which is in agreement with physiological results [17, 39]. In contrast to the preferred

neurons, the firing rates of the non-preferred neurons are significantly higher in the unbound

condition than in the bound condition (Fig 3C; t-test, p = 2.7 × 10−45, r = 1.0). The firing rates

of these model neurons are also slightly but significantly increased in the Bound-attended con-

dition relative to the Bound-ignored condition (t-test, p = 2.1 × 10−30, r = 1.0). These results

imply that the activities of G-cells significantly modulate the spike frequency of BOS neurons

in our proposed network.

Loose synchrony of BOS neurons

We next quantify the loose (correlations on the order of tens of milliseconds) and tight (order

of milliseconds) synchrony between BOS neurons of consistent and inconsistent pairs (Fig 1B)

using the methods of ref [41].
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We define loose synchrony as the integral of spike correlations in the range of a ±40ms

interval around lag zero (see Materials and methods section). Loose correlations between

BOS1
R and BOS2

L neurons (the consistent pair) with respect to the Unbound-ignored, Bound-

ignored and Bound-attended conditions are shown in Fig 4B. In the ignored conditions

(Unbound-ignored and Bound-ignored), the correlation for the bound configuration (black

line in Fig 4B) is markedly stronger than in the unbound configuration (gray line in Fig 4B).

In contrast, the correlation for the Bound-attended condition (red line in Fig 4B) is weaker

Fig 3. Responses of BOS neurons. A: Raster plots showing 100 spike trains of BOS model neurons. For these plots, G-cells were activated for representing the

Unbound-ignored condition between 0 and 1000 ms, the Bound-ignored condition for 1000 and 2000 ms, and the Bound-attended condition for 2000 and

3000 ms. Feedback from G-cells modulates the firing rates of BOS neurons. Identities of BOS neurons are shown next to each plot. B: Firing rates of preferred

neurons (BOS1
R and BOS2

L). C: Firing rates of non-preferred neurons (BOS1
L and BOS2

R). The gray, black, and red bars represent the Unbound-ignored, Bound-

ignored, and Bound-attended conditions, respectively, during trials that mimic the experimental settings of the Martin and von der Heydt study (ref. [39],

their Fig 4B). These firing rates were obtained from 10 sets of 100 simulated trials, each of a length of 200 biological seconds. Error bars indicate standard

deviations (SDs), which were very small in these simulations. Confidence intervals of preferred neurons were 9.42 ± 0.01 (SD = 0.02), 18.15 ± 0.01 (SD = 0.02),

and 26.54 ± 0.01 (SD = 0.02) Hz for the Unbound-ignored, Bound-ignored, and Bound-attended conditions, respectively. Confidence intervals of non-

preferred neurons were 18.15 ± 0.01 (SD = 0.02), 9.41 ± 0.01 (SD = 0.01), and 10.38 ± 0.01 (SD = 0.01) Hz for the Unbound-ignored, Bound-ignored, and

Bound-attended conditions, respectively. Asterisks indicate significant differences between conditions (�� p< 0.01 by t-test).

https://doi.org/10.1371/journal.pcbi.1008829.g003
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Fig 4. Correlations between BOS neurons. The gray, black, and red lines/bars represent the correlation (loose synchrony) of the Unbound-ignored,

Bound-ignored, and Bound-attended conditions, respectively. A, C: Experimentally observed mean spike train cross-correlation and loose synchrony for

consistent BOS neurons, modified from [39]. B, D: Model spike train cross-correlation and loose synchrony for the consistent pair. Confidence intervals of

loose synchrony of this pair for the Unbound-ignored, Bound-ignored, and Bound-attended (panel D) were 1.13 ± 0.01 (SD = 0.01), 1.39 ± 0.02

(SD = 0.03), and 1.21 ± 0.01 (SD = 0.02) coincidences/s, respectively. E, G: Experimentally observed mean spike train cross-correlation and loose synchrony

for inconsistent BOS neurons. F, H: Model spike train cross-correlation and loose synchrony for the inconsistent pairs. Inset in F shows detail of center

region at higher scale. Confidence intervals of loose synchrony of these pairs for the Unbound-ignored, Bound-ignored, and Bound-attended (panel H)

were 0.30 ± 0.01 (SD = 0.02), 0.23 ± 0.01 (SD = 0.01), and 0.34 ± 0.01 (SD = 0.01) coincidences/s, respectively. Curves in all panels are normalized by the

maximum correlation value of the consistent pair. The observed maximum values were: A:54, B:24, E: 26, F:5 coincidences/s2. Asterisks indicate significant

differences between conditions (�� p< 0.01, t-test). Error bars indicate SDs.

https://doi.org/10.1371/journal.pcbi.1008829.g004
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than that for the Bound-ignored condition. These bound-induced increase and attention-

induced decrease of spike correlations are in qualitative agreement with the experimentally

observed response modulation for consistent pairs of BOS neurons [39]. Loose synchrony

for the consistent pair in our simulations is summarized in Fig 4D. We found a significant

increase in loose synchrony from the Unbound-ignored condition (gray bar in Fig 4D) com-

pared to the Bound-ignored condition (black bar) (t-test, p = 4.2 × 10−15, r = 0.98). In contrast,

the loose synchrony significantly decreases from the Bound-ignored condition to the Bound-

attended condition (red bar in Fig 4D) (t-test, p = 5.7 × 10−12, r = 0.97). These simulated results

agree with those found for consistent BOS neurons [39], Fig 4A and 4C.

Martin and von der Heydt [39] also reported synchrony results for inconsistent pairs (Fig

4E and 4G). These pairs were defined as all possible pairs of BOS neurons with the exception

of the consistent pair, as illustrated in Fig 1B. In our model, the inconsistent pairs are repre-

sented by three pairs; BOS1
R � BOS

2
R, BOS1

L � BOS
2
L, and BOS1

L � BOS
2
R. The spike-spike corre-

lation of the inconsistent pairs is calculated using the mean of the correlations for these three

pairs (Fig 4F). In contrast to the consistent pair (Fig 4B), the correlation for the Bound-

attended condition (red line in Fig 4F) exceeds that for the ignored conditions (gray and black

lines for the Unbound-ignored and Bound-ignored conditions in Fig 4F, respectively). This is

consistent with the experimentally observed modulation pattern of inconsistent pairs, Fig 4E.

We also computed loose synchrony of the inconsistent pairs by integrating the correlation

in the range of ±40ms interval around lag zero (Fig 4H). Conventions are the same as those in

Fig 4D. The level of loose synchrony for the Bound-attended condition (red bar in Fig 4H) is

significantly higher than that for the Bound-ignored condition (black bar in Fig 4H)(t-test,

p = 2.8 × 10−16, r = 0.99). Even though loose synchrony for the Unbound-ignored condition

(gray bar in Fig 4H) is at a similar level to that for the Bound-attended condition, technically it

is significantly different (t-test, p = 3.9 × 10−6, r = 0.84) because of the large amount of simu-

lated data (10 sets of 100 simulated trials). In contrast to the consistent pair (Fig 4D), we found

that the loose synchrony for the Bound-ignored condition is the lowest among these three con-

ditions. These modulation patterns of loose synchrony for the inconsistent pairs are opposite

to those for the consistent pair. This attentional enhancement of loose synchrony for the

inconsistent pairs agree with that of experimentally observed BOS neurons [39]. Our simula-

tion results show that the interaction between two distinct types of attentional feedback signals

can explain why correlations between consistent and inconsistent pairs of BOS neurons are of

opposite polarity. We investigate the mechanisms underlying this surprising result in sections

below.

