
Improving Compound Activity Classification via Deep Transfer and
Representation Learning
Vishal Dey, Raghu Machiraju, and Xia Ning*

Cite This: ACS Omega 2022, 7, 9465−9483 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Recent advances in molecular machine learning, especially deep neural networks such as graph neural networks
(GNNs), for predicting structure−activity relationships (SAR) have shown tremendous potential in computer-aided drug discovery.
However, the applicability of such deep neural networks is limited by the requirement of large amounts of training data. In order to
cope with limited training data for a target task, transfer learning for SAR modeling has been recently adopted to leverage
information from data of related tasks. In this work, in contrast to the popular parameter-based transfer learning such as pretraining,
we develop novel deep transfer learning methods TAc and TAc-fc to leverage source domain data and transfer useful information to
the target domain. TAc learns to generate effective molecular features that can generalize well from one domain to another and
increase the classification performance in the target domain. Additionally, TAc-fc extends TAc by incorporating novel components to
selectively learn feature-wise and compound-wise transferability. We used the bioassay screening data from PubChem and identified
120 pairs of bioassays such that the active compounds in each pair are more similar to each other compared to their inactive
compounds. Overall, TAc achieves the best performance with an average ROC-AUC of 0.801; it significantly improves the ROC-AUC
of 83% of target tasks with an average task-wise performance improvement of 7.102%, compared to the best baseline dmpna. Our
experiments clearly demonstrate that TAc achieves significant improvement over all baselines across a large number of target tasks.
Furthermore, although TAc-fc achieves slightly worse ROC-AUC on average compared to TAc (0.798 vs 0.801), TAc-fc still achieves
the best performance on more tasks in terms of PR-AUC and F1 compared to other methods. In summary, TAc-fc is also found to be
a strong model with competitive or even better performance than TAc on a notable number of target tasks.

1. INTRODUCTION

Drug discovery is a time-consuming and expensive process1it
takes at least 10 years and at least $1 billion to fully develop a
drug.2 During the initial stages of this process, promising drug
candidates are identified by screening a large library of chemical
compounds and then further investigated for specific properties.
In order to speed up this process, computational approaches3,4

have been adopted, particularly for identifying potential drug
candidates during the initial stages of drug discovery. Computa-
tional approaches explore a much larger space of chemical
compounds to predict their physio-chemical properties and/or
biological activities toward the target. In this paper, we consider
the problem of compound bioactivity classification, where a
compound is classified as active or inactive based on whether
that compound binds to the protein target. Biological activities

of compounds are initially examined in a bioassay by measuring
their binding affinities or dissociation constants toward the
target. Significant research5−7 has established the relationship
between the chemical structures and biological activities of
compounds, also known as structure−activity relationships
(SARs).5 Several computational approaches8 have been
developed tomodel SARs and to predict compound bioactivities
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from their 2D/3D structures. However, most popular
approaches such as deep neural networks require large amounts
of labeled data for effective SAR modeling. Thus, the limited
availability of bioassay data for specific targets still poses a major
challenge in effective SAR modeling.9

Over the years, several methods10−12 aimed to improve SAR
predictions for specific targets by leveraging activity information
from related targets. These methods consider targets to be
related, based on the principles from chemogenomics.13−16 The
key principle behind these methods is that similar proteins tend to
bind to structurally similar compounds. In this work, we consider
proteins belonging to the same protein family to be similar.
Thus, leveraging compound activity information from bioassays
corresponding to a set of proteins from the same protein family
(e.g., G-coupled protein receptors, kinases, peptidases, etc.)
collectively might better inform the SAR model than the
individual bioassays. In essence, transfer learning can enable
better SAR modeling by leveraging information from such
related bioassays. However, existing methods are instance-based
transfer learning methods.17 They select a subset of data from
related bioassays and then augment the training data for the
target task with the selected subset. Existing deep transfer
learning-based methods18 for SAR modeling are either
parameter-based (such as fine tuning) or feature-based, out of
which parameter-based methods are more popular. However,
such methods can lead to overfitting and negative transfer,17

especially when the targets are not related. In this regard, we
believe that feature-based methods are better in that they can
learn the similarity/relatedness between the targets in the latent
space in a data-driven manner.
Primarily, we develop an instance-based transfer learning

method TAc that leverages target information from related
bioassays, based on the key principle of chemogenomics as
mentioned earlier. We further extendTAc to novel feature-based
deep transfer learning methods TAc and TAc-fc that
quantitatively measure transferability and explicitly learn what
to transfer in a fully data-driven manner. To this end, we develop
novel components to learn feature-wise and compound-wise
transferability in order to effectively encode the commonalities
among compounds of different tasks. In order to represent
compounds, we leveraged the popular idea of a directedmessage
passing neural network (dmpn)19 and added an attention-based
pooling mechanism, denoted as dmpna. We collected a set of
confirmatory bioassays from PubChem20 that have a single
protein target and are tested on chemical substances. We
identified 120 bioassay pairs involving 59 protein targets such
that the active compounds in each pair are more similar to each
other compared to the inactive compounds. We compared our
methods TAc and TAc-fc with several baselines with respect to
two aspects: compound representation and transfer mecha-
nisms. Overall, TAc-dmpna achieves the best performance
compared to all other methods. Compared to TAc-dmpna, TAc-
fc-dmpna performs slightly worse, but the latter still provides
significant performance improvement on some target tasks. This
suggests that although the transfer mechanism in TAc performs
the best overall, the deep transfer mechanism with learned
feature-wise and compound-wise transferability can actually
benefit some targets. Furthermore, experimental results
demonstrate the efficacy of our proposed attention mechanism
of dmpna in learning better compound features. We provide
additional experiments on the compound prioritization
problem12 where dmpna clearly outperforms all other
compound representation methods.

