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Background: The global coronavirus disease 2019 (COVID-19) pandemic has posed substantial 
challenges for healthcare systems, notably the increased demand for chest computed tomography (CT) 
scans, which lack automated analysis. Our study addresses this by utilizing artificial intelligence-supported 
automated computer analysis to investigate lung involvement distribution and extent in COVID-19 patients. 
Additionally, we explore the association between lung involvement and intensive care unit (ICU) admission, 
while also comparing computer analysis performance with expert radiologists’ assessments. 
Methods: A total of 81 patients from an open-source COVID database with confirmed COVID-19 
infection were included in the study. Three patients were excluded. Lung involvement was assessed in 78 
patients using CT scans, and the extent of infiltration and collapse was quantified across various lung lobes 
and regions. The associations between lung involvement and ICU admission were analysed. Additionally, the 
computer analysis of COVID-19 involvement was compared against a human rating provided by radiological 
experts.
Results: The results showed a higher degree of infiltration and collapse in the lower lobes compared to 
the upper lobes (P<0.05). No significant difference was detected in the COVID-19-related involvement of 
the left and right lower lobes. The right middle lobe demonstrated lower involvement compared to the right 
lower lobes (P<0.05). When examining the regions, significantly more COVID-19 involvement was found 
when comparing the posterior vs. the anterior halves and the lower vs. the upper half of the lungs. Patients, 
who required ICU admission during their treatment exhibited significantly higher COVID-19 involvement 

1020

	
^ ORCID: Rudolf Bumm, 0009-0005-8000-9113; Paolo Zaffino, 0000-0002-0219-0157; Andras Lasso, 0000-0002-4220-7064; Raúl San 
José Estépar, 0000-0002-3677-1996; Steven Pieper, 0000-0003-4193-9578; Jakob Wasserthal, 0000-0002-9921-5698; Maria Francesca 
Spadea, 0000-0002-5339-9583; Tsogyal Latshang, 0000-0001-6165-9878; Nadine Kawel-Boehm, 0000-0001-5594-8892; Adrian Wäckerlin, 
0009-0002-7458-2907; Raphael Werner, 0000-0002-7323-716X; Gabriela Hässig, 0009-0005-2969-9008; Markus Furrer, 0000-0002-4407-
2255; Ron Kikinis, 0000-0001-7227-7058.

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd-23-1150


Bumm et al. COVID: AI-derived prognostics from CT scans1010

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(2):1009-1020 | https://dx.doi.org/10.21037/jtd-23-1150

Introduction

The coronavirus disease 2019 (COVID-19) pandemic is 
caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), which was first identified in December 
2019 in Wuhan, China (1). The virus quickly became a 
global pandemic, with hundreds of millions of cases and 

almost seven million deaths worldwide (2,3).
Chest computed tomography (CT) imaging plays 

an important role in the diagnosis and management 
of COVID-19, particularly in cases where reverse 
transcription polymerase chain reaction (RT-PCR) testing 
is not available or inconclusive (4,5). CT imaging reveals 
characteristic features of the disease, provides information 
for diagnosis and staging, and can also help to monitor 
disease progression and assess the response to treatment (6).

Automated analysis of COVID-19-related chest CT 
scans would be very desirable for several reasons. Most 
importantly, the infiltrations and consolidations could be 
expressed as affected volume and directly quantified. The 
distribution of affected tissue in the sides of the lungs, lobes, 
and lung regions could be analyzed. Automatic processing 
could help to reduce the workload of radiologists and other 
healthcare professionals, enabling them to focus on patient 
care and other important tasks. Automation also has the 
potential to be more consistent than manual review, if it can 
be shown to be robust to differences across multiple clinical 
sites. Open-source availability of all software components 
would enable identical computations on computer hardware 
around the world which would support future pandemic 
preparedness.  

We recently developed a free and open-source 
software—LungCTAnalyzer (7)—for the medical imaging 
software 3D Slicer (8). The software is using artificial 
intelligence (AI)-tools for lung and lobe segmentation. It 
is designed specifically for the analysis of lung CT scans, 
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offering a comprehensive set of tools for the segmentation, 
quantification, and visualization of lung structures. By 
leveraging the power of 3D Slicer and building upon its 
functionalities, LungCTAnalyzer provides a user-friendly 
interface and a robust set of features that streamline 
the process of lung image analysis for the detection of 
emphysema, normal lung tissue, infiltrated and collapsed 
parenchyma.

