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Using photothermal therapy to treat cancer has become an effective method, and the
design of photothermal agents determines their performance. However, due to the major
radiative recombination of a photogenerated electron in photothermal materials, the
photothermal performance is weak which hinders their applications. In order to solve
this issue, preventing radiative recombination and accelerating nonradiative
recombination, which can generate heat, has been proved as a reasonable way. We
demonstrated a Cu2MoS4@MXene nanocomposite with an obviously enhanced
photothermal conversion efficiency (η = 87.98%), and this improvement can be
attributed to the electron migration. Then, a mechanism is proposed based on the
electron transfer regulatory effect and the localized surface plasmon resonance effect,
which synergistically promote nonradiative recombination and generate more heat.
Overall, our design strategy shows a way to improve the photothermal performance of
Cu2MoS4, and this method can be extended to other photothermal agents to let them be
more efficient in treating cancer.
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INTRODUCTION

In the 21st century, the cancer problem has become more dominant and malignant, which is one of
the most threatening public health questions and causes over 9.6 million deaths annually in the world
(Massagué and Obenauf, 2016; Steeg, 2016). However, there is still a method that can rapidly and
completely treat cancer because of metastasis; meanwhile, the traditional treatments, for e.g.,
radiotherapy and chemotherapy, may induce severe side effects which are traumatic for patients
(Yilmaz et al., 2007). In recent decades, the optical treatment has been considered an efficient and less
traumatic approach to treat primary andmetastatic tumors, and the photothermal therapy (PTT) has
been synergistically used with traditional methods and has shown a satisfied treatment effect (Chang
et al., 2019; Yuan et al., 2020). In brief, under optical irradiation, photothermal reagents can generate
localized hyperthermia and treat cancer. However, most of the existing photothermal materials lack
photothermal performance due to the minority nonradiative recombination of the photogenerated
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electron. The low photothermal conversion determines that more
materials or higher laser power will be used to achieve the heat
temperature, which can easily cause damage to patients (Zhou
et al., 2018; Xi et al., 2020). So, the suitable photothermal
materials with high photothermal performance are urgently
needed.

Ternary chalcogenide, Cu2MoS4, is a representative material
that has been exploited in photothermal therapy (Chen et al.,
2014; Chang et al., 2019). However, the photothermal
performance of Cu2MoS4 is weak which is common for
simplex phototherapy reagents and can be explained by the
band theory that the photothermal effect of Cu2MoS4 is
mainly induced by the nonradiative recombination (producing
phonon) of photogenerated electron–hole pairs, but this
recombination is low compared with the radiative
recombination (Zhang et al., 2015; Cheng et al., 2018; Zhang
et al., 2018; Lv et al., 2021). Hence, it is highly desirable to
improve the photothermal performance of Cu2MoS4 to make it a
suitable photothermal reagent that achieves better anticancer
outcomes.

In order to accelerate the probability of nonradiative
recombination in the electron transfer process and prevent
radiative recombination, which can efficiently enhance the
photothermal effect of Cu2MoS4, constructing a
heterostructure of noble metal or graphene and Cu2MoS4 has
been proved as a reasonable method (Zhang et al., 2016; Chang
et al., 2020). The high conductivity can lead the electron to
migrate from Cu2MoS4 to noble metal or graphene when they
come into contact with Cu2MoS4, and then the radiative
recombination can be prevented while the probability of
nonradiative recombination increases, thus enhancing
photothermal performance (Rameshbabu et al., 2017).
Nevertheless, the composite process of Cu2MoS4 and noble
metal (usually nanoparticles) or graphene is difficult, and the
interface resistance of metal nanoparticles may hinder the
transfer of electrons, weakening the migration. Hence, MXene,
a new member of 2D materials considered 2D transition metal
carbides or nitrides with metallic conductivity, has become a
substitute for noble metal and graphene, and the abundant
surface termination groups on MXene’s surface provide a large
number of sites for Cu2MoS4 to anchor on (Guo et al., 2021;
Mohammadi et al., 2021; Qiu et al., 2021). Meanwhile, owing to
the high work function, superior electron conductivity, and lower
interface resistance (compared with noble metal nanoparticles) of
MXene, the caused electron transfer regulatory effect can enhance
the photothermal performance of composites, which is similar to
the aforementioned noble metal (Mariano et al., 2016; Chang
et al., 2020; Li et al., 2021). More interestingly, under visible light
radiation at 800 nm (1.5 eV), the MXene can produce the
localized surface plasmon resonance (LSPR) effect which is a
novel method to assist the separation of electrons and further
stimulate the generation of heat (Mariano et al., 2016; Demellawi
et al., 2018; Lioi et al., 2019).