The rest of the paper is organized as follows. Section 1.1
presents the related works in drug discovery and transfer
learning with applications in SAR predictions. Section 2 presents
the materials used for experimental evaluation, experimental
results, and detailed analyses with discussions. Section 3
presents the conclusions, and Section 4 presents the notations
and definitions used in this paper and the proposed methods of
transfer learning for activity prediction.

1.1. Related Work. In this section, we provide a brief
overview of existing works and divide them across three
subsections as follows. In Section 1.1.1, we summarize notable
works on computational approaches in drug discovery. In
Section 1.1.2, we provide a brief overview of existing works in
transfer learning. In Section 1.1.3, we provide an overview of
existing methods that use transfer learning for better SAR
modeling.

1.1.1. Computational Methods in Drug Discovery. The first
step in the drug discovery process is to conduct bioassays21 that
screen a large set of compounds for desirable properties (e.g.,
activity, solubility, and toxicity). The findings from these
bioassays guide the later steps of the drug discovery process.
In order to speed up initial stages of the drug discovery process,
computational approaches have been adopted. Computational
approaches to predict activities/properties of compounds from
their molecular structures have been a significant research area in
cheminformatics.8,22,23 These approaches rely on the quantita-
tive structure−activity/property relationship (QSAR/
QSPR)5,24 to predict compound activities/properties as ex-
pressed in bioassays.
In order to predict such activities/properties, machine

learning methods such as classification and regression are
typically used. Binary/real-valued observations from bioassay
data are used to train these classification/regression methods.
Popular conventional classification and regression methods to
predict compound activities/properties consist of support
vector machines,25−28 random forests,29,30 Bayesianmodels,31,32

etc. In these methods, compounds are typically represented by
hand-crafted molecular fingerprints33,34 or descriptors.35 Re-
cently, deep learning methods36−40 have demonstrated
significant performance improvement over conventional
methods across several activity/property prediction tasks.41−43

Unlike conventional methods, these methods do not require
careful and expensive design of hand-crafted molecular finger-
prints or descriptors by domain experts. These methods learn
the compound representations from molecular graphs19,44−48

and SMILES strings,49−51 in a fully data-driven manner for each
task. Such learned representations are task-specific and can
better encode relevant structures for each task. Thus, such
learned representations are often more effective than molecular
fingerprints or descriptors. While these deep learning models
have achieved the state-of-the-art performance on several
molecular activity/property prediction tasks, these models
require a large amount of labeled training data to encode
relevant patterns into learned representations. Training these
models with limited labeled data for certain prediction tasks
often leads to subpar performance.

1.1.2. Transfer Learning. In order to effectively train models
with limited labeled data for certain prediction tasks, transfer
learning between related tasks has been widely explored in
Computer Vision (CV) and Natural Language Processing
(NLP).52,53 Transfer learning17 is an emerging research area in
which knowledge gained from auxiliary tasks is transferred to
improve the predictive performance of the target task. Instead of
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training a model for the target task from scratch, a popular
transfer learning technique, called fine-tuning,54 fine-tunes the
model pretrained from other related tasks. Pretraining does not
explicitly learn what/when to transfer and rather relies on the
model parameters to encode and transfer information across
different tasks. Although pretraining is the most popular transfer
learning method, it does not guarantee improvement (due to
“negative transfer”55). Moreover, fine-tuning a highly para-
metrized model with limited data may lead to overfitting to the
training data, and thus, the fine-tuned model might not
generalize well to the test data. Apart from pretraining, another
area of deep transfer learning, called domain adaptation, has
gained a lot of attention.56−58 Domain adaptation methods
reduce the effect of the domain shift by learning domain-
invariant representations that can generalize well across different
tasks. In order to learn such representations, domain adaptation
methods either minimize statistical measures59−61 of domain
shift or use adversarial training.62 Following the success of
adversarial training in generative adversarial networks
(GANs),63 adversarial domain adaptation methods64−66 gained
more attention and demonstrated state-of-the-art performances
over benchmark CV and NLP data sets. Adversarial domain
adaptation methods use adversarial training to learn domain-
invariant representations via a minimax optimization using a
feature extractor, a domain classifier, and a label predictor. The
principle of adversarial training is used to train the feature
extractor to learn domain-invariant representations which are
indistinguishable by the domain classifier. Seminal methods in
adversarial domain adaptation64,65,67 differ in the design choices,
such as adversarial loss functions, optimization, coupling of
weights, etc. Other existing methods focus on conditional
feature alignment,68,69 multisource transfer,70,71 etc. However,
these methods have been specifically developed for image
domain adaptation or image translation problems. To the best of
our knowledge, none of these methods have been widely
adapted for graph-structured data. In this work, following the
idea of adversarial domain adaptation, we proposed a novel
transfer learning method that learns effective compound
representations from graph-structured data and transfers
relevant information from a related task to the target task.
1.1.3. Transfer Learning in SAR Predictions. To alleviate the