As an open-source COVID dataset with radiologist 
scores has been published (9), the present study aims to 
quantitatively analyze the data to determine the accordance 
of computer vs. human analysis to demonstrate the 
feasibility of computer analysis with LungCTAnalyzer and 
to elaborate on the existing differences in lung involvement 
between the severity-scored groups, to evaluate whether 
tissue affection in severe cases could be attributed to the 
side of lungs, lung regions or lung lobes and to predict 
patients requiring intensive care unit (ICU)-treatment. We 
present this article in accordance with the MDAR reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-23-1150/rc).

Methods

Ethical statement 

All ethical statements have been included in the dataset 
paper (9). The study was conducted according to the 
guidelines of the Declaration of Helsinki (as revised in 2013). 

Patient population and open-source dataset 

The dataset used in this study has been recently published 
and expanded (9). In short, it includes data from 81 
COVID-19 patients (diagnoses confirmed by positive RT-
PCR tests), 50 during the first phase of COVID pandemic 
between April 2020 and May 2021 and 31 during the 
second between December 2020 and May 2021. They 
underwent non-contrast chest CT scans at Azienda 
Ospedaliera Pugliese-Ciaccio (Catanzaro, Italy). These 
scans feature volume reconstructions with 0.3 to 1 mm slice 
thickness. The average age of the patients was 56 years, 
ranging from 20 to 83, and the male-to-female ratio was 
42:39. Two distinct scanners were utilized at the clinical 
facility: Siemens Somatom Go. now (Siemens Healthineers 
GmbH, Erlangen, Germany) and Toshiba Aquilion 
ONE (Canon Medical System Europe B.V., Zoetermeer, 
The Netherlands). Among the patients, 81 underwent a 

single CT scan for diagnostic purposes, while 12 received 
additional scans for follow-up, resulting in a total of 93 
CT volumes in the database. To facilitate data sharing 
and processing, the DICOM files were anonymized and 
converted into NRRD format (http://teem.sourceforge.net/
nrrd/, accessed on 15 February 2021) using 3D Slicer (8). 

Visual assessment

Primary findings regarding COVID-19 in CT images 
involve atypical pneumonia and encompass two macroscopic 
lung tissue abnormalities: ground-glass opacity (GGO), 
which is an area of increased X-ray attenuation in the 
lung with preserved bronchial and vascular markings, and 
consolidation, referring to the filling of the pulmonary 
tree with material that attenuates X-rays more than the 
surrounding lung parenchyma.

An expert radiologist (Aldo Marzulla), one of the authors 
of the dataset paper (9), with over 20 years of experience) 
was tasked with visually evaluating the CT images and 
assigning a clinical score, based on the extent of lung 
involvement with the aforementioned manifestations. 
The radiologist navigated through the volume on his 
radiological workstation in axial, sagittal, and coronal 
planes, assigning a lung involvement classification scale 
ranging from 0, indicating no lung involvement (0%), to 5, 
representing severe lung involvement (greater than 75%), 
with intermediate levels covering minimal (less than 5%), 
mild (5% to 25%), moderate (26% to 50%), and significant 
(51% to 75%) involvement. This took about 2 to 3 minutes 
per case. These scores are included in the open dataset 
alongside each image volume.

In an effort to appraise the potential for interobserver 
bias through a comparison between human evaluators, a 
second radiological specialist (N.K.B., a co-author of this 
study) undertook an independent visual assessment using an 
identical scoring system. Intriguingly, out of the 81 patients 
evaluated, she deemed three as “not classifiable” (one patient 
with incomplete CT and two patients with pneumothorax). 
In addition, in 19 patients we noted possible preexisting 
lung disease (11 patients with possible fibrosis, 2 patients 
with COPD, 4 patients with non-COVID type interstitial 
lung alterations, 1 patient with a lung tumor and 1 patient 
with atelectasis of a lung lobe).

We made a deliberate decision to exclude the three 
unclassifiably patients from the study and to retain the other 
three patients with possible lung disease in the dataset for 
the sake of providing a comprehensive reference.
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Automated segmentation of the lungs and lung pathologies 

This study employed an automated approach for the 
segmentation of the lungs and lung pathologies using 
the free and open-source medical imaging software 3D 
Slicer (8), for which we wrote a special extension in the 
programming language Python: LungCTAnalyzer (7) using 
the same software license. The program can be run in batch 
processing mode, without manual interaction. CT data were 
imported into 3D Slicer as NRRD files. 