We introduced Ti3C2Tx MXene nanosheets to improve the
photothermal performance of Cu2MoS4, and a Cu2MoS4@MXene
nanocomposite was synthesized (Scheme 1). The results of the
photothermal conversion experience confirmed our hypothesis,

and the best performance of the nanocomposite obtained can
increase the temperature by more than 55 °C under NIR radiation
(1.0 W/cm−2 at 808 nm) with an obviously enhanced
photothermal conversion efficiency (87.98%) compared with
pure Cu2MoS4 (72.07%). Using the absorption spectrum and
photoluminescence (PL) spectrum, the electron transfer process
can be verified, and the obvious quenching phenomenon,
i.e., weakened radiative recombination, reflects the rapid
separation and transfer of photogenerated electrons. Based on
the experimental results and band theory, we proposed a
mechanism of enhanced photothermal performance that is
mainly caused by promoted separation and transfer of electron
and nonradiative recombination, owing to the electron transfer
regulatory effect and LSPR effect. Therefore, these results suggest
that the Cu2MoS4@MXene nanocomposite with enhanced
photothermal performance could be used to treat cancers.

EXPERIMENTAL SECTION

Preparation of Ti3C2Tx MXene Nanosheets
Using a minimally intensive layer delamination (MILD) method
as previously reported (Halim et al., 2014), the Ti3C2Tx MXene
nanosheets were prepared from commercial Ti3AlC2 MAX
purchased from Forsman Scientific Co. In detail, first, the
etching agent was prepared by gently adding 1.5 g LiF into
20 ml of 9 M HCl with continuous stirring. After LiF was
totally dissolved, 1 g Ti3AlC2 MAX powder was slowly added
to the etching agent, and the mixture was continuously stirred at
35°C for 30 h. Afterward, the product was washed several times
with deionized water (DI water), and when the pH of the
supernatant reached 6, the supernatant was ultrasonicated for
1.5 h with N2 atmosphere protection in an ice bath. Then, the
Ti3C2Tx MXene nanosheets were obtained after centrifugation
(3,500 rpm for 1 h).

Preparation of Cu2O Precursor
The Cu2O precursor was synthesized by reducing copper
hydroxide. NaOH (30 ml 3.75 M) solution was added dropwise
in CuSO4 (30 ml 0.5 M) solution with continuous stirring to
prepare Cu(OH)2 colloid; meanwhile, glucose (C6H12O6, 30 ml
0.75 M) solution was prepared and kept at 60°C. Then, the
Cu(OH)2 colloid was heated to 60°C and added into glucose
solution drop by drop at 60°C by placing in a water bath. Then,
the mixture color gradually turned brick-red which indicates the
successful preparation of Cu2O. After allowing the colloid to react
at 60°C for 30 min, the precursor was obtained through filtrating
colloid and vacuum drying.