limited data problem in cheminformatics, various transfer
learning18,72−75 and multitask learning methods76−80 have
been recently developed. Inspired by the success of pretraining
followed by fine-tuning in CV and NLP, Goh et al.81 proposed
ChemNet, where a deep neural network is pretrained on a large
set of compounds in a self-supervised manner and then fine-
tuned on individual activity/prediction tasks. Following the
same idea, Li and Fourches82 proposedMolPMoFit which trains
a long short-term memory (LSTM)83 on SMILES strings of
compounds and then fine-tunes the pretrainedmodel on specific
tasks. Although pretraining has been widely studied, existing
work in cheminformatics does not demonstrate significant
performance improvement over the state-of-the-art supervised
models in a single-task setting. Moreover, models trained on
SMILES strings do not explicitly leverage the topological
information of compounds. However, our methods use
molecular graphs as inputs and hence explicitly leverage the
topological information.
Adversarial transfer learning has been rarely explored for SAR

predictions and on graph-structured data. To the best of our
knowledge, only recently Abbasi et al.84 combined multitask
networks and adversarial domain adaptation to learn trans-

ferable molecular representations from multiple-source bio-
assays to improve the prediction performance on the target
bioassay. The authors evaluated their model on biophysics and
physiology data sets such as Tox21, SIDER, BACE, ToxCast,
and HIV. Experimental results demonstrated that the proposed
method outperforms no-transfer methods only on a few target
tasks. Moreover, experimental results do not clearly demonstrate
the contribution of the adversarial domain adaptation
component to the overall performance. Overall, prior work on
transfer-learning-based SAR modeling does not clearly suggest a
performance gain over conventional SAR models over a wide
array of target tasks.

2. RESULTS AND DISCUSSION

In this section, we present the materials used for experimental
evaluation (Section 2.1), followed by detailed experimental
results and discussions (Sections 2.2−2.7).

2.1. Materials. In this section, we describe the data set
generation, baseline methods, and experimental protocols in
detail.

2.1.1. Data Set Generation.We used the real screening data
from PubChem to test our methods. PubChem20,85 is one of the
largest public chemical databases with more than 271 M
substances, 111 M unique chemical structures, and 293 M
bioassay data. We selected a set of bioassays from PubChem
bioassays [accessed on 2020-12-25] such that each bioassay has
a sufficiently large number of active and inactive compounds.
Then, we generated pairs of bioassays for transfer learning in
accordance to the protocols in below Sections 2.1.1.1 and
2.1.1.2.

2.1.1.1. Initial Bioassay Selection and Pruning. We first
selected a set of 7284 confirmatory bioassays that have a single
protein target and are tested on chemical substances. These
bioassays have 1279 unique protein targets in total. Among these
protein targets, we were able to identify the organism and
protein family information for 961 protein targets within 435
protein families using UniProt.86 Among the 435 protein
families, we further combined them into 278 families (e.g.,
Peptidase A1, Peptidase C12, and Peptidase C13 families were
combined into the peptidase family). Among the 278 families,
we selected 10 that have the most protein targets belonging to
“Human” organisms. These top 10 protein families are the (1)
G-protein-coupled receptor 1 family, (2) peptidase family, (3)
protein kinase family, (4) nuclear hormone receptor family, (5)
protein-tyrosine phosphatase family, (6) ABC transporter
family, (7) cytochrome P450 family, (8) Bcl-2 family, (9) G-
protein-coupled receptor 3 family, and (10) histone deacetylase
family. These protein families involved 269 unique protein
targets and covered themajor drug targets in drug discovery.87,88

According to the 10 protein families, bioassays with targets
from these protein families were then processed as follows:

1. We combined bioassays of the same target into one
bioassay, resulting in 269 combined bioassays.

2. For each combined bioassay, we selected its compounds
that were tested for inhibition against the target (i.e., the
corresponding PubChem activity type specified by the
depositor was “inhibitor”).

3. From those inhibitive compounds, we selected the
compounds that were specified as either “active” or
“inactive” against the target and discarded the compounds
that were specified as “inconclusive” or “undetermined”.
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4. If the active/inactive compounds appeared multiple times
in the bioassay with the same activity label, we retained
one of their records. If the active/inactive compounds
appeared multiple times in the bioassay with different
activity labels, we removed the compounds from the
bioassays (in our data set, only about 2.08% of
compounds for each bioassay on average appear multiple
times with different activity levels). We use canonical
SMILES strings to detect identical compounds.

After the above processing, each combined bioassay has on
average 17 005 unique compounds in total, with 188 active and
16 817 inactive. Furthermore, out of the 269 combined
bioassays, 95 bioassays have more than 50 active compounds.
Among the 10 protein families involved in the 95 bioassays, 2
protein families had only 1 target with more than 50 active
compounds. Thus, we removed these 2 protein families and only
used the remaining 8 protein families and their 93 bioassays.
This set of 93 bioassays has on average 40 115 compounds, with
521 active and 39 595 inactive. This set of bioassays will be used
to create bioassay pairs as will be described in the next section.
Table S1 in the Supporting Information presents the statistics of
each of the 93 bioassays.
2.1.1.2. Transferable Bioassay Pairing. From the 93

processed bioassays, we constructed 765 bioassay pairs such
that in each pair the protein targets of the two bioassays are from
the same protein family. We selected targets from the same
protein family because based on the key intuition of chemical
genomics15,16−proteins from the same family tend to have
similar binding pockets and bind to similar compoundsthis is
the physicochemical foundation to enable possible information
transfer across protein targets, and such targets and their
bioassays can be used to test transfer learning. We first ensured
that each of the 765 pairs of bioassays had balanced active and
inactive compounds as follows:

(1) In each pair of bioassays, we removed the compounds that
appeared in both bioassays but with different activity
labels (on average, 2.09% of all unique compounds in a
pair of bioassays). This is to avoid any conflicting
information across bioassays, which could adversely affect
our transfer learning method.