Data calibration

During a preliminary scan of all datasets, it became evident 
that the CT scans exhibited some heterogeneity in HU range, 
quality, windowing, and the presence of artifacts. Utilizing 
the TotalSegmentator [no-new-U-Net (nnU-Net)] (10) for 
segmentation, we were able to automatically generate 

segments corresponding to the trachea and the left erector 
spinae muscle in the CT datasets. We then evaluated the 
median Hounsfield units (HU) of both segmented structures 
in both scanners [Toshiba: trachea, −931.6; muscle, 22.68 
(mean HU). Siemens: trachea, −958.2; muscle, 24.25 (mean 
HU)]. A Python function then standardized CT scans by 
calibrating HU values for air and muscle. It takes a 3D 
NumPy array, mean HU values for air and muscle, and 
returns a standardized CT scan. The function calculates a 
linear transformation to map input HU values to desired 
output values (−1,000 HU for air, 30 HU for muscle, 
Figure 1). For the Toshiba scanner, we found a mean slope 
of 1.08 [standard deviation (SD), 0.06] and a mean intercept 
of 5.72 (SD, 16.46). For the Siemens scanner, we found a 
mean slope of 1.06 (SD, 0.06) and a mean intercept of 5.12 
(SD, 16.98). The transformation is applied, and the adjusted 
CT scan is returned for further analysis. This calibration is 
intended to ensure consistency across datasets and facilitate 
further analysis.

Lung and lobe segmentation

Next, the segmentation process began using the Lung CT 
Segmenter (LCTS) module. Trachea, left iliopsoas muscle, 
lungs, and lobes were segmented involving the 3D Slicer 
TotalSegmentator extension (11), which involves a tool for 
robust segmentation of 104 important anatomical structures 
in CT images with a well-trained neural network: nnU-
Net (10). Mean radiodensity in HU of the trachea and 
iliopsoas muscle was automatically calculated (see above) for 
radiodensity evaluation. Each lung and lobe segmentation 
took about 114 s on the computer system described below. 

Lung analysis segmentation

The calibrated scalar volume was then loaded into 
LungCTAnalyzer and lung analysis segments were 
generated for emphysema (−2,000 to −949 HU), normal 
lung (−950 to −749 HU), infiltrated lung/GGO (−750 to 
−399 HU), collapsed lung (−400 to 0 HU), and vessels  
(>0 HU). The volume of each of these segments was 
expressed in mm3. These segments were created for each 
lung, lobe, and the upper and lower half of each lung, 
as well as the anterior and posterior halves of each lung. 
To accomplish that, we calculated the centroid for each 
segmented lung and constructed a matching quadrant of 
markups which was then used to crop away the posterior half 
of the lung if the anterior half was to be preserved (and vice 
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Figure 1 This scatter plot shows the percentage of COVID-
affected samples under two conditions: uncalibrated and calibrated. 
The data points are color-coded based on their respective 
conditions, with green representing the calibrated condition and 
orange representing the uncalibrated condition. Additionally, 
lines connect the data points within each pairing, illustrating the 
change in affected percentage between the two conditions. The 
plot employs a white background theme, with the x-axis labeled 
“Condition” and the y-axis labeled “Affected (%)”. The x-axis 
displays the two conditions in a discrete manner, with the order of 
the categories set manually. The color legend is omitted from the 
plot for clarity. COVID, coronavirus disease.
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versa). The same technique was used for isolating the upper 
and lower half of each lung. 

Thresholds were not changed throughout the complete 
study. Each lung analysis segmentation took 187 s. 

The complete analysis of 78 datasets takes [(114+187) 
×78]/60=391.3 minutes, with 5 minutes per case. This 
includes data loading and saving.  

Percentage of COVID-affected lung

The 3D Slicer Segment Statistics tool was employed to 
analyze all generated lung structures and pathologies. The 
percentage of affected areas within both lungs, individual 
lungs, all lobes, and regions of interest were evaluated using 
the following formula: percent affected = [infiltrated volume 
(mL) + collapsed volume (mL)] ×100/organ volume (mL).
Vessel volumes were excluded from the total volumes, 
while airways were not considered. Ultimately, the findings 
were recorded in a CSV text file for further analysis and 
interpretation.