Synthesis of Cu2MoS4@MXene
Nanocomposites
To synthesize Cu2MoS4@MXene nanocomposites, 0.02 gMXenewas
first dissolved in 30mlDIwater, and (0 g, 0.14 g, 0.42 g, 0.70 g, 0.98 g,
and 1.3 g) thioacetamide (TAA) was added into MXene colloidal
solution. Meanwhile, (0 g, 0.17 g, 0.51 g, 0.85 g, 1.2 g, and 1.6 g)
MoO3 and (0 g, 0.12 g, 0.36 g, 0.60 g, 0.84 g, and 1.1 g) Cu2O were
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ultrasonically dispersed into 5ml DI water, respectively. Then, three
dispersion solutions were transferred into a 100-ml tailor-made
Teflon reactor, and using a microwave, the reaction temperature
could be rapidly elevated to 150°C within 3min. Afterward, the
reaction temperature was maintained at 150°C for 2 h, and the
Cu2MoS4@MXene nanocomposite (marked Cu2MoS4, Cu2MoS4@
MXene-1, Cu2MoS4@MXene-3, Cu2MoS4@MXene-5, Cu2MoS4@
MXene-7, and Cu2MoS4@MXene-9 for different ratios) products
were obtained after washing and drying.

Photothermal Effect of Cu2MoS4@MXene
Nanocomposites
In the following photothermal performance experiment, a series
of concentration (0, 50, 100, 200, 500, and 1,000 μg/ml) solutions
(1 ml) of six samples were prepared in an Eppendorf tube,
respectively, and a NIR laser (1.0 W/cm2) at 808 nm was used
to irradiate the samples (Zhang et al., 2021). Then, during 600 s of
irradiation, the temperature change of samples was monitored
using an infrared thermal imaging camera and recorded on a
computer connected to the camera in real-time. The
photostability was tested (500 μg/ml) by repeating the heating
(laser on for 600 s)/cooling (laser off for 600 s) processes three
times (power density is 1.0 W/cm2). Furthermore, the laser was
modulated for 0.5 W/cm2, 1.0 W/cm2, and 1.5 W/cm2 to evaluate
the influence of power density.

Calculation of Photothermal Conversion
Efficiency
Based on the results of the photothermal experiment, the
photothermal conversion efficiency can be calculated
according to Equation 1:

η � hS(Tmax − T0) − Qdis

W(1 − 10−A808) , (1)

where η is the photothermal conversion efficiency, h
(Wcm−2 K−1) is the heat transfer coefficient, S (cm2) is the
surface area of quartz cuvette, Tmax (K) is the highest
equilibrium temperature, T0 (K) is the surrounding
temperature, Qdis (W) is the heat loss which is approximate to
0, W is the power density of the laser, and A808 is the absorbance
of samples at 808 nm. Moreover, the Tmax, T0, and A808 can be
measured, while the hS is calculated through Equation 2:

hS � mWCW

τs
, (2)

where mW and CW represent the total mass and the specific heat
capacity of solvent and water, respectively, and τs is the time
constant which can be obtained through Equation 3:

t � −τs × lnθ � −τsln T − T0

Tmax − T0
, (3)

Using the recording temperature T, the τs can be calculated, and
then the photothermal conversion efficiency is calculated (Chen
et al., 2019).

Characterization and Measurement
The morphologies and compositions of precursors and
composites were characterized using the transmission electron
microscope (TEM, JEOL-2100F), the X-ray diffraction
spectrometer (XRD, Bruker D8 Advance), Raman and
photoluminescence (PL) spectroscopy (Renishaw inVia), and
UV-vis-NIR spectra (JASCO V-570). Infrared thermal imaging
was monitored using an IR thermal camera (TELEDYNE FLIR
Exx) and recorded using a computed connected to the camera.

SCHEME 1 | Process of synthesizing Cu2MoS4@MXene nanocomposites.
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RESULT AND DISCUSSION

Characterization of Precursors and
Cu2MoS4@MXene Nanocomposites
As illustrated in Scheme 1, we have prepared Cu2MoS4@MXene
nanocomposites through the in situ hydrothermal method (see
details in Experimental Section). In brief, the prepared MXene
nanosheets were first mixed with thioacetamide (TAA) in water;
meanwhile, the MoO3 and Cu2O were ultrasonically dispersed in
water. Then, the reaction fluid prepared by mixing three
dispersions was poured into a microwave hydrothermal
reactor and allowed to react using a microwave. After washing
with DI water, the Cu2MoS4@MXene nanocomposites can be
obtained. More importantly, this process allows Cu2MoS4
nanoplates to uniformly grow on MXene nanosheets which
cannot be reached by the physical mixing method.
Furthermore, due to the high quality of Cu2MoS4@MXene
nanocomposites and the unique effect caused by composite
processes, such as band engineering and high electron
conductivity of MXene, a more excellent photothermal
conversion performance can be achieved than than that of
pure Cu2MoS4 nanoplates.