(2) For compounds with the same activity labels in both the
bioassays (on average, 1.82% of all unique compounds in
a pair of bioassays), we randomly sampled half of them
into one of the bioassays and the other half into the other.
This is to avoid duplication of compounds across
bioassays, which could lead to overestimation of
predictive performance.

(3) After the above steps, for each bioassay of a pair, we used
all its active compounds and randomly sampled the same
number of inactive compounds. If the inactive com-
pounds were not sufficient, we randomly sampled
compounds from PubChem that were not active in the
bioassay as additional inactive compounds for the
bioassays. This is to ensure that each bioassay in a pair
has an equal number of active and inactive compounds,
and thus the learning will not be dominated by either
active or inactive compounds. Please note that a bioassay
involved in two pairs may have different numbers of active
and inactive compounds due to its pairing to the other
bioassay.

After the above steps, we selected the bioassay pairs such that
each bioassay in each pair had at least 50 active compounds

retained. There were 635 such pairs that involved 92 bioassays in
total. Among the 635 pairs of bioassays, we further selected the
pairs as follows, such that the active compounds in each pair are
similar to each other compared to their inactive compounds:
1. For a pair of bioassays Bi and Bj and their respective active

and inactive compounds, denoted as +
Bi
, −

Bi
, +

Bj
and −

Bj
,

respectively, we calculated the following two types of average
compound similarities using the Taminoto coefficient89 over
Morgan-count fingerprints (with radius = 3 and dimension =
2048): (1) among compounds of the same labels across the two
bioassays + +sim( , )B Bi j

and − −sim( , )B Bi j
and (2) among

compounds of different labels across the two bioassays
+ −sim( , )B Bi j

and − +sim( , )B Bi j
.

2. Based on the similarities, we selected a set of bioassay pairs,
denoted as 0, such that in each pair the active compounds of the
two bioassays are more similar; that is

= { | >

> }

+ + + −

+ + − +

(B , B ) sim( , ) sim( , )

and sim( , ) sim( , )

i j0 B B B B

B B B B

i j i j

i j i j

We identified 329 such pairs. From 0, we further selected a set
of bioassay pairs, denoted as , such that in each pair the active
compounds in the two bioassays have a similarity above a certain
threshold, that is,

= { | ∈

− + −

≥ }

+ +

+ − + + − +

(B , B ) (B , B ) , sim( , )

sim( , ) sim( , ) sim( , )

0.026

i j i j 0 B B

B B B B B B

i j

i j i j i j

where 0.026 is the average value among all these pairs

− +

−

+ + + − + +

− +

sim( , ) sim( , ) sim( , )

sim( , )

B B B B B B

B B

i j i j i j

i j

After the above process, we identified 120 pairs of bioassays in
, involving 59 bioassays and 7 protein families with 278 active

and 278 inactive compounds in each bioassay on average. Table
S2 presents all the pairs and their compound statistics.

2.1.2. Baseline Methods. We tested our TAc and TAc-fc
methods with respect to two aspects: (1) compound
representations and (2) transfer mechanisms. Compound
representation is key to revealing information among com-
pounds that can be leveraged to transfer across. Transfer
machenisms are critical to enable effective transfer of revealed
information across bioassays.

2.1.2.1. Compound Representation Methods. Specifically,
we compared our compound representation method dmpna
(i.e., the feature learner in Section 4.2.2) with the following
compound representation methods:

• Binary Morgan fingerprint (morgan):33 morgan uses a
binary feature vector to present a compound, in which
each dimension of the feature vector corresponds to a
predefined substructure, and the binary value in that
dimension represents if the compound has that
substructure or not.

• Morgan count fingerprints (morgan-c):33morgan-c is very
similar to morgan except that the values in morgan-c
represent how many corresponding substructures the
compound has.
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• Directed Message Passing Network (dmpn):19 The dmpn
method learns molecular structures by passing messages
along directed edges over molecular graphs. It produces
two representations for each bond through message
passing through the two directions along the bond. Then
it learns atom representations from the incoming bond
representations and generates a compound representa-
tion using mean pooling over the atom representations.
The dmpn (https://github.com/chemprop/chemprop)
method is the state-of-the-art compound embedding a
learning approach for compound property prediction.