To further quantify the responses of our model, we compute the noise correlation between

BOS neurons of consistent and inconsistent pairs (S1 Fig). The noise correlation for the consis-

tent pair with respect to the Unbound-ignored, Bound-ignored and Bound-attended condi-

tions are summarized in S1(A) Fig. There is no significant difference in the noise correlation

between ignored conditions (Unbound-ignored and Bound-ignored) (t-test, p = 0.97,

r = 0.01). By contrast, we found a significant decrease in noise correlation between the Bound-

ignored condition and the Bound-attended condition (t-test, p = 9.4 × 10−3, r = 0.57). S1(B)

Fig shows the noise correlation of the inconsistent pairs. As for the consistent pairs, we found

no significant difference between ignored conditions (Unbound-ignored and Bound-ignored)

(t-test, p = 0.35, r = 0.22). Different from the consistent pair, there is also no significant differ-

ence between the noise correlation in Bound-attended and the Bound-ignored conditions (t-

test, p = 0.48, r = 0.17).

One plausible cause of synchrony between spike trains of two BOS neurons is common

input to both. Correlation functions of the inputs to BOS neurons are shown in S2 Fig. There

PLOS COMPUTATIONAL BIOLOGY Distinct top-down modulations for spatial and object-based attention

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008829 March 25, 2021 10 / 33

https://doi.org/10.1371/journal.pcbi.1008829


are no significant differences in the means of the loose synchrony between Gsp- and G1
obj-cells

between Bound-ignored and Bound attended conditions (t-test, p = 0.97, r = 0.01) nor between

Unbound-ignored and Bound-ignored conditions (t-test, p = 0.092, r = 0.39), S2(B) Fig. Due

to the higher firing rate of the G-cell in the Bound-attended cognition, the variance of the cor-

relation function is, however, higher than in the ignored conditions. We also compute spike

correlations between bottom-up visual inputs for consistent (S2(C) Fig) and inconsistent pairs

(S2(E) Fig). There are no significant differences in levels of loose synchrony in bottom-up

visual inputs for the consistent pair (S2(D) Fig; t-test for Unbound-ignored vs. Bound-ignored,

p = 0.43, r = 0.19; t-test for Bound-ignored vs. Bound-attended, p = 0.67, r = 0.22). For incon-

sistent pairs, no significant differences between the levels of loose synchrony of bottom-up

visual inputs were observed (t-test for Unbound-ignored vs. Bound-ignored, p = 0.51, r = 0.15;

t-test for Bound-ignored vs. Bound-attended, p = 0.35, r = 0.22) (S2(F) Fig). Of course, this

lack of significant correlation is entirely expected because in our simulation, the input consists

of independent Poisson processes. For this reason, despite the lack of significant differences

in the means of cross-correlation functions between G-cells, we surmise that correlations

between BOS neurons are induced by the common feedback from G-cells to BOS neurons.

The neurophysiological data in Fig 4A and 4E show some evidence of periodicity in the

beta/gamma range which is absent in the simulated data. Martin and von der Heydt [39] did

not found statistically significant differences in this spectral range between the different experi-

mental conditions (see their discussion of their Fig 4 on which our Fig 4 is based). This was the

case for both spike-spike and spike-field coherence. We therefore do not assign significance to

these oscillations.

Tight synchrony of BOS neurons

Martin and von der Heydt [39] investigated tight synchrony [50, 51] between BOS neurons

with respect to consistent and inconsistent pairs using a transformation of the original spike

trains in which spikes are distributed randomly within a jitter window of width Δ = 20ms (jit-

tered spike train). A large number of correlations between jittered spike trains were computed,

and their mean was subtracted from the original spike correlation, resulting in the jitter-

reduced correlation (tight correlation). This procedure removes all correlations at times scales

larger than the jitter window Δ, revealing the underlying tight synchrony [50, 51]. A detailed

description of the procedure for computing tight correlation and synchrony is given in the

Materials and Methods section. We computed tight synchrony by integrating the tight correla-

tion in the range of ±5ms interval around lag zero.

The experimentally observed tight correlations for the consistent pair shows significant

peaks at zero lag in the bound conditions, but not in the unbound condition [39]. Data are

reproduced in Fig 5A which shows the tight correlations of the consistent pair for three condi-

tions. Under the bound conditions (black and red lines in Fig 5A), there are marked peaks of

tight correlation around zero lag. Fig 5B shows the corresponding curves from our simulation

of the model, obtained by applying the same jitter method as in the experimental results to our

simulation data. Tight synchrony for the consistent pair in physiological experiments and our

simulations are summarized in Fig 5C and 5D, respectively. Fig 5E shows experimental tight

correlation for the inconsistent pairs and Fig 5F the corresponding simulation results. Experi-

mentally observed tight synchrony for inconsistent pairs is shown in Fig 5G. Fig 5H summa-

rizes model tight synchrony for inconsistent pairs.

Irrespective of grouping structure and attention conditions, inconsistent pairs in the experi-

ment did not show a significant peak of tight correlation at zero lag [39](Fig 5E). We computed

tight correlation based on our simulation data for inconsistent pairs (Fig 5F). There was no
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Fig 5. Tight synchrony between model BOS neurons. Reduced cross-correlations after subtraction of Δ = 20ms interval jitter cross-correlation. A, C:

Experimentally observed mean tight correlation and tight synchrony of the consistent pair for the Unbound-ignored (gray), Bound-ignored (black), and

Bound-attended (red) conditions from [39]. B, D: Simulated tight correlation and tight synchrony of the consistent pair. Conventions are the same as those

in A and C. Confidence intervals of tight synchrony of this pair for the Unbound-ignored, Bound-ignored, and Bound-attended conditions (panel D) were

0.0028 ± 0.0008 (SD = 0.0013), 0.0061 ± 0.0013 (SD = 0.0020), and 0.0076 ± 0.0018 (SD = 0.0029) coincidences/s, respectively. E, G: Experimentally observed

mean tight correlation and tight synchrony of the inconsistent pair. F, H: Simulated tight correlation and tight synchrony of the inconsistent pairs. Inset in

the panel F shows central area at higher scale. Confidence intervals of tight synchrony of these pairs for the Unbound-ignored, Bound-ignored, and Bound-

attended conditions (panel H) were 0.0005 ± 0.0005 (SD = 0.0008), 0.0009 ± 0.0006 (SD = 0.0010), and 0.0012 ± 0.0005 (SD = 0.0007) coincidences/s,
respectively. Curves in all panels are normalized by the maximum value of the “Bound-attended” condition of the consistent pair. The observed maximal

values were: A:17.4, B:3.7, C:3.4, D:0.5 coincidences/s2. Asterisks indicate significant differences between conditions (� p< 0.05, �� p< 0.01, t-test). Error

bars indicate SDs.

https://doi.org/10.1371/journal.pcbi.1008829.g005
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marked peak around zero lag under Unbound-ignored condition (gray line). By contrast, under

the bound conditions, we found peaks of tight correlation for inconsistent pairs (black and red

lines). However, the peak value of tight correlation for the inconsistent pairs under the Bound-

attended conditions (see caption of Fig 5) was markedly weaker than that for the consistent pair.

Overall, tight correlation for inconsistent pairs in our model is similar to that observed physio-

logically. No significant differences between the levels of tight synchrony of inconsistent pairs

was observed in Martin and von der Heydt’s electrophysiological recordings [39] (Fig 5H). They

found, however, that in the Bound-ignored condition, tight synchrony between members of con-

sistent pairs was significantly higher than that of inconsistent pairs (Fig 5C and 5G). Likewise,

simulation of the Bound-ignored condition showed a significantly higher tight synchrony

between consistent pairs (the black bar in Fig 5D) than between inconsistent pairs (the black bar

in Fig 5H) (t-test, p = 1.8 × 10−6, r = 0.85). Additionally, there were no significant differences

between levels of tight synchrony of inconsistent pairs in our simulation results (Fig 5H; t-test

for Unbound-ignored vs. Bound-ignored, p = 0.35, r = 0.22; t-test for Bound-ignored vs. Bound-

attended, p = 0.52, r = 0.15), which were similar characteristics to electrophysiological results

[39]. Note the different observed maximal values for each subplot, which is listed in the caption

of Fig 5. We next explore the differential role of the two types of grouping cells in our model and

their contributions to the observed loose and tight synchrony results.