As for the basics of nanocomposites, the MXene nanosheets
were first prepared using the MILD method (Halim et al., 2014).
The Ti3AlC2 (MAX) precursor was etched with LiF and HCl.
During the etching process, the Al layer in the MAX phase was
selectively etched and Ti3C2Tx nanosheets remained. As shown in
the XRD pattern (Figure 1A), both the diffraction peaks at 39°,

which can be indexed to the (104) plane of Ti3AlC2 MAX,
disappear, and the (002) peak left shifts to 6.5°, indicating
successful preparation of Ti3C2Tx nanosheets (Lipatov et al.,
2016). According to the pattern of the Raman spectrum
(Figure 1B), the vibration modes of MXene nanosheets can be
divided into two types: out-of-plane mode (A1g) and in-plane
mode (Eg), and the vibration peak at 198 cm−1, 715 cm−1 and
253 cm−1, and 502 cm−1 can be well assigned to these two modes,
respectively (Hu et al., 2015). Using TEM, the monolayer Ti3C2Tx

nanosheets can be seen with a size of approximately 1 μm, as
shown in Figure 1C. The results of these characterization
methods show that the high-quality MXene nanosheets have
been successfully produced and can be used in the next
composite process.

Because of many hydrophilic terminations planted on the surface
of MXene nanosheets during the liquid etching process, the MXene
can be well dispersed in water, as shown in Supplementary Figure
S1, which ensures the stability of MXene solution in the
hydrothermal process. After the hydrothermal process, the
morphology of MXene nanosheets has undergone an obvious
change (Figure 1D), and there are many nanoplates anchored on
the surface of unimpaired MXene nanosheets. In Figure 1E, the
distribution of elements reflected by EDS shows that the MXene is
still intact, and the Cu2MoS4 nanoplates are only synthesized on the
surface of MXene nanosheets which meets our expectations.
Interestingly, it can be seen that the size of Cu2MoS4@MXene
nanocomposites appears bigger than that of pure MXene
nanosheets, and this phenomenon may be a combination of

FIGURE 1 | Characterization of precursor and Cu2MoS4@MXene nanocomposites. (A) XRD pattern of Ti3C2Tx MXene and Cu2MoS4@MXene. (B) Raman spectra
of Cu2MoS4, MXene, and Cu2MoS4@MXene. TEM images of (C) MXene nanosheets and (D) Cu2MoS4@MXene. (E) EDS mapping of Ti, C, F, O, Cu, Mo, and S of
Cu2MoS4@MXene.
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several nanosheets, which is caused by some anchored Cu2MoS4 that
can connect adjacent MXene nanosheets. In order to further confirm
the successful synthesis of Cu2MoS4@MXene nanocomposites, the
XRD and Raman spectra were used. In Figure 1A, the XRD result of
Cu2MoS4@MXene nanocomposites illustrates that the Cu2MoS4 on
the MXene nanosheets has good crystallinity, and the major peaks at
6.1°, 16.3°, 28.8°，37.4°, and 47.9° are well indexed to the MXene and
tetragonal-phase of Cu2MoS4 (P 4 2m, JCPDS 81–1,159) (Lipatov
et al., 2016; Zhang K. et al., 2017). Moreover, no evident diffraction
peak of TiO2 is consistent with the aforementioned verdict that the
MXene nanosheets are unimpaired during the hydrothermal process
which is because of a reductive environment made by the hydrolytic
process of TAA. This conclusion can also be proved by the Raman
spectrum in Figure 1B, where there is no peak at 150 cm−1 assigned
to TiO2 (Zhang C. J. et al., 2017). In addition to this, the peaks of
Cu2MoS4@MXene nanocomposites at 200 cm−1, 233 cm−1, and
415 cm−1 represent the coexistence of Cu2MoS4 and MXene (Kim
et al., 2017). In themicroscopic image, the size of tetragonal Cu2MoS4
nanoplates that anchored on the MXene surface is about 20 nm
(Figure 2A). Furthermore, the high-resolution TEM image in
Figure 2B shows the crystal lattice spacing between 0.27 and
0.26 nm, which can be ascribed to the (200) plane of Cu2MoS4
and the (0,110) plane of MXene, and the FFT images (inset of
Figure 2B) illustrate the tetragonal and hexagonal structure of
Cu2MoS4 and MXene, respectively (Zhang K. et al., 2017; Agresti
et al., 2019). Thus, according to the spectrum analysis and
microscopic analysis, it can be confirmed that the Cu2MoS4@
MXene nanocomposites have been successfully prepared with high
quality.