We generated morgan and morgan-c (with radius = 3 and size
= 2048) using RDKit.90 In order to only compare the different
compound representation methods, not the transfer learning
mechanisms, we used a two-layer fully connected network as the
classifier S over the above baseline feature representations to
predict activity labels. We used cross-entropy as the loss function
for these baseline methods. The corresponding methods are
denoted as FCN-morgan, FCN-morganc, and FCN-dmpn,
respectively. Note that these three baseline methods do not
have information transfer mechanismsthey are single-task
compound prediction methods.
2.1.2.2. Learning Methods for Compound Prediction. We

compared TAc and TAc-fc with a transfer learning baseline
known as domain-adversarial neural network, denoted as
DANN.64 We selected DANN because, to the best of our
knowledge, there are no existing transfer learning methods over
graph-structured data, andDANN is a standard transfer learning
baseline method used on other data (e.g., images).58 In
particular, we adapted DANN to learn compound features
from graph-structured data via GNN (e.g., dmpn or dmpna).
DANN consists of three components: (1) a feature extractor

that represents compounds via feature learning; (2) a label
predictor that predicts activity labels from learned compound
features; and (3) a domain classifier that discriminates between
the source and target compounds during training. DANN learns
compound features that can generalize well from one domain to
another, such that the learned features contain little discrim-
inative domain information and enable DANN to accurately
predict activity labels.
The objective function in DANN consists of two losses:

domain classification loss and label prediction loss.DANN uses a
minimax optimization such that the domain classification loss is
minimized with respect to the domain classifier and is
maximized with respect to the feature extractor. Specifically,
minimizing the domain classification loss will encourage the
domain classifier to correctly discriminate between the source
and target compounds. On the other hand, maximizing the
domain classification loss will encourage the learning of
generalizable compound features.
The feature learner and discriminators in TAc-fc are learned

via a minimax optimization, similar to how the feature extractor
and the domain classifier inDANN are learned. However, TAc-fc
is different from DANN in that TAc-fc learns feature-wise
transferability and compound-wise transferability, while DANN
only learns compound-wise transferability. Furthermore, follow-
ing Ganin et al.,64 DANN is trained on labeled data from the
source domain and unlabeled data from the target domain.
2.1.3. Experimental Protocols. 2.1.3.1. Experimental Set-

tings. In our experiments, we split each of the target bioassay in a
pair into 10 folds. For the target bioassay, we used 1 fold for
modeling training, 1 fold for validation, and remaining 8 folds for

testing. We performed the above process 10 times, with a
different training fold each time, and reported the average
performance over the test folds. The above 1:1:8 training/
validation/testing ratio follows a typical setting in transfer
learning,91 where it is assumed that the training data are limited,
so it is needed to leverage other tasks via transfer. We used this
cross-validation setting because we did not have a benchmark
test set for each bioassay, and a 10-fold cross-validation will
reduce the variance of the model performance. When we
transferred the information from the source bioassay to the
target bioassay, we used all the folds of the source bioassay and
the training fold of the target bioassay in TAc in order to
maximize the information content in the source bioassay that
could be leveraged.
If the baseline methods do not have an information transfer

mechanism (e.g., FCN-morgan), we applied an additional setting
to simulate information transfer: in addition to the target task’s

T( ) own training compounds, we also used all the compounds

from the source task S( ) as training data of T( ). Thus, the S( )

compounds will enrich the T( ) training data and bring (i.e.,
transfer) information from Src directly to Tgt. This setting is
referred to as data transfer, denoted as DT. If we only use the

T( ) compounds for training as in conventional single-task
models, this setting is denoted as noT.
We trained each model using an ADAM92 optimizer with an

initial learning rate of 10−3. All the models are trained up to 40
epochs. We used a grid search to tune all the hyper parameters
such as the dimension d of the compound embedding r, hidden-
layer dimension of the attention layer for dmpna, hidden-layer
dimension in L andG, and batch size. We used the validation set
to determine the optimal number of epochs. During training, we
evaluated the performance of each model on the validation set at
every epoch and chose the trained model at some epoch k that
gives the best performance on the validation set; thus, we
selected k as the optimal number of epochs. We used the ROC-
AUC metric for the above performance evaluation. All
evaluation metrics are discussed in the following section. All
the hyper parameters are reported in Table S3 for reproduci-
bility purposes.

2.1.3.2. Evaluation Metrics. We used the following
evaluation metrics: area under the precision−recall curve (PR-
AUC), area under the receiver operating characteristic curve
(ROC-AUC), precision, sens, accuracy, and F1 score.

• Area under the precision−recall curve (PR-AUC): A
precision−recall curve is generated by (precision, recall)
value pairs corresponding to variable thresholds. PR-AUC
measures the area under the precision−recall curve and
provides an aggregate measure of performance across all
possible thresholds.

• Area under the receiver operating characteristics curve
(ROC-AUC): A receiver operating characteristic (ROC)
curve is generated by true positive rates against false
positive rates at various threshold values. ROC-AUC
measures the area under the ROC curve.

• precision: it is the ratio of correctly predicted positive
instances out of all predicted positive instances (e.g., the
ratio of predicted active compounds that are truly active).

• sens: it is the ratio of correctly predicted positive instances
out of all ground-truth positive instances (e.g., the ratio of
active compounds that are correctly predicted as active).
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• accuracy: it is the ratio of correctly predicted (positive and
negative) instances out of all instances (e.g., the ratio of
compounds that are correctly predicted as active/
inactive).

• F1-score: it is the harmonic mean of precision and sens.