Modulation of BOS cell firing rates by top-down input

Results so far have characterised activity levels (firing rates) and pairwise correlations of BOS

neurons for a fixed set of firing rates of the G cells that were either chosen according to previ-

ous firing rate models (G1
obj-cells) or just assumed (Gsp-cell). To understand the circuit behav-

ior, we now systematically vary those G-cell firing rates and report the effect on the firing rates

(this section) and correlations (following two sections) of BOS neurons.

Firing rates of BOS neurons for a variety of combinations of G1
obj- and Gsp-cell rates for con-

sistent and inconsistent pairs are summarized in Fig 6A and 6B, respectively. The preferred

BOS1
R and BOS2

L neurons are activated with increasing the rates of both G1
obj- and Gsp-cells (Fig

6A). Rates of the non-preferred BOS1
L and BOS2

R neurons are also moderately increased with

increasing the rates of Gsp-cells (Fig 6B). However, the activation of G1
obj-cells does not modu-

late the responses of non-preferred BOS neurons.

Fig 6C shows the firing rates of the preferred BOS1
R and BOS2

L neurons and Fig 6D that of

the non-preferred BOS1
L and BOS2

R neurons as a function of the rates of the Gsp-cell. In these

cases, G1
obj-cells fire with a mean frequency of 30Hz (filled triangles) or 60Hz (open triangles).

The firing rates of all BOS neurons increase monotonically with increasing activity of the Gsp-
cell. Note that in panel D, the symbols overlap because the non-preferred neurons BOS1

L and

BOS2
R do not receive direct input from G1

obj (see Fig 2) and therefore there is no noticeable dif-

ference between the 30Hz and 60Hz curves.

Fig 6E shows the mean rates of preferred BOS neurons as a function of the firing rate of G1
obj

for Gsp-firing rates of 3Hz (open triangles) and 15Hz (filled triangles). It is seen that rates

increase monotonically. The analogous result for non-preferred neurons is shown in panel F

of that figure. Their rates are independent of the activity of G1
obj, since this neuron does not

project directly to BOS1
L and BOS2

R, see Fig 2.

Modulation of loose synchrony between BOS cells by top-down input

The influence of G-cell firing rates on loose synchrony between BOS cells is summarized in Fig

7. Fig 7A and 7B shows loose synchrony of BOS neurons with various combinations of G1
obj-
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Fig 6. Firing rates for BOS neurons as functions of the mean rates of G-cells. A: Averaged firing rates of BOS1
L and BOS2

R neurons for combinations of

G1
obj- and Gsp-cells rates. B: Averaged firing rates of BOS1

R and BOS2
L neurons for combinations of G1

obj- and Gsp-cells rates. Firing rates of BOS neurons

pointed out by white dashed lines with ‘C’, ‘D’, ‘E’ and ‘F’ are summarized in panels C, D, E and F as a functions of the mean rates of G-cells, respectively. In

C-F, each data point is the average of 100 simulated trials, each 200 biological seconds long as a function of the mean rate of G-cells. C, D: Firing rates of

BOS neuron as function of the mean rates of Gsp for two mean rates of G1
obj, 30Hz (filled triangles) and 60Hz (open triangles). C: Average of BOS1

R and BOS2
L.

Black and red triangles indicate the chosen Gsp rates for ignored and attended conditions, respectively. D: Average of BOS1
L and BOS2

R neurons. Note that

symbols for 30Hz and 60Hz nearly overlap because there is no direct projection from object-based G-cells to members of the inconsistent BOS cell pairs. E,

F: Firing rates of BOS neurons as functions of the mean rates of G1
obj for two different mean rates of Gsp, 3Hz (filled triangles) and 15Hz (open triangles). E:

Average of BOS1
R and BOS2

L. Black and red triangles indicate the chosen rates of G1
obj-cells for bound-ignored and bound-attended conditions, respectively.

F: Average of BOS1
L and BOS2

R.

https://doi.org/10.1371/journal.pcbi.1008829.g006
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Fig 7. Loose synchrony for model BOS neurons as function of the mean rates of G-cells. Shown is the integral of the spike train cross-correlation in the

range of a ±40 ms interval around lag zero. Each data point is the average of 100 simulated trials, each of 200 biological seconds duration. A: Loose

synchrony between BOS1
R and BOS2

L neurons (consistent pair) as a function of combinations of G1
obj- and Gsp-cells rates. B: Loose synchrony between all

inconsistent pairs (defined in Fig 1B) of BOS neurons as function of combinations of G1
obj- and Gsp-cells rates. Modulation patterns of loose synchrony

labelled by white dashed lines with ‘C’, ‘D’, ‘E’ and ‘F’ are summarized in panels C, D, E and F, respectively. C: Loose synchrony between consistent pair as a

function of the mean rate of Gsp for two different mean rates of G1
obj, 30Hz (filled squares) and 60Hz (open squares). Black and red triangles are the same as

those in Fig 6C. D: Loose synchrony between all inconsistent pairs (defined in Fig 1B) of BOS neurons as function of the rates of Gsp. Note that symbols of

G1
obj for 30Hz and 60Hz nearly overlap because there is no direct projection from G1

obj-cells to members of the inconsistent BOS cell pairs. Conventions are

the same as in panel C. E: Loose synchrony between consistent pair as function of the mean rates of G1
obj for different mean rates of Gsp, of 3Hz (filled

squares and 15Hz (open squares). Black and red triangles are the same as those in Fig 6E. F: Loose synchrony between inconsistent pairs of BOS neurons as

function of the rates of G1
obj. Conventions as in panel E.

https://doi.org/10.1371/journal.pcbi.1008829.g007
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and Gsp-cell rates for consistent and inconsistent pairs, respectively. Loose synchrony for the

consistent pair is increased for firing rates of G1
obj-cells in the range 10�20 Hz (Fig 7A). By con-

trast, higher activation of both G1
obj- and Gsp-cells decreases loose synchrony of the consistent

pair. For inconsistent pairs, modulations of loose synchrony might be independent of the acti-

vation of G1
obj-cells (Fig 7B). However, activation of Gsp-cells modulates the loose synchrony

for both consistent and inconsistent pairs.

Details of modulation in loose synchrony of the consistent and inconsistent pairs as a func-

tion of the Gsp-cell activity are shown in Fig 7C and 7D, respectively. As in the previous sec-

tion, in these simulations mean rates of G1
obj-cells are set to 30Hz or 60Hz. Again, symbols

overlap in panel D because rates of neurons forming inconsistent pairs do not receive direct

input from G1
obj.

Loose synchrony for the consistent and inconsistent pairs is a non-monotonic function of

nGsp , rising to a peak at nGsp � 15Hz and then decreasing. In addition, for the consistent pair,

loose synchrony for nG1
obj
¼ 60Hz (open squares in Fig 7C) is consistently weaker than for

nG1
obj
¼ 30Hz (filled squares). Fig 7E and 7F show loose synchrony for the consistent and

inconsistent pairs as a function of the mean firing rate of G1
obj, respectively, with Gsp frequency

set to 3Hz (filled squares) or 15Hz (open squares). Loose synchrony of the consistent pair as a

function of G1
obj-cells, panel E, show a similar pattern as when Gsp is varied, panel C. In con-

trast, irrespective of the rate of G1
obj, loose synchrony for the inconsistent pairs is almost con-

stant, Fig 7F.