Considering the ratio of Cu2MoS4 and MXene in Cu2MoS4@
MXene nanocomposites may affect their performance, we prepared a
series of nanocomposite samples with a gradient ratio. There is a
regular variation in the Raman spectrum (Figure 2C and
Supplementary Figure S2), and with the increased ratio of
Cu2MoS4, the vibration peak of MXene becomes decrescent and
that of Cu2MoS4 becomes stronger. Moreover, the microscopic
morphology of Cu2MoS4@MXene-1, Cu2MoS4@MXene-5, and
Cu2MoS4@MXene-9 prove the result of the Raman spectrum,
which shows that the observed coverage ratio of anchored
Cu2MoS4 nanoplates on MXene nanosheets increases, but when
the ratio of Cu2MoS4 is too high (Cu2MoS4@MXene-9), the excessive
aggregation occurs which is unfavorable in application (Fang et al.,
2020). In addition, when the ratio of Cu2MoS4 becomes high, there
are more evident signals of Cu and Mo elements in EDS mapping
(Supplementary Figure S3) compared with the low ratio sample.
Also, an evident aggregation of Cu2MoS4 can be seen, which further
verified the aforementioned point. However, even if the ratio is
excessively increased, there are still no Cu2MoS4 nanoplates lying
outside the MXene nanosheets because of the anchoring effect
mentioned earlier, which ensures the contact of Cu2MoS4 with
high conductivity MXene and the electron transfer regulatory effect.

Optical Properties of Cu2MoS4@MXene
Nanocomposites
As introduced earlier, the MXene can affect the photothermal
performance of nanocomposites through band engineering and
regulatory effect, so to make clear the role of MXene in this

FIGURE 2 | Characterization of different Cu2MoS4@MXene nanocomposites. (A,B) HRTEM of Cu2MoS4@MXene (inset in B is the FFT of Cu2MoS4 and MXene,
respectively). (C) Raman spectra of Cu2MoS4@MXene-1, Cu2MoS4@MXene-3, and Cu2MoS4@MXene-5. (D–F) TEM images of Cu2MoS4@MXene-1, Cu2MoS4@
MXene-5, and Cu2MoS4@MXene-9, respectively.
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process and whether the nanocomposite will gather an improved
performance, the following optical properties of nanocomposites
are enumerated: the result of the PL spectrum suggests that the
nanocomposites’ PL intensity is different from pure Cu2MoS4,
and the samples marked as Cu2MoS4@MXene-1, Cu2MoS4@
MXene-3, and Cu2MoS4@MXene-5 have a lower intensity.
According to the band theory, the PL intensity is associated
with the recombination of photogenerated electron–hole pairs,
and the more radiative recombination occurs, and the higher PL
intensity will be received (Feng et al., 2021; Li et al., 2021). Thus, it
is obvious that the radiative recombination rate of samples with
lower PL intensity is slower than that of pure Cu2MoS4 because
the MXene with high electron conductivity can separate and
transfer electrons from photogenerated exciton which prevents
the radiative recombination and increases the concentration of
carriers. Moreover, the separated carriers can efficiently facilitate
crystal lattice vibrations after interacting with hot carriers
produced by MXene because of the NIR-induced LSPR effect,
thus leading to elevated temperatures (Zhou et al., 2020; Wang
et al., 2021). However, when the ratio of Cu2MoS4 is excessive, the
PL intensity becomes stronger and more radiative recombination
occurs, which could be caused by aggregation issues and may
weaken the photothermal performance.