All processing was performed on the following systems:
	 Device: DESKTOP Windows 11;
	 Processor: 11th Gen Intel(R) Core(TM) i7-11700F 

@ 2.50GHz, 2.50 GHZ;
	 Installed RAM: 32.0 GB; 
	 System type: 64-bit operating system, x64-based 

processor;
	 GPU: NVIDIA GeForce RTX 3070 Ti, Driver 

version: 527.37, 8 GB dedicated video RAM;
	 3D Slicer 5.2.2;
	 LungCTAnalyzer 2.65;
	 TotalSegmentator 1.5.3;
	 Pytorch 2.0.0+cu118.
The automated approach facilitated efficient and accurate 

segmentation of the lungs and lung pathologies, providing 
valuable insights into the disease progression and aiding in 
diagnosis and treatment planning.

Statistical analysis

The statistical analysis was conducted using R version 4.2.3 
and RStudio version 2023.03.0 Build 386. The ggplot2 
package was used to generate figures.

The Shapiro-Wilk normality test showed that the % 
COVID affection was not normally distributed between 
lungs and lobes (P=0.02375). 

Thus, for group comparisons of COVID severity the 
Kruskal-Wallis test for group comparisons was used and 

the Wilcoxon rank sum test with Benjamini-Hochberg 
adjustment was added.

The reliability of the computed volume was evaluated 
using the intraclass correlation coefficient in the two-way 
random-effects model for intra- and inter-reader/retest 
assessments. Statistical significance was defined as a P value 
less than 0.05.

Results

Figure 2 illustrates a representative case of moderate 
COVID-19 manifestations, showcasing the automatic 
segmentation of lungs, lobes, and trachea without user 
intervention, using 3D Slicer’s LungCTSegmenter. Figure 3  
demonstrates the automatic volumetric analysis of the 
same patient, applying the previously described thresholds 
through the 3D Slicer LungCTAnalyzer.

No significant difference between COVID-affected lung 
was found between the biological sexes (Figure 4). Within 
the 78 patients, a strong correlation was observed between 
the analysis of Expert 1 and computer analysis (R=0.86, 
P<2.2e−16, Figure 5). Consequently, the median percentage 
of COVID-19-affected areas in each expert evaluation score 
exhibited significant differences (P<0.05) from other scores, 
except for score classes 1 and 2, which were similar (Figure 6).

The correlation between expert and machine improved 
when using self-calibrated data [Akaike Information 
Criterion (AIC) Model 2, Bayesian Information Criterion 
(BIC) Model 2], as evidenced by the AIC and BIC values 
(AIC 1 vs. 2: 602.5 vs. 586.4, BIC 1 vs. 2: 609.5 vs. 593.5). 
The impact of data calibration is depicted in Figure 1.

With the participation of Expert 2, we observed a 
notable, statistically significant interobserver bias (Figure 7, 
stronger than anticipated), as evidenced by the Wilcoxon 
signed-rank test with continuity correction (P<0.05). 

Total lung affection is shown in Table 1, and there were 
no significant differences between the right and left lungs. 

In regard to the lobes (Table 1), a higher degree of 
infiltration and collapse was observed in the left lower lobe 
compared to the upper lobe (P<0.05). A similar pattern was 
found in the right lower lobes, with increased infiltration or 
collapse relative to the upper lobes (P<0.05). No significant 
difference was detected in the COVID-19-related 
involvement when comparing the left and right lower lobes 
to each other. The right middle lobes demonstrated lower 
involvement compared to the right lower lobes (P<0.05).

Upon examining the lung regions, significant differences 
in COVID-19 involvement were found when comparing the 
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Figure 2 Case example: patient #78 lung CT segmentation of trachea, lungs, and lobes in calibrated scalar volume. R, axial view; Y, sagittal 
view; G, coronal view; CT, computed tomography.

Figure 3 Case example: patient #78 after lung CT analysis of calibrated scalar volume with signs of severe SARS-CoV-2 affection (>50% in 
both lungs). Green: emphysema; blue: normal lung; orange: infiltration; pink: collapse; orange + pink: affected; red: vessels. CT, computed 
tomography; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

   A B C D E F G H I J K L

1 Lung area Total, mL Inflated, mL Infated, % Emphysema, mL Emphysema, % Infiltrated, mL Infiltrated, % Collapsed, mL Collapsed, % Affected, mL Affected, %

2 Total lungs 3399.16 1218.12 36 372.903 11 1186.72 34.9 621.427 18.3 1808.14 53

3 Right lung 1820.37 837.83 46 204.779 11.2 635.118 34.9 347.424 19.1 982.542 54

4 Left lung 1578.79 789.846 50 168.124 10.6 551.598 34.9 274.003 17.4 825.601 52
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anterior and posterior halves of the lungs as the posterior 
regions showed higher COVID-19 involvement (Table 1). 
Comparing the upper and lower halves of both lungs, the 
lower halves of the lungs exhibited significantly greater 
COVID-19 involvement than the upper halves (Table 1).