If the above metrics have higher values, they indicate better
performance.
2.1.4. Data and Software Availability. All the data sets and

source code are publicly available at https://github.com/
ninglab/TransferAct.
2.2. Overall Performance. Table 1 presents an overall

performance comparison between TAc-dmpn, TAc-fc-dmpn,
TAc-dmpna, TAc-fc-dmpna, and the baselines. The columns
have the average and standard deviation over all bioassays in
respective evaluation metrics achieved by the optimal models.
Note that for each bioassay the optimal model of each method is
the model that gives the best ROC-AUC value, and thus the
performance of each method in other metrics does not
necessarily correspond to the optimal performance in those
metrics.
Table 1 shows that, overall, TAc-dmpna achieves the best

performance compared to all other methods. Specifically, TAc-
dmpna achieves the best average ROC-AUC, PR-AUC, and
precision scores of 0.801, 0.786, and 0.731, respectively. This
demonstrates that TAc-dmpna can learn effective compound

features for the target task by leveraging source bioassay data and
correctly predicts the compounds of the target bioassay.
Furthermore, all variants of TAc and TAc-fc, especially TAc-
dmpn, TAc-fc-dmpn, and TAc-fc-dmpna, achieve similar perform-
ance on average across all metrics. The performance of these
three methods is not significantly different in most metrics. This
suggests that learning feature-wise and compound-wise trans-
ferability via TAc-fc methods does not necessarily provide a
performance boost on average. However, compared to the best
method, TAc-dmpna, TAc-fc-dmpn, and TA-fc-dmpna improve
ROC-AUC scores of 62% and 39% target tasks, respectively. On
the whole, all variants ofTAc andTAc-fc significantly outperform
all baselines. Specifically, TAc-dmpna improves the average
ROC-AUC by 4.9−10.1% and significantly improves ROC-AUC
of at least 83% of the target tasks compared to any baseline
method. Each of the other variants such as TAc-dmpn, TAc-fc-
dmpn, and TAc-fc-dmpna improves ROC-AUC of at least 79% of
the target tasks compared to any baseline method. This indicates
that these methods can effectively transfer relevant information
from the source task to the target task. In particular, the transfer
learning mechanism in all variants of TAc and TAc-fc can better
leverage source domain data compared to the transfer learning
mechanism in other baselines. This is because both TAc and
TAc-fc variants can better control the transferable information by
incorporating varying degrees of task relatedness between the
source and target tasks during training. Additionally, TAc-fc

Table 1. Overall Comparisona

method ROC-AUC PR-AUC precision sens accuracy F1

FCN-morgan 0.727 ± 0.124 0.729 ± 0.121 0.648 ± 0.104 0.742 ± 0.131 0.661 ± 0.110 0.683 ± 0.105
FCN-morganc 0.731 ± 0.120 0.730 ± 0.118 0.653 ± 0.102 0.735 ± 0.132 0.664 ± 0.107 0.682 ± 0.105
FCN-dmpn 0.754 ± 0.101 0.733 ± 0.102 0.619 ± 0.116 0.739 ± 0.156 0.656 ± 0.087 0.655 ± 0.126
FCN-dmpna 0.755 ± 0.112 0.729 ± 0.112 0.660 ± 0.119 0.712 ± 0.165 0.665 ± 0.101 0.651 ± 0.136
FCN-dmpn (DT) 0.754 ± 0.104 0.735 ± 0.105 0.687 ± 0.106 0.686 ± 0.213 0.669 ± 0.088 0.655 ± 0.140
FCN-dmpna (DT) 0.763 ± 0.108 0.745 ± 0.109 0.702 ± 0.108 0.671 ± 0.213 0.672 ± 0.092 0.645 ± 0.148

DANN-dmpn 0.733 ± 0.103 0.715 ± 0.103 0.671 ± 0.110 0.647 ± 0.215 0.649 ± 0.084 0.623 ± 0.144
DANN-dmpna 0.734 ± 0.102 0.716 ± 0.104 0.676 ± 0.106 0.653 ± 0.226 0.651 ± 0.085 0.624 ± 0.154

TAc-dmpn 0.798 ± 0.103 0.785 ± 0.108 0.729 ± 0.095 0.729 ± 0.146 0.721 ± 0.093 0.714 ± 0.108
TAc-fc-dmpn 0.798 ± 0.102 0.784 ± 0.107 0.729 ± 0.094 0.731 ± 0.142 0.720 ± 0.091 0.715 ± 0.102
TAc-dmpna 0.801 ± 0.102 0.786 ± 0.107 0.731 ± 0.094 0.729 ± 0.143 0.720 ± 0.090 0.713 ± 0.103
TAc-fc-dmpna 0.798 ± 0.105 0.785 ± 0.109 0.730 ± 0.097 0.728 ± 0.147 0.719 ± 0.095 0.713 ± 0.109

aIn this table, the columns ROC-AUC, PR-AUC, precision, sens, accuracy, and F1-score have the average and standard deviation over all bioassays in
each performance metric. The best performance values are bold. The second best performance values are underlined.