Figure 3B is the UV-vis-NIR absorption spectrum of
Cu2MoS4 and Cu2MoS4@MXene nanocomposites, and the
pattern illustrates that the nanocomposites exhibit a stronger
absorption than the pure Cu2MoS4 in a nearly full band spectrum,
which is another cause of high photothermal performance. As
shown in Figure 3B, the absorption spectra of pure MXene shows
a weak absorption intensity in visible and near-infrared region
compared with Cu2MoS4@MXene nanocomposite. Furthermore,
according to Tauc’s formulation (Wood and Tauc, 1972; Tauc,
1974), the optical band gaps can be calculated as around 1.60 and
1.57 eV for pure Cu2MoS4 and Cu2MoS4@MXene
nanocomposites, respectively (Figure 3C). The narrowing
band gap can be explained by the band theory that when the
high work function MXene nanosheets come in contact with
Cu2MoS4, the electrons will be drawn from a higher Fermi level of
Cu2MoS4 to MXene, and when this process achieves a balance,
the Fermi level of Cu2MoS4 will be brought down. So the band
gap of nanocomposites is narrower than that of pure Cu2MoS4. In

addition, this band gap engineering can promote the separation of
photogenerated exciton and improve the photothermal
performance, thus conforming to the result of the PL
spectrum mentioned previously.

Photothermal Performance
On account of the previously mentioned results, we forecast that
the high-quality Cu2MoS4@MXene nanocomposites possess better
photothermal performance than pure Cu2MoS4 due to the novel
effects caused by the composite process, e.g., band engineering,
electron transfer regulatory effect, and anchored effect. Thus, the
NIR thermal conversion performance of Cu2MoS4 and Cu2MoS4@
MXene nanocomposites was tested to verify this forecast. As shown
in Figure 4A, under NIR light (1.0W/cm2 at 808 nm) for 10min,
the temperature of each sample (500 μg/ml) has an obvious
increase, and the highest ΔT can reach more than 55°C with
two samples, i.e., Cu2MoS4@MXene-1 and Cu2MoS4@MXene-5,
which is higher than pure Cu2MoS4 (50°C). However, the
photothermal performance of samples marked as Cu2MoS4@
MXene-7 and Cu2MoS4@MXene-9 is worse, which may be
caused by the aggregation issue mentioned earlier. In addition,
the temperature change is also dependent on concentration and
laser power density which further demonstrates the distinguished
photothermal conversion property of Cu2MoS4@MXene
nanocomposites (Figure 4B and Supplementary Figure S4)
(Hao et al., 2021). Taking into account the photostability of
Cu2MoS4@MXene-1 and Cu2MoS4@MXene-5 (Supplementary
Figure S5), Cu2MoS4@MXene-5 has the best performance, which
matches the microscopic morphology and optical properties.
When compared with the corresponding NIR thermal time
constants (τs) and conversion efficiency (η) of pure Cu2MoS4
(292.12 s and 72.07%), the better τs and η of Cu2MoS4@
MXene-5 are calculated as 242.44 s and 87.98%, respectively
(Figure 4C and Figure 4D) (Chang et al., 2019; Chen et al.,
2019; Li et al., 2021). Therefore, based on all of these experimental
data, it is evident that the composite process efficiently promoted
the photothermal conversion ability.