Modulation of tight synchrony between BOS cells by top-down input

Finally, we compute tight synchrony between model BOS neurons by systematically varying

the rates of G-cells (Fig 8). The magnitude of tight synchrony was computed by integrating the

tight correlation in the range of ±5 ms around lag zero (see also Materials and methods sec-

tion). Tight synchrony of BOS neurons with various combinations of rates of G1
obj- and Gsp-

cells for consistent and inconsistent pairs is shown in Fig 8A and 8B, respectively. Tight syn-

chrony for the consistent BOS neuron pair (Fig 8A) is markedly higher than that for inconsis-

tent BOS neuron pairs (Fig 8B). However, in contrast to the cases of firing rates (Fig 6A and

6B) and loose synchrony (Fig 7A and 7B), regardless of consistent and inconsistent BOS neu-

ron pairs, there are no specific modulation patterns in tight synchrony as a function of rates of

G1
obj- and Gsp-cells.

Fig 8C and 8D show details of tight synchrony modulation for the consistent and inconsis-

tent pairs as a function of Gsp-cell firing rates, respectively. Detailed modulations of tight syn-

chrony for the consistent and inconsistent pairs as a function of G1
obj-cell firing rates are shown

in Fig 8E and 8F, respectively. Irrespective of the frequency of G-cells, we find higher tight syn-

chrony for the consistent pairs (Fig 8C and 8E) compared to that for the inconsistent pairs

(Fig 8D and 8F). The magnitudes of tight synchrony for the inconsistent pairs are close to

zero, irrespective of G-cell types and their firing rates. In contrast, for the consistent pairs, acti-

vation of G-cells generates higher levels of tight synchrony. However, the level of tight syn-

chrony (Fig 8) is much more variable compared to that of the loose synchrony (Fig 7).

Discussion

Our overall goal is to understand the neuronal circuitry responsible for scene understanding

and selective attention in primate visual cortex. In this computational study we extend a
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Fig 8. Tight synchrony for model BOS neurons as function of the mean rates of G-cells. Shown is the integral of the tight correlation in the range of ±5

ms interval around lag zero. A: Tight synchrony between BOS1
R and BOS2

L neurons (consistent pair) with respect to combinations of G1
obj- and Gsp-cells rates.

B: Tight synchrony between all inconsistent pairs. Modulation patterns of tight synchrony labelled by white dashed lines with ‘C’, ‘D’, ‘E’ and ‘F’ are

summarized in panels C, D, E and F as functions of the mean rates of G-cells, respectively. C: Tight synchrony for consistent pair as a function of the mean

rates of Gsp for mean rates of G1
obj of 30Hz (filled circles) and 60Hz (open circles). Black and red triangles are the same as those in Fig 6C. D: Tight

synchrony between BOS neurons for inconsistent pairs as a function of the Gsp rate. Conventions as in panel C. E: Tight synchrony between consistent pair

as a function of the mean rates of G1
obj for mean rates of Gsp-cell of 3Hz (filled circles) and 15Hz (open circles). Black and red triangles are the same as those

in Fig 6E. F: Tight synchrony between BOS neurons for inconsistent pairs as a function of G1
obj rate. Conventions as in panel F.

https://doi.org/10.1371/journal.pcbi.1008829.g008
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previously developed neuronal network model with spiking neurons [41] which is based on

the grouping hypothesis [16, 25, 26, 28]. Electrophysiological recordings have elucidated the

interaction between perceptual organization implemented by border ownership selective neu-

rons and selective attention [17], and the cited grouping models take this “attention to objects”

[7, 52] mechanism into account. There is, however, evidence that there are mechanisms of

selective attention that act purely spatially, without reference to visual objects [53–55]. It is

therefore necessary to expand grouping models to include such purely spatial mechanisms

that operate independently of object features.

Our previous grouping model [41] took into account attentional top-down influences of

the first kind described above, i.e. attention to objects. In that model, G cells only project to

those BOS cells that are consistent with an object in the attended position, we call these Gobj
cells here. In the present study, we extend this model by adding an implementation of the sec-

ond type of attentional top-down projection which is purely spatial. This projection, imple-

mented by a separate class of G cells (Gsp) modulates all BOS cells in a spatially defined area.

This is seen in Fig 2 which shows that the spatial grouping cell Gsp projects to all BOS cells,

irrespective of their RF location (in this area) and their border ownership preferences. What is

common to both types of grouping cells is that their feedback is modulatory viaNMDA recep-

tors [42, 43].

To understand the neuronal circuitry we follow a rich and active tradition of theoretical

work [32–34] by analyzing the correlation structure of neuronal spike trains, using first-order

(mean firing rate) and second order (spike-spike) correlation functions. In particular, com-

mon input plays a critical role for inducing synchronized responses between postsynaptic neu-

rons. We focus on the analysis of the observed spike-spike correlations in (mainly) extra-

striate cortex. Specifically, we focus on synchrony observed in consistent and inconsistent

pairs of BOS neurons (Fig 1).

Our simulations of the new model reproduce the shapes of the cross-correlation functions

observed in a recent neurophysiological study [39], for both consistent and inconsistent pairs

of BOS neurons, and for all conditions of feature binding and attention. In addition, we

showed that: 1) firing rates of BOS cells increase monotonically with increasing G-cell activity

(cells of inconsistent pairs only with Gsp cell input because they do not receive Gobj cell input),

2) loose synchrony between BOS cells is a non-monotonic function of G-cell activity if they

both receive common input from the G-cell and is stronger in consistent versus inconsistent

BOS pairs, and 3) tight synchrony results were more variable, with a higher magnitude of tight

synchrony in consistent versus inconsistent BOS pairs. In the next section, we discuss how the

top-down influences in our model generate correlation structures that we describe. Overall,

our results support the hypothesis that figure-ground organization and attentive selection are

both produced by grouping feedback modulation to the early feature representation levels of

the visual cortex and suggest that the modulation is mediated by the NMDA-type receptor.

Mechanisms of spike synchrony between BOS neurons

Neurophysiological data [39] show that attention to a target stimulus has opposite effects on

the level of synchrony (In this section, we use synchrony synonymously with loose synchrony

except where specifically noted otherwise.) on two neuronal populations: The spike-spike cor-

relation between two neurons whose border ownership preferences point to a common object

(which makes them consistent neurons, see Fig 1B) is lowered when attention is directed

toward the object. In contrast, the correlation between pairs of neurons whose border owner-

ship preferences do not both point to that object, i.e. inconsistent neurons, goes up when that

object is attended. Our previous work [41] explained the correlation structure for consistent

PLOS COMPUTATIONAL BIOLOGY Distinct top-down modulations for spatial and object-based attention

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008829 March 25, 2021 18 / 33

https://doi.org/10.1371/journal.pcbi.1008829


neurons but did not address responses of inconsistent neurons. In the current study, we

include this group of neurons and we also specify in more detail the type of attentional influ-

ences in our model. As we have discussed earlier, there are multiple mechanisms of top-down

visual attention. We here focus on attention to a spatially defined portion of the visual field, i.e.
spatial attention, and attention to objects.

A fundamental hypothesis of our approach is that these two types of attentional influences

have anatomical implementations in the form of separate types of G cells. One type consists of

object-based G (Gobj) cells, similar to those in previous studies [25, 26, 41]. Neurons of this type

are responsible for grouping (binding) features together to a coherent object and also serve as a

“handle” for attention to such an object. This is to be distinguished from spatial attention where

everything within a spatially circumscribed area is attended. Our hypothesis is that this is imple-

mented by top-down feedback that activates a separate type of neurons, the spatial G (Gsp) cells.

In our model, both types of G cells exert attentional influence on BOS cells by NMDA-type pro-

jections [43], Fig 2. Furthermore, we assume that top-down attention to one of the target stimuli

(shown in schematic form in Fig 1) engages both types of G cells, resulting in the elevated firing

rates of both cell classes in the attended vs. unattended condition, Table 1.