It was particularly interesting that, according to 
computer analysis, patients who required admission to 
the ICU during their inpatient treatment demonstrated 
significantly higher COVID-19 lung involvement (Figure 8), 
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Figure 4 This box and whisker plot shows the even distribution of 
COVID affected lung CT with no difference between biological 
sexes. M, male; F, female; COVID, coronavirus disease; CT, 
computed tomography.

Figure 5 Correlation between baseline clinical score (by an expert 
radiologist) and percentage of COVID-affected lung derived 
by automatic computer analysis (R=0.86, P<2.2e−16). COVID, 
coronavirus disease.
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Figure 6 This box-and-whisker plot was created to visualize the 
distribution of percentages of COVID affection in the expert score 
groups. All scores showed significantly different values with the 
exception of score 1 vs. 2. *, P<0.05. n.s., not significant; COVID, 
coronavirus disease.
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Figure 7 The scatter plot displays scores from two reviewers. 
Green lines represent identical scores, while orange lines show 
diverging scores (31 of 81, 38%). The second reviewer excluded 
three CT scans (score = “NA”: 1 pneumothorax, 2 pre-existent 
lung diseases). The Wilcoxon signed rank test with continuity 
correction revealed a significant interobserver bias (V =356, 
P=0.001). CT, computed tomography; NA, not available; V, variant 
of the test statistic.
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Table 1 Percentage of COVID-affected lung tissue according to anatomical structures and regions

Structure Mean Median SD Q1 Q3 IQR Comparison P 

Total lungs 35.2 35 18.8 18 49 31 – –

Right lung 35.5 34 19.0 19 48 29 RL vs. LL n.s. 

Left lung 35.9 36 19.0 18 49 31 LL vs. RL n.s.

Right upper lobe 30.6 26 19.7 12.5 42 29.5 RUL vs. ML n.s.

Right middle lobe 28.1 21 19.5 11 44 33 ML vs. RUL n.s.

Right lower lobe 44.8 47 22.4 27 60 33 RLL vs. RUL 0.00012

RLL vs. ML 2.8e−05

Left upper lobe 29.7 28 18.2 13 41 28 LUL vs. LLL 0.00011

Left lower lobe 44.4 43 23.0 23 62 39 LLL vs. LUL 0.00011

Anterior 36.0 35 19.9 19 51 32 A vs. P 0.00019

Posterior 41.2 42 21.2 21 58 37 P vs. A 0.00019

Upper half 31.4 29.5 18.6 14.2 44 29.8 UH vs. LH 0.02001

Lower half 39.2 39.5 20.2 20.2 54 34 LH vs. UH 0.02001

Differences were evaluated with the Kruskal-Wallis test for group comparisons and the Wilcoxon rank sum test with Benjamini-Hochberg 
adjustment. Taking into account both lungs: A = anterior half; P = posterior half; UH = upper half; LH = lower half. COVID, coronavirus 
disease; SD, standard deviation; Q1, first quartile; Q3, third quartile; IQR, interquartile range; RL, right lung; LL, left lung; RUL, right upper 
lobe; ML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; n.s., not significant.
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Figure 8 This box-and-whisker plot shows the distribution of the 
percentage of affected samples among patients needing or not to 
be admitted to the ICU. This is represented on the x-axis, while 
the y-axis displays the percentage of COVID-affected lung volume. 
Within each ICU category, a boxplot summarizes the median, 
quartiles, and outliers of the affected percentage. Jittered individual 
data points are overlaid on the boxplots, visually representing the 
underlying data distribution. Patients who needed ICU support had 
significantly higher percentages of COVID alterations in both lungs 
(P<0.05). ICU, intensive care unit; COVID, coronavirus disease.

as compared to patients who could remain in general wards. 
Patients with ≥40% COVID-19 involvement (n=31) were 
predominantly treated in intensive care (n=24, 77%).