Mechanism of Photothermal Performance
To reveal the reasons for the enhanced performance of
Cu2MoS4@MXene nanocomposites, their photothermal

FIGURE 3 |Optical properties of Cu2MoS4@MXene nanocomposites. (A) PL spectra (excited by a 325-nm laser from 500 to 630 nm) of Cu2MoS4 and Cu2MoS4@
MXene nanocomposites. (B) UV-vis-NIR absorption spectra of Cu2MoS4, Cu2MoS4@MXene, and MXene. (C) Tauc plots of Cu2MoS4 and Cu2MoS4@MXene.
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mechanism is proposed based on the previously analyzed
experimental data. As reported in other previous work,
under NIR irradiation, the electron in the photogenerated
exciton will transit to the conduction band; then, the major
electron in the excited state will recombine with the hole
through radiating fluorescence; meanwhile, only a minority of
electron–hole pairs have a photothermal effect due to
nonradiative recombination, which can be described as the
photothermal mechanism (Li et al., 2021). However, when the
high work function (5.28 ± 0.03 eV) MXene is introduced, the
heterojunction formed between Cu2MoS4 and MXene should
be regarded as the transfer barrier (Regulacio et al., 2018; Lin
et al., 2019; Yang et al., 2019; Prabaswara et al., 2020; Li et al.,
2021). Referring to the band theory, the excited electron will
irreversibly migrate from the Cu2MoS4 to MXene until their
Fermi level reaches equilibrium; then, this migration can be
accelerated because of the high-electron conductivity of
MXene, and this process is defined as the band engineering
caused by electron transfer regulatory effect. Obviously, the
major excited electron of Cu2MoS4 in Cu2MoS4@MXene
nanocomposites will migrate to MXene instead of
radiatively recombining with the hole, so the probability of
nonradiative recombination can multiply which improves the
photothermal performance (Li et al., 2021).

Meanwhile, the UV-vis spectrum and Raman spectrum
indicate an LSPR effect of MXene at 800 nm (1.5 eV) which

can be attributed to an out-of-plane transverse plasmonic
resonance, and owing to the LSPR effect, the MXene can
generate the hot carriers under vis-NIR irradiation. Then, the
injected hot carriers can further assist the separation and
transfer of electrons and prevent the radiative recombination
which is another crucial reason for improved photothermal
performance.

In brief, after the hydrothermal process, Cu2MoS4 was
anchored on the surface of MXene nanosheets, and the
electron spontaneously migrates across the transfer barrier
(electron transfer regulatory effect and band engineering).
Then, with the synergy of MXene’s LSPR effect, the
nonradiative recombination, i.e., the performance of
photothermal conversion, can be efficiently accelerated.

CONCLUSION

In summary, in order to improve the photothermal
performance of Cu2MoS4, the MXene nanosheets were
introduced, and the Cu2MoS4@MXene nanocomposite was
successfully synthesized. Due to the superior electron
conductivity and high work function of MXene, the motion
of the electron was changed at the heterostructure of
Cu2MoS4 and MXene, and the electron can migrate from
Cu2MoS4 to MXene which promotes the nonradiative

FIGURE 4 | Photothermal performance of Cu2MoS4 and Cu2MoS4@MXene. (A) Photothermal activity of Cu2MoS4 and Cu2MoS4@MXene nanocomposites. (B)
Concentration-dependent temperature change curves of Cu2MoS4@MXene-5. (C,D) Heating–cooling curves and linear time constant curves of Cu2MoS4@MXene and
Cu2MoS4.
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recombination and generates heat. Also, the experimental
results show that the radiative combination was evidently
prevented, indicating an accelerated nonradiative
combination, and the enhanced photothermal conversion
efficiency of Cu2MoS4@MXene nanocomposite can reach
87.98% compared with the pure Cu2MoS4 (η = 72.07%).
Then, a mechanism was proposed based on the electron
transfer regulatory effect and LSPR effect. Finally, this
work provides an efficient method to enhance the
photothermal performance of phototherapy reagents and
make them play a great role in cancer treatment.
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