At the level of BOS cells, our simulations show that top-down attention depresses syn-

chrony for the consistent pair, as observed [39]. Our simulation also reproduces the observed

increased synchrony of inconsistent cell pairs when the object is attended. This difference in

population responses can be understood from our model results shown in Fig 7. It shows how

synchrony between members of consistent (Fig 7A, 7C and 7E) and inconsistent (Fig 7B, 7D

and 7F) pairs varies with the level of common input from Gsp (Fig 7C and 7D) and Gobj (Fig 7E

and 7F) cells. As is expected on theoretical grounds, synchrony is a smoothly varying function

with a single peak which can be pronounced (Fig 7E) or weak (Fig 7D), except for the inconsis-

tent pairs in which synchrony does not vary with the Gobj-cell firing rates (Fig 7F). Top-down

attention is assumed to increase firing rates of both G cell types, Table 1, which corresponds to

a rightward shift along the curves in Fig 7C, 7D, 7E and 7F. The starting point of this shift dif-

fers, however, between the two types of G cells. Gobj-cells fulfill the dual role of mediating

attention to objects and of grouping object features pre-attentively. For the center object in

Fig 1, the second of these functions (grouping) requires them to fire at a high rate (30Hz, see

Table 1) even without attention. This is already to the right of the peak in synchrony, Fig 7E.

Attention further increases (doubles) this rate, i.e. shifts it to the right in that figure, resulting

in a substantially lower synchrony level. Since only consistent BOS cells receive input from the

(center) G cell, G1
obj, this effect applies only to them.

Gsp-cells provide input to all BOS cells in their projective fields. Since they are not involved

in feature binding, their firing rates are much lower than those of Gobj-cells. This has the

important effect that the rightward shift in Fig 7 occurs from the left of the maximum, i.e. it

increases the synchrony level at the level of BOS cells. This explains the increased synchrony

between inconsistent cells because, except for low levels of spontaneous firing that is always

present in all G cells, their only common top-down input is from Gsp-cells. This slight increase

is also present in consistent cells but it is masked by the larger decrease resulting from the

input from the Gobj-cells discussed above.

Martin and von der Heydt [39] also reported that tight synchrony shows peaks at zero lag

for the consistent pair in the bound condition, but not for the inconsistent pair (Fig 5A and

5E). Our model reproduces the characteristics of tight synchrony, provided we choose synaptic

weights of Gobj-cells twice as large as that of Gsp-cells (see Materials and methods section), a

prediction of our model. The differences in synaptic weights between Gobj- and Gsp-cells

underlie that difference in tight synchrony between consistent and inconsistent pairs.
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The relative rates of object-based and spatial G cells in Table 1 are thus an important predic-

tion of our model (and more specific than the prediction that these two neuronal populations

exist in the first place). In this view, the primary function of the object-based G cells is group-

ing of object features, and this functionality is modulated by attention to objects. In contrast,

the spatial G cells only have one function. This difference in functionalities is reflected in their

mean firing rates and leads, indirectly, to the observed difference in correlations at the BOS

cell level.

A variety of studies have investigated the role of synchrony between neuron pairs for pro-

cessing visual information and for organizing visual perception [18, 56, 57]. By contrast, our

work suggests the possibility that the observed synchrony between BOS neurons is epiphe-

nomenally induced via modulatory feedback mediated by currents through NMDA receptors.

Further studies are necessary for understanding the roles of spike synchrony between pairs of

BOS neurons.

Differentiation of foreground and background objects in cluttered scenes

In our model, the state of object representations (attended vs. ignored, bound vs. unbound) is

represented by the mean firing rates of their associated G cells, see Table 1. We do not model

in detail the mechanisms that create the differences in G cell firing rates since we focus in this

study on the effects they have on the activity of border ownership selective cells and their

correlations.

As far as the effect of attention is concerned, the assumption (made explicit in Table 1) is

that attention to an object doubles the firing rate of its associated object-based G cell popula-

tion (from 30Hz to 60Hz) and it also halves the firing rates of nearby G cells of the same type

(from 5Hz to 2.5Hz) because of interactions between G cells [26]. The increase is assumed to

result from top-down input from the attention control system that provides additional excit-

atory input to the G cells representing attended objects.

There is also a strong difference between object-based G cells representing bound and

unbound regions of the RF, with firing rates assumed as 30Hz in the former and 5Hz in the lat-

ter case (in the absence of attention; attention to an object doubles the rate as discussed). The

origin of this difference is the different input from BOS cells in the bound vs. unbound condi-

tions. As Fig 2 shows, G1
obj receives input from a large population of BOS cells on the borders in

the bound condition (grey parallelogram) and it stands to reason that this G cell has therefore

a higher firing rate than the neighboring G cells G2
obj and G3

obj that represent unbound regions

with a much smaller number of active BOS cells feeding into them. This explains the large dif-

ference between G cells representing bound and unbound features.

However, one might argue that the latter argument, that firing rates differ substantially

between bound and unbound object representations, may hold for simple scenes with isolated

objects as in Fig 2 but not necessarily for more complex scenes. In particular, we need to con-

sider the presence of clutter and overlapping objects. An example is the simple scene showing

partially overlapping rectangles shown in Fig 9. If the circuitry shown in Fig 2 receives input

from this or a similar scene, the object-based G cells that receive input from the background

figure (dark gray rectangle) will have a similar firing rate as the object-based G cell that repre-

sents the foreground figure (light gray rectangle) since both receive input from about the same

number of line segments. Thus, our assumption that the G cell of one of them (the foreground

figure) has a substantially higher firing rate seems not justified.

This is certainly the case for the model described so far. However, again for the purpose of

focusing on the main topic of this study, we have simplified the model of perceptual grouping

to only include edge segments. As was recently argued by von der Heydt and Zhang [47], the
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distribution of edges (contours) is sufficient to group features of isolated compact objects but

does not disambiguate the assignment of borders between two overlapping objects. It was

found in earlier modeling work [25] that addition of local features, in particular T-junctions

(physiologically represented by end-stopped cells [58]), can resolve this ambiguity. These

model assumptions are strongly supported by recent neurophysiological results showing that

even single feature elements, like T or L junctions, strongly influence the firing rates of BOS

cells in the case of overlapping figures [47]. The firing rates of BOS cells that represent features

of a foreground object are increased by the presence of an L junction that is part of this object,

and suppressed by a T junction that is inconsistent with the presence of this object. Remark-

ably, single occurrences of these local features have a strong effect on BOS cell activity, and

additional consistent features only make small additional contributions (ibid).

One possibility how local cues influence BOS cell firing rates is by increasing the firing rates

of the object-based G cells representing foreground objects. The prediction is that the firing

rate of the foreground G cell is substantially higher than that of the G cells representing the

objects partially occluded by it. An additional prediction motivated by the data in ref [47] is

that G cell activity is subject to a strong compressive (saturating) nonlinearity. Another possi-

bility is that neurons responding to local cues directly project to BOS neurons to modify their

firing rates [25, 26]. Of course these two possibilities are not mutually exclusive, both could

occur. In addition, there are local cues in the spectral domain that can be used to distinguish

figure from ground, and therefore border ownership [59, 60]. Incorporating the influence of

strong local features in our model as well as the influence of strong saturation is an obvious

topic for future work.

Comparison to previous models and limitations of the present model

Several models have been proposed to account for the mechanism of the modulations of BOS

neuronal activity during object perception. Craft et al. [25] developed a computational model

of the BOS mechanism based on the hypothetical grouping circuit. Mihalas et al. [26] proposed

a computational model for explaining how selective attention that was mediated by top-down

projections from G-cells modulates the responses of BOS neurons. Russell et al. [28] opened

Fig 9. Overlapping squares as an example of cluttered scenes. In this illustration, the light-gray “foreground” square

appears in front of the darker “background” rectangle; the perception is not that of a light-gray square adjacent to a

darker L-shaped object. Red and black circles mark T and L junctions, respectively, and are not part of the visual

display. Such local cues modulate the responses of BOS cells in addition to the grouping cell inputs discussed in the

present study [25].

https://doi.org/10.1371/journal.pcbi.1008829.g009
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the feedback loop between BOS and G cells and implemented an efficient feedforward model

that can process arbitrary visual input, including natural scenes and, in later work, video [61].