Discussion

The present study demonstrated the potential of 3D Slicer 
computer analysis as a reliable and reproducible tool for 
assessing lung involvement in patients with COVID-19. 
Our validation of computer analysis against expert 
radiological judgment revealed a high correlation between 
the two approaches in detecting COVID-19 affections. This 
finding is supported by a recent study (12) that suggests 
that computer analysis can effectively complement expert 
evaluation and contribute to more accurate and objective 
assessments of lung involvement.

In this study, the LungCTAnalyzer module uses a nnU-
Net (13) TotalSegmentator AI tool (10), which enables 
autonomous computer analysis including lung lobes 
without human intervention, however, our results clearly 
show that a gold standard has not been defined. The use 
of AI-powered tools like the nnU-Net TotalSegmentator 
can provide several benefits, including reduced time spent 
on image analysis, increased consistency in assessments, 
and potentially improved patient outcomes due to faster 
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and more accurate diagnosis. Furthermore, autonomous 
computer analysis could alleviate the workload of 
radiologists and healthcare professionals, especially 
during times of increased demand, such as the COVID-19 
pandemic.

However, there are also potential dangers associated with 
relying solely on autonomous computer analysis, but the 
design of this study included AI only for the segmentation 
of lung masks and lung lobes. 

The present study employs a two-way strategy for 
computer analysis of lung CT: first, anatomical structures 
are segmented using AI, and then the results are refined 
with conventional image processing methods, such as 
thresholding, smoothing, and volumetry. This approach 
is especially sound because autonomous deep-learning 
computer systems for detecting COVID-19 alone are on 
the horizon, but still have limitations (14,15). 

Our results have shown that automatic calibration of 
CT data is an elegant, efficient and feasible solution that 
may be particularly valuable for analyzing heterogeneous 
or artifact-laden datasets. The time required to perform a 
complete segmentation using 3D Slicer compared to manual 
delineation times (5 vs. 2–3 minutes) still favors the human 
observer, however, it has to be noted that LungCTAnalyzer 
as well as its AI tool has not been optimized for speed yet. 
This, in combination with better hardware, will certainly 
reduce program execution times. In addition, the automated 
analysis could seamlessly be integrated into the data transfer 
process from the scanner, ensuring that it will have been 
automatically processed by the time the radiologist is ready 
to review the case. Thus, in a practical setting, any potential 
delay becomes negligible. 

Our results also highlighted the anatomical and regional 
differences in COVID-19 lung affections. We found a 
higher degree of infiltration and collapse in the lower lobes, 
the lower halves of the lungs, and the posterior lungs. These 
differences provide valuable insights into the distribution 
and extent of lung involvement in advanced COVID-19. 

A significant insight from our research is the capability 
of the 3D Slicer computer analysis method to provide 
indicators for potential ICU treatment needs. Our 
data showed that patients with more pronounced lung 
involvement (>40%) were predominantly treated in 
intensive care settings. While this underscores the utility of 
gauging lung involvement for resource allocation, especially 
in a pandemic scenario with constrained ICU resources, it’s 
imperative to acknowledge that ICU admission decisions 
are multi-faceted and not solely predicated on CT lung 

involvement.
However, it is important to note that there were seven 

patients with high pulmonary affections who did not 
require ICU admission. This phenomenon has been a 
common observation during the COVID-19 pandemic 
and highlights the multifactorial nature of the disease, 
in which deterioration of lung function may occur very 
late despite already significant pulmonary radiological 
affections (16,17). This observation emphasizes the need 
for further investigation to better understand the factors 
that may influence ICU admission requirements, such as 
comorbidities (18), patient age (19), and overall clinical 
presentation (20).

T h e  l i m i t a t i o n s  o f  t h e  s t u d y  s h o u l d  a l s o  b e 
acknowledged. Our sample size was relatively small, which 
may limit the generalizability of our findings. Moreover, 
the study design was retrospective, and prospective 
studies with larger sample sizes are needed to confirm and 
expand upon these observations. Additionally, while the 
high correlation between expert and computer analysis 
is promising, further research is required to refine and 
optimize the 3D Slicer computer analysis tool, including 
the nnU-Net TotalSegmentator AI component, and 
validate its utility in different clinical settings. In addition, 
our method for calibration of the CT HU values could be 
improved, ideally through the use of calibration phantoms 
as part of the scanning protocol for any future prospective 
study. Similarly, our use of hard threshold values to define 
the areas of emphysema and otherwise characterize features 
could potentially be improved through the use of a soft 
threshold technique, but it is questionable if a computer 
program will ever be able to mitigate these different 
nuances.