Table 2. Performance Comparison of TAc-dmpna vs FCN-dmpnaa

method ROC-AUC PR-AUC precision sens accuracy F1

TAc-dmpna 0.801 0.786 0.731 0.729 0.720 0.713
FCN-dmpna (DT) 0.763 0.745 0.702 0.671 0.672 0.645
dif f % 4.980 5.503 4.131 8.644 7.143 10.543
t-dif f % 5.702 6.085 4.876 25.281 7.727 18.464

(2.80 × 10−19) (8.00 × 10−21) (1.69 × 10−11) (1.73 × 10−09) (1.19 × 10−29) (8.93 × 10−20)
N-impv 199 (83%) 192 (80%) 157 (65%) 153 (64%) 201 (84%) 198 (82%)
t-impv % 7.102 8.044 9.293 44.261 9.509 23.532

(5.56 × 10−22) (5.51 × 10−26) (2.81 × 10−27) (7.36 × 10−25) (5.02 × 10−35) (3.60 × 10−26)
aIn this table, the first two rows have the performance from respective methods averaged over all bioassays in each performance metric. The row
dif f % has the percentage difference of average performance in each metric from TAc-dmpna over FCN-dmpna (DT). The row t-dif f % has the
average of task-wise percentage improvement from TAc-dmpna over FCN-dmpna (DT) in respective metrics, with the corresponding p-value in
parentheses below. The row N-impv has the number and percentage of target tasks where TAc-dmpna performs better than FCN-dmpna (DT) in
respective metrics. The row t-impv % has the average of task-wise percentage improvement only among the corresponding improved tasks, with
corresponding p-values in parentheses below.
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variants can better extract relevant information from source
domain data by learning feature-wise (Section 4.2.5.1) and
compound-wise transferability (Section 4.2.5.2).
The best performance among the baseline methods is

achieved by FCN-dmpna (DT). Table 2 presents the perform-
ance comparison between TAc-dmpna and FCN-dmpna (DT).
The dif f % values in Table 2 are calculated as the percentage
difference of average performance in each metric from TAc-
dmpna over FCN-dmpna (DT), where the average performance
in each metric is calculated as the performance in that metric
averaged over all the bioassays. The t-dif f% values are calculated
as the average of task-wise performance improvement (in %)
from TAc-dmpna over FCN-dmpna (DT). The N-impv values
denote the number of improved target tasks where TAc-dmpna
performs better than FCN-dmpna (DT) in respective metrics.
Considering only these N-impv improved tasks, the average of
task-wise performance improvement (in %) is listed as t-impv %
values. Similar to t-dif f%, the numbers presented in parentheses
in this row are the corresponding p-values for t-impv%. A p-value
less than 0.05 was considered to be statistically significant.
Clearly, compared to the best baseline method FCN-dmpna

(DT), TAc-dmpna improves the average ROC-AUC, PR-AUC,
precision, sens, accuracy, and F1 scores by 4.980%, 5.503%,
4.131%, 8.644%, 7.143%, and 10.543%, respectively. Further-
more, the average task-wise performance difference (i.e., t-dif f%)
from over FCN-dmpna (DT) across each metric is 5.702%,
6.085%, 4.876%, 25.281%, 7.727%, and 18.464%, respectively,
and these differences are positive and statistically significant (as
indicated by their corresponding p-values in parentheses), hence
suggesting that the task-wise performance is significantly
improved over FCN-dmpna (DT) . In particular, TAc-dmpna
significantly improves the ROC-AUC performance of 199 out of
240 (83%) target tasks with an average task-wise improvement
(i.e., t-impv %) of 7.102% (p-value: 5.56 × 10−22). Such
consistent and significant improvement (demonstrated by t-
impv % and their corresponding p-values) across all evaluation
metrics on a large percentage of target tasks (demonstrated by
N-impv) provides strong evidence that TAc-dmpna clearly
outperforms FCN-dmpna (DT) on the majority of target tasks.
This further implies that the transfer mechanism in TAc-dmpna
is more effective than that in FCN-dmpna (DT) . While FCN-
dmpna (DT) pays equal attention to both the source and target
tasks during training, TAc-dmpna can differentially focus on the
two tasks by varying the weightage on the source classification
loss (i.e., the trade-off parameter α in eq 3). Note that TAc-
dmpnawith α = 1 is methodologically equivalent to FCN-dmpna
(DT). By varying α, FCN-dmpna (DT) can incorporate different
degrees of task relatedness between the source and target tasks
during training. If the two tasks are not that related, a lower αwill
encourage the learning to focus more on the target task. In
essence, learned compound features are more specific to the
target task. On the other hand, α as high as 1 will enforce
learning of compound features that generalize well across the
two tasks. Such features may encode little target task-specific
information and, hence, are not effective.
Furthermore, our experimental results in Table 1 demonstrate

the efficacy of our proposed attention mechanism of dmpna in
learning better compound features. Overall, both dmpna-based
methods (i.e., FCN-dmpna and FCN-dmpna (DT)) outperform
dmpn-based methods (i.e., FCN-dmpn and FCN-dmpn (DT)).
Particularly, compared to FCN-dmpn (DT), FCN-dmpna (DT)
improves about half of the target tasks of ROC-AUC of 152 out
of 240 (63%) target tasks and gives significant performance

improvement of 3.443% (p-value: 2.64 × 10−18) on those
improved target tasks. This demonstrates that the proposed
attention mechanism in dmpna enables more effective
compound features since it can differentially score atoms
based on their relevance toward the final task. However, FCN-
dmpna achieves either similar or slightly worse performance
compared to FCN-dmpn. This is because dmpna with slightly
more parameters than dmpn may struggle to capture relevant
patterns during training, and thus FCN-dmpna can easily overfit
to limited training data of the target task. In essence, this can lead
to poor generalization performance on the test data. On the
other hand, FCN-dmpna (DT) can generalize well since it is
trained on the labeled source data along with the limited target
data. Overall, the attention mechanism can better learn and
effectively score the atoms in FCN-dmpna (DT) but not in FCN-
dmpna, thereby achieving significant improvement in the former
over FCN-dmpn (DT) and marginal improvement in the latter
over FCN-dmpn. We will further demonstrate the efficacy of our
proposed dmpna in the compound prioritization problem
detailed in Section 2.7.
Furthermore, allGNN-based baselines (i.e., FCN-dmpn, FCN-