However, these models mainly demonstrated how top-down selective attention modulates

the firing frequency of BOS neurons, without considering neuronal dynamics and spike syn-

chrony. Furthermore, in these models, top-down signals for modulating the activity of BOS

neurons are implemented functionally, without regard to the biophysical mechanism how the

modulation is achieved. In contrast, this model, as well as its predecessor [41] suggests that the

bottom-up input from the visual periphery drives BOS cells by AMPA-type synapses while

feedback signals mediating grouping and attention rely on NMDA synapses (we discuss other

types of synapses below). An additional major advance of the current study compared to that

in ref [41] is that we here add an explicit mechanism for spatial attention.

In our model, modulatory feedback from G-cells is implemented by glutamatergic synapses

of the NMDA type and feedforward input representing visual stimuli relies on AMPA type

synaptic currents. We show that this combination of synaptic circuitry is sufficient to explain a

substantial part of neurophysiological observations. However, it is believed that other neuro-

transmitters and neuromodulators also play a role in the control and implementation of selec-

tive attention, in particular acetylcholine and dopamine [62–64], which we do not consider in

this study. Dopamine-mediated activity within the frontal eye field (FEF) may be involved in

the determination of saccadic target selection and the modulation of responses of V4 neurons

[64]. Signals from FEF modulate responses in visual cortices during tasks requiring spatial

attention [65, 66]. It is therefore possible that dopamine plays a role in modulating the neuro-

nal activities in visual areas including V2 where most BOS neurons are located. It was also

found that cholinergic modulation participates in bottom-up attention and saliency-based

selection in cortex [67] and midbrain [62, 68, 69]. Further studies for synapses mediated by

these neuromodulators are necessary for understanding the detailed mechanism of attentional

modulation in BOS neurons. The present study focuses on the cortical circuitry (Fig 1) while

these modulatory influences originate in subcortical structures which we do not consider here.

However, they will need to be included in a more complete model.

Another limitation of our study is that we include only the minimum number of BOS neu-

rons to understand the fundamental mechanism for understanding temporal correlations

between BOS neurons. In particular, we do not consider connections between BOS neurons.

However, the related Craft et al. model did incorporate recurrent connections between excit-

atory and inhibitory BOS neurons [25].

The Craft et al. model also includes recurrent connections between BOS neurons and G-

cells which autonomously generate activity patterns that implement the object grouping sig-

nals in G cell as well as the observed physiological responses of BOS neurons. Since that study

showed that it is possible to construct circuitry with G cell activity that results in BOS cell firing

rate pattern consistent with experimental findings, we take the existence of such circuitry as

given. We therefore assume that the G cells already have the firing rates corresponding to the

binding and non-binding conditions, respectively, rather than building the circuitry that gen-

erates these firing rates. This simplifies our already quite complex simulations and allows us

systematically explore the influence of the different G cell types on the BOS cells in the object

grouping and attention conditions which are the focus of this study.

Finally, a limitation of our model is that it does not require a role for inhibitory interactions

even though are clearly present in cortical circuitry. Synaptic inhibition modulates short-time-

scale correlations, such as synchrony between groups of excitatory neurons (review: [70]). Pre-

vious computational studies suggested that attentional modulation for cortical activities is

induced by feedback projections to classes of inhibitory neuron [71, 72]. In contrast, the role

of inhibitory neurons is not addressed in our model. As mentioned, however, a previous
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model [25] that shares many features with the present one does employ recurrent inhibitory

interactions between BOS cells.

Materials and methods

Model architecture

We extend our previous model [41] to understand the neural mechanisms underlying border

ownership selectivity. Fig 2 shows the architecture of our network model. It consists of four

border ownership selective cell populations, (BOS1
R, BOS1

L, BOS
2
R, and BOS2

L), and four grouping

cell populations (G1
obj, G

2
obj, G

3
obj, and Gsp). Populations of BOS cells project to Gobj-cells which,

in turn, bias the BOS cells resulting in the BOS responses of the latter. We assume that percep-

tual organization of a visual scene is represented by the combined activity patterns of G-cells

and BOS cells. While BOS neurons are observed in cortical area V2 and neighboring areas V1

and V4, we are agnostic of where the (so-far hypothetical) G-cells reside. The influence of BOS

neurons on G-cell activity was modeled and discussed in previous models [25, 26, 28]. For sim-

plifying the model network, and similar to our previous study [41], we are not concerned with

the details how the G-cells receive their activity as a function of attentional state and stimulus

configuration but, instead, assume that their activity patterns have already been established.

In our network model, we include only the neurons and synaptic connections necessary to

understand the fundamental mechanism for modulating consistent and inconsistent pairs of

physiological BOS cells [39](see also Fig 1A). The arrows to model populations in Fig 2 indi-

cate synaptic connections in our network model. The BOS neuron whose RF is shown by the

left black (gray) oval has right (left) side-of-figure preference and is therefore named BOS1
R

(BOS1
L). Subscripts “L” and “R” represent their left and right side-of-figure preferences relative

to the center object. The retinotopic position is denoted by the superscript “1” for the left oval

or “2” for the right. Therefore, the BOS neuron whose RF is shown by the right oval has left

(right) side-of-figure preference and is named BOS2
L (BOS2

R). BOS1
R and BOS2

L neurons with

distinct RFs can be excited when a visual object is present in the center of the field in Fig 2

(“bound” condition). We call them preferred neurons because their preferred border owner-

ship is towards an object located between their RFs which makes both of them members of a

consistent pair. The BOS preference of neurons BOS1
L and BOS2

R points away from the center

object in the stimulus, we call them non-preferred neurons. Inconsistent pairs have either one

or two non-preferred neurons (Fig 1A).

Three types of inputs are applied to these BOS neurons: bottom-up visual input and top-

down signals from two distinct types of G-cells, object-based grouping (Gobj) and spatial

grouping (Gsp) cells (Fig 2). Bottom-up input arises from visual stimuli. Gobj-cells impart

grouping structure and mediate object-based attention, whereas Gsp-cells implement the influ-

ence of spatial attention. According to our previous work [41], all inputs to model BOS neu-

rons were modeled as stochastic random processes with Poisson statistics, where each event

stands for an incoming action potential. As shown by the arrows to model populations in Fig

2, bottom-up inputs for visual stimuli and top-down signals from G2
obj- and G3

obj-cells are inde-

pendent processes, whereas the top-down signals from G1
obj are common to BOS1

R and BOS2
L

model neurons representing the same object (consistent pair). By contrast, Gsp-cell activates all

BOS neurons homogeneously, irrespective of their RF location and their border ownership

selectivity [73]. The firing rate of a G1
obj-cell (nG1

obj
) in the “bound” condition is higher than in

the “unbound” condition (Fig 1B). In the latter situation, two objects (gray shapes) are located

left and right in the scene and G2
obj- and G3

obj-cells are activated (“unbound” condition). In addi-

tion to this G-cell activity corresponding to the geometry of the scene, we assume that top-
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down attention increases the firing rate of the corresponding G-cells further, as in the “bound-

attended” condition. We describe the rates of G-cells in the Numerical experiments section

below.

Previous computational studies [25, 26] have that hypothesized receptive field of the Gobj-
cells have a variety of sizes, so they can respond to objects of different scales in the visual scene.

Zhang and von der Heydt have investigated how responses in physiological BOS neurons are

modulated depending on object size [20]. By contrast, in the present study, we have focused

on one scale only, and assume that the mechanisms are identical at all scales. The same applies

to Gsp-cells. We hypothesize that populations of Gobj- and Gsp-cells with various sizes of recep-

tive field for responding to whole object scales exist in visual cortices, which functionally

results in the zoom lens model of attention [54] that has been supported by behavioral and

neurophysiological studies [74, 75]. The zoom lens model proposes that attention can subtend

to as little as a fraction of a degree of angle, and, in the other extreme, can be dilated to an even

distribution over the entire visual field, with a concomitant loss of spatial resolution for larger

scales. Gobj-cells and Gsp-cells with appropriately scaled receptive fields may tile the visual

scene for representing objects with a variety of sizes.