A particular constraint of the initial study is that it 
included only a single radiological expert as a human 
control. Nevertheless, this limitation was an inherent 
component of the design in the preceding study. To 
address this, we introduced an additional reviewer who 
utilized the same scoring system (refer to Figure 8). With 
the participation of two radiological experts, a notable, 
statistically significant interobserver bias was detected. 
This finding underscores the necessity for an automated, 
reproducible computer evaluation to mitigate such biases. 

Another limitation of our study pertains to the variable 
“affected lung involvement”, whose role as an independent 
predictor for ICU admission remains to be proven. In a 
more comprehensive study, this variable would ideally be 
incorporated into a multivariate regression analysis. This 

https://www.zotero.org/google-docs/?Tfq0NE
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analysis would assess if “affected lung involvement” can 
hold its significance against well-established confounders, 
such as age and comorbidities. Unfortunately, the dataset 
used in our study does not include these variables, 
preventing us from performing this analysis at this time. 
Future prospective studies incorporating these data points 
will be necessary to conduct a more robust assessment. 

Lastly, patterns, GGO, or “tinted signs” (20) may not 
be correctly detected by the threshold-based computer 
algorithms yet and would require further development of AI 
detection methods. 

Despite these limitations, our study contributes valuable 
insights to the existing literature on lung involvement 
in COVID-19 and highlights the potential  of 3D 
Slicer computer analysis as a reliable, reproducible, and 
complementary tool for expert radiological evaluation. The 
anatomical and regional differences in lung affections, as 
well as the potential to predict ICU treatment requirements, 
have important implications for clinical practice and 
resource allocation during a pandemic. 

The availability of automatic volumetry of COVID 
affections could also be extremely helpful during follow-up.

In this discussion of a science paper, it is important to 
emphasize that the methodology employed, using the 3D 
Slicer computer analysis, has broader applications beyond 
just COVID-19. This work demonstrates that a previously 
challenging image analysis problem, detailed segmentation 
of lung anatomy in patients with severe disease, is now 
routinely solvable using freely available software with 
reliability suitable to explore novel anatomical correlates of 
disease severity. The paper has effectively showcased how 
this approach can be used for the quantitative assessment of 
lung pathologies in the context of COVID-19. However, 
its utility extends to a wide range of pulmonary conditions, 
including fibrosis, emphysema, and other infectious lung 
diseases. 

The versati l ity and potential  of the 3D Slicer-
based LungCTAnalyzer,  a longs ide  the  nnU-Net 
TotalSegmentator AI component, make it a promising tool 
for future research and clinical practice, always keeping in 
mind that computer software will probably be an adjunct 
not a substitute to humans. The fact that the software is 
open-source and freely available to researchers worldwide 
further bolsters its potential impact, as it encourages 
collaboration and continuous improvement within the 
scientific community.

As our methodology has proven effective in the present 
case study of COVID-19 and has also been used in the 

quantification of lung changes in chest CT of patients with 
mutations of the novel coronavirus 2 with success (21), future 
research should explore its applications in the context of 
other lung pathologies, both infectious and non-infectious. 
This would not only provide additional insights into the 
value and limitations of this approach but also help optimize 
patient care and outcomes across a variety of pulmonary 
conditions. By doing so, the scientific community can work 
together to refine and expand the use of AI-powered tools, 
ensuring that they complement and enhance expert human 
judgment in the assessment and management of lung 
diseases.

Conclusions

In conclusion, our research illustrates the pattern and 
degree of lung involvement in COVID-19 patients. It 
suggests a potential correlation between lung involvement 
and the consideration for ICU admission, without asserting 
a direct causal link. Notably, computer-assisted detection 
of COVID-19 manifestations in the lung correlated 
highly with evaluations made by radiological experts. This 
indicates that computer-based analysis might offer valuable 
insights for assessing lung involvements in clinical settings. 
These preliminary findings warrant further exploration, 
ideally with larger cohorts, to validate and delve deeper into 
the observations. In the broader scope, enhancing our grasp 
of lung involvement not only in COVID-19, paired with 
refining diagnostic tools, has the potential to elevate patient 
care, follow up and outcomes. 
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