Model neurons and synapses

In our model, the BOS neurons are integrate-and-fire neurons as in previous models [41, 76,

77], and described in detail as follows. The dynamics of the subthreshold membrane potential

(V) of a model BOS neuron are

dVðtÞ
dt
¼ �

VðtÞ
tm
þ
IsynðtÞ
Cm

ð1Þ

where τm is membrane time constant, and Cm is membrane capacitance. Neuronal model

parameters are chosen based on our previous model [41]. Isyn(t) represents the synaptic cur-

rent that flows into model BOS neurons. It is the sum of three types of inputs: Ivis from bot-

tom-up visual stimuli, IGsp and IGobj for top-down modulatory inputs from spatial grouping

(Gsp) and object-based grouping (Gobj) cells, respectively,

IsynðtÞ ¼ IvisðtÞ þ IGspðtÞ þ IGobjðtÞ: ð2Þ

According to our previous model [41], bottom-up excitatory postsynaptic currents (Ivis) are

mediated by glutamatergic receptors of the AMPA type,

IvisðtÞ ¼ gAMPAðVðtÞ � VEÞwvissAMPAðtÞ ð3Þ

where VE = 0 mV is the reversal potential and wvis represents the excitatory synaptic weight

from visual stimuli to model BOS neurons, chosen as wvis = 140. V is the subthreshold mem-

brane potential of a model BOS neuron from Eq 1. The conductance of the fully activated syn-

apse is gAMPA = 0.104 nS, and the fraction of open channels of AMPA receptors (sAMPA) is,

dsAMPAðtÞ
dt

¼ �
sAMPAðtÞ
tAMPA

þ
X

k

dðt � tkvisÞ ð4Þ

where the postsynaptic decay time constant is τAMPA = 2.0 ms. The sum over k runs over all

spikes originating from orientation-selective neurons responding to the visual stimuli. Each

spike is entered as a Dirac delta function, δ(t), which assumes a nonzero value at the spike

times of the visually driven input neurons (tkvis), zero elsewhere, and has an integral of unity

over any interval that includes tkvis.
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In our network model (Fig 2), whereas G1
obj-cells provide common modulatory feedback

inputs for the consistent pair (BOS1
R and BOS2

L neurons), signals from G2
obj- and G3

obj-cells are

independently projected onto BOS1
L and BOS2

R neurons. In contrast, signals arising from Gsp-
cells carrying spatial attention are mediated by homogeneous projections to all model BOS

neurons irrespective of their BOS selectivity. We hypothesize that the modulatory feedback

takes the form of currents through NMDA receptors [42, 43]. All NMDA receptors have a volt-

age dependence that is controlled by [Mg2+] [78], which we assume as [Mg2+] = 1 mM. A large

variety of NMDA receptors are expressed in the mammalian brain, with different physiological

properties that depend on the combination of their subunits (for a review, see [79]). The exact

properties of NMDA receptors in the visual cortical circuits is unknown. Here, we will use a

standard computational model for generic NMDA receptors [76, 80] in which the NMDA

receptors mediated synaptic current IGobj and IGsp are defined as follow:

IGfbðtÞ ¼
gNMDAðVðtÞ � VEÞ

1þ ½Mg2þ� exp ð� VðtÞ=V0Þ=3:57
wBOS
fb sNMDAðtÞ ð5Þ

where the subscript fb represents the source of the feedback signals, obj for Gobj- or sp for Gsp-
cells. We use V0 = 16.13 mV. wBOS

obj = 110 and wBOS
sp ¼ wBOS

obj =2 are parameters symbolizing the

synaptic weight from Gobj- and Gsp-cells to BOS neurons, respectively. The synaptic conduc-

tance of a fully open NMDA synapse is gNMDA = 0.327 nS; however, at resting voltage (-70

mV), voltage-dependent Mg2+ blockage (implemented by the denominator in Eq 5) reduces

the conductance by more than a factor of 20, making it much smaller than that of a AMPA

synapse.

The fraction of open NMDA channels in a synapse is sNMDA, defined as

dsNMDAðtÞ
dt

¼ �
sNMDAðtÞ
tNMDA;decay

þ axðtÞð1 � sNMDAðtÞÞ ð6Þ

dxðtÞ
dt
¼ �

xðtÞ
tNMDA;rise

þ
X

k

dðt � tkfbÞ ð7Þ

where α = 1/ms. The rise time for NMDA synapse is τNMDA,rise = 2 ms, and their decay time

constant is τNMDA,decay = 80 ms [80]. As in the description of AMPA synaptic currents in Eq 4,

the sum over k is over spike time (tkfb), which are now the times of spikes occurring in G-cells.

Numerical experiments

In our network model, model BOS neurons integrate bottom-up inputs, representing object

borders, with top-down influences mediating the perceptual grouping structure and selective

attention (Fig 2). Since the contents of the RFs are identical for all visual inputs considered

(see the three configurations in Fig 1B), the bottom-up input has the same statistics in all three

conditions, which were modeled as Poisson spike trains with a mean rate of 200Hz. This input

should be interpreted as originating from a population of visually responsive neurons rather

than from a single neuron. This rate is chosen according to our previous theoretical work [41].

The Gobj-cells activity is based on the integration of the responses of BOS neurons and rep-

resents the visual scene in terms of objects, thus providing a fast sketch of the location and

rough shapes of objects in the scene [25, 26]. In this work, we focus on the interaction of mod-

ulatory top-down influences with the driving bottom-up input. As in our previous model [41],

we increased the Gobj-cell activity in the bound condition and observed the influence of its

activity on BOS neurons. Likewise, we increased the activity of G-cells to represent attentional
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selection of the target object and location without being concerned about the source of atten-

tional input.

The activity of Gsp- and Gobj-cells were simulated as Poisson-distributed spike trains. The

rates of G-cells for representing stimulus and attention conditions are summarized in Table 1.

In the unbound condition (left panel in Fig 1B), we assume that G1
obj-cell fires spontaneously

with a mean frequency of 5Hz. In the presence of an object in its RF, a Gobj-cell increases its

activity. Therefore, in the unbound-condition, G2
obj- and G3

obj-cells are activated with a mean

rate of 30Hz for representing objects on each side. If the object is present but not attended

(bound-ignored; middle panel on Fig 1B), the firing frequency of G1
obj-cell increases to 30Hz.

In contrast, the activities of non-preferred Gobj-cells decrease to 5Hz. In these ignored condi-

tions, Gsp activity is an independent Poisson spike train of 3Hz. If the object is attended

(bound-attended condition; right panel on Fig 1B), the G1
obj-cell receives both bottom-up input

from BOS cells and top-down signal from attentional control areas for object-based attention

and its firing frequency increases to 60Hz. Attentional activation of G1
obj-cell decreases the fir-

ing rates of G2
obj- and G3

obj-cells to 2.5Hz [25, 26]. At the same time, the activity of the Gsp-cell

increases to 15Hz. Although we will, for simplicity, refer to the activity of a single G-cell, the

top-down spike train should be understood as activity originating from a population of G-

cells, just as the bottom-up input is the combined activity from many visually responsive neu-

rons. Note that stimulus and attention conditions are fully described by the firing frequencies

of G-cells in our model.

We integrated the differential equations using a fourth-order Runge-Kutta algorithm with a

time step of 0.1 ms. We simulated 100 trials of a length of 200 sec each, for a total of 20,000

simulated biological seconds per condition. The first 750 ms of simulated results was always

discarded to minimize the effect of transients (in analogy to the onset transients that are rou-

tinely removed in electrophysiological experiments, including in ref [39]). We also extended

the simulation beyond 200 sec by the length of the correlation window to allow computation

of the correlation function (see below). The code for the simulations was written in the C pro-

gramming language (source code available as S1 Code).

Analysis of spike synchrony between model BOS neurons

We quantified spike synchrony by first dividing time into bins of 1 ms width, each containing

either 0 or 1 spike. A spike train was thus transformed into a stochastic process (Sij;kðnÞ), where

i is the trial number, j and k are the identity of the neuron (BOSjk; BOS1
R, BOS1

L, BOS
2
R, or BOS2

L),

and n is the bin index. Sij;kðnÞ is then a binary vector in which each component takes on the

value of 0 if there is no spike in the interval [n, n + 1) ms in the BOSjk model neuron during

trial i or 1 if a spike is present in this interval.

The correlogram between two spike trains Sil;mðnÞ and Sip;qðnÞ for BOSlm and BOSpq model

neurons is the mean of the cross-correlations over all trials. The cross-correlation operator (�)

is defined as follows:

CiðtÞ ¼ Sil;m � S
i
p;q ¼

X201000þwd

m¼1000� wd

Sil;mðmÞS
i
p;qðmþ tÞ ð8Þ

where wd = 250 ms is the maximal window of the cross-correlation function, and τ is the time

lag between spike trains (−wd� τ� wd). Note that the lower bound of the sum results in the

removal of the transient onset activity of 750 ms duration.
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Changes in firing rate, e.g. those produced by attention, will change the correlations. We

compensated for any such effects by subtracting the average spike frequency from the neuron

spike train for each trial [36]. The mean spike count per bin of spike train of BOSjk in trial i was

as follows:

f ij;k ¼
1

Y

X201000

n¼1000

Sij;kðnÞ ð9Þ

where Θ = 200 sec is the length of the simulated trials. The cross-correlation function, CC(τ),
was computed as follows:

CCiðtÞ ¼
1

Y
ðSil;m � f

i
l;mÞ � ðS

i
p;q � f

i
p;qÞ ð10Þ

and the correlogram, CCG(τ), was defined as follows:

CCGðtÞ ¼ hCCiðtÞii ð11Þ

where h ii denotes the average over trial i. Since the spike trains are time-density functions

(e.g., counts/ms), the cross-correlation and correlogram have the dimensions of coincidences/
s2. Correlograms were smoothed by a Gaussian kernel with σ = 4 ms for facilitating compari-

son with the neurophysiological data [39]. Following that paper, in the Results section of the

main text the correlograms were symmetrized according to the following equation:

CCGsynðtÞ ¼
1

2
½CCGðtÞ þ CCGð� tÞ�: ð12Þ

The magnitude of synchrony between model BOS neurons (Mi) is represented as the inte-

gral of the correlogram (Eq 10) in the range of ±T:

Mi ¼
XT

t¼� T

CCiðtÞ � binsize ð13Þ

where binsize = 1 ms. The average magnitude of synchrony over trials (AM) is

AM ¼ hMiii: ð14Þ

Loose synchrony (correlations on the order of tens of milliseconds) was computed using

T = 40 ms.

Jitter method for computing tight synchrony

The application of jitter methods was used for testing the hypothesis that neurons operate at or

below any specific temporal resolution [50, 51]. In this method, the data from each neuron are

divided into bins based on the jitter window, starting at the stimulus onset. Each spike of each

neuron is then independently moved to a new location, selected from the uniform distribution

on the jitter window to which it belonged in the original data (see also Fig 2 in Amarasingham

et al. [50]). In this way, the number of spikes within each bin is preserved in the resampling

data. The advantage of this method is that it helps to disambiguate short-term from long-

termp correlations in the correlograms. Shorter jitter windows remove more of the long time-

scale correlation between the neurons (the loose synchrony) while preserving short time-scale

correlation (the tight synchrony). In order to compute the tight synchrony, based on the physi-

ological work [39], the influences of spikes outside 20 ms were removed by implementing an

interval jitter method.

PLOS COMPUTATIONAL BIOLOGY Distinct top-down modulations for spatial and object-based attention

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008829 March 25, 2021 27 / 33

https://doi.org/10.1371/journal.pcbi.1008829


For each spike train, spikes were jittered in a uniform distribution in disjoint, contiguous

jitter window of 20 ms. Whereas the original spike trains were binned in 1 ms bins with a max-

imum of 1 spike/bin, the jittered spike trains could have as many spike in a bin as were present

in each 20 ms jitter window of the original binned spike train. By shifting the spikes to new

positions in each 20 ms jitter window, the overall firing rate profile of each trial was preserved

at the resolution of the width of jitter window. Repeating this jittering produced a sequence of

surrogate spike trains. The cross-correlation of each of the surrogates produced a distribution

of correlogram. The mean of this distribution was subtracted from the mean of correlogram of

the original spike trains (see also Eq 11). The r jittered correlogram were found by taking the

trial-wise mean cross-correlation of each jittered spike train Si;r
�

l;m and Si;r�p;q in trial i, as shown in

the previous section:

JrðtÞ ¼
1

Y
hSi;r

�

l;m � S
i;r�
p;q ii ð15Þ

where Θ = 200 second is the length of the simulation trials. In this work, we repeated the above

process 200 times, creating 200 surrogate data sets (r = 200).

The tightened, jitter-correlated correlogram, CCG�, was found by subtracting the mean of

the r jittered correlogram, hJrir, for the amount of overlap, as follows:

CCG�ðtÞ ¼ hCCiðtÞii � hJrðtÞir: ð16Þ

We also computed the integral of the tight synchrony (Eq 16) in the range of ±5 ms:

M� ¼
X5

t¼� 5

CCG�ðtÞ � binsize ð17Þ

M� defined by Eq 17 implied the index as the magnitude of the tight synchrony. In a manner

similar to regular loose synchrony, the spike trains have bin size of 1 ms.

Supporting information

S1 Fig. Noise correlation between model BOS neurons. The gray, black and red bars repre-

sent the noise correlation of the Unbound-ignored, Bound-ignored, and Bound-attended con-

ditions, respectively. A: Noise correlation for consistent BOS neurons. Confidence intervals of

noise correlation of this pair for the Unbound-ignored, Bound-ignored, and Bound-attended

were 0.20 ± 0.06 (SD = 0.09), 0.20 ± 0.05 (SD = 0.08), and 0.07 ± 0.06 (SD = 0.10), respectively.

B: Noise correlation for the inconsistent pairs. Confidence intervals of noise correlation of

these pairs for the Unbound-ignored, Bound-ignored, and Bound-attended were 0.04 ± 0.03

(SD = 0.05), 0.02 ± 0.03 (SD = 0.05), and 0.03 ± 0.02 (SD = 0.04), respectively. Asterisks indi-

cate significant differences between conditions (�� P< 0.01, t-test). Error bars indicate SDs.

(TIF)

S2 Fig. Correlation and loose synchrony between bottom-up visual inputs to BOS neurons.

The gray, black and red lines and bars represent the cross-correlations of the Unbound-

ignored, Bound-ignored, and Bound-attended conditions, respectively. A, B: Cross-correlation

and loose synchrony between Gsp- and G1
obj-cells. C, D: Cross-correlation and loose synchrony

between bottom-up visual inputs to BOS1
R and BOS2

L neurons (consistent pair). E, F: Cross-cor-

relation and loose synchrony between bottom-up visual inputs to inconsistent pairs. Note that

curves in panels A, C, and E are not normalized. Hyphen in panel B indicates no significant

difference between conditions (p< 0.1, t-test). Shaded areas in panels A, C, and E represent
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SEM. Error bars in panels B, D, and F indicate SDs.

(TIF)

S1 Code. The source code for the proposed model (C programming language).

(ZIP)
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