dmpna, FCN-dmpn (DT), and FCN-dmpna (DT)) significantly
outperform DANN-based methods. Our experimental results
show that both DANN-based methods yield poor or similar
performance compared to all other baseline methods.
Specifically, the best DANN method (i.e., DANN-dmpna)
reduces the average performance by 3−4% over the best
baselinemethod FCN-dmpna (DT) across all evaluationmetrics.
Such poor performance may be due to the ineffectiveness of
domain-invariant compound features to encode necessary task-
specific information.
Surprisingly, DANN even performs worse than the finger-

print-based methods (i.e., FCN-morgan and FCN-morganc). As a
matter of fact, overall, fingerprint-based methods perform
relatively well compared to all other baselines. Compared to
GNN-based methods, fingerprint-based methods achieve
competitive or even better performance in most evaluation
metrics. This could be due to potential overfitting ofGNN-based
methods in low-data settings. It is known that GNNs require
large amounts of training data to extract relevant molecular
substructures and to effectively encode meaningful task-specific
information. In contrast, fingerprint-based methods are not data
hungry owing to fewer learnable parameters, and thus, these
methods can perform reasonably well in low-data settings.93

2.3. Top-N Task-Wise Performance Comparison. Table
3 presents a fine-grained performance comparison of top-
performing methods over all 240 target tasks across different
evaluation metrics. The columns corresponding to each
evaluation metric have the percentage of tasks for which each
method is among the top-k (k = 1, 3, 5) best methods with
respect to the metric. Note that for each method we consider the
best performing model that achieves the optimal performance in
each evaluation metric. Therefore, for a given method, the
models with the optimal performance in each metric do not
necessarily have the same set of corresponding hyperparameters.
Table 3 shows that TAc methods achieve the top-1 best

performance amongmore tasks compared to othermethods. For
example, TAc-dmpna is the best performing method in terms of
ROC-AUC for 22% of tasks, that is, more than 2-fold compared
to the best baseline method FCN-morgan (10%). TAc-dmpna
consistently achieves the top-3 and top-5 best performance in
terms of ROC-AUC on significantly more tasks compared to
other methods, with even more folds of difference. Similar
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trends hold for PR-AUC and F1 as the evaluation metrics. This
indicates the strong performance of TAc methods.
Among the four TAc variants, TAc-dmpna is the best in terms

of ROC-AUC; TAc-fc-dmpna is overall the best in terms of PR-

AUC as it achieves the top-1, top-3, and top-5 best performance
on more tasks compared to other methods; and TAc-fc-dmpn
and TAc-fc-dmpna are the best in terms of F1 as they are either
better than or similar to other methods. This indicates that while
different variants may have advantages of optimizing with
respect to different evaluation metrics TAc-fc (Figure 7, with the
feature-wise and compound-wise discriminators) is actually also
a very strong method or even better compared to TAc.

2.4. Comparison of Discriminators. Table 4 presents a
detailed performance comparison between TAc, TAc-fc, TAc-c,
and TAc-f, all with dmpna. We use dmpna here because as in
Table 3 TAc-fc-dmpna shows better performance on average
compared to TAc-fc-dmpn. TAc-c and TAc-f are obtained by
removing either the feature-wise discriminator L (Section
4.2.5.1) or the compound-wise discriminator G (Section
4.2.5.2) from TAc-fc. Note that for each bioassay the optimal
model of each method is selected based on ROC-AUC. The dif f
% values in each row block are calculated as the difference (in %)
of average performance in each metric from the TAc-fc variant
over TAc. The t-dif f% values in each row block are calculated as
the average of task-wise performance improvements (in %) from
the corresponding variant over TAc. The row N-impv in each
row block denotes the number of improved target tasks where
the variant performs better than TAc in respective metrics, and
the average of task-wise performance improvement among only
the improved tasks is calculated as t-impv % (in %).
Compared to TAc, TAc-fc achieves similar but slightly worse

performance overall (i.e., −0.375% in dif f % on ROC-AUC); on
individual tasks, TAc-fc has some statistically significant worse

Table 3. Top-N Performance Comparison (%)a

method ROC-AUC PR-AUC F1

top-N 1 3 5 1 3 5 1 3 5
FCN-morgan 10 15 20 13 21 30 11 19 23
FCN-morganc 2 13 18 3 17 22 4 17 22
FCN-dmpn 5 9 17 6 11 17 10 19 30
FCN-dmpna 4 10 26 2 7 20 5 11 26
FCN-dmpn
(DT)

2 11 23 4 13 24 5 13 22

FCN-dmpna
(DT)

5 18 33 6 14 31 2 8 23

DANN-dmpn 2 9 16 1 5 15 3 10 19
DANN-
dmpna

2 8 17 1 8 15 2 11 19

TAc-dmpn 18 52 85 17 48 81 12 49 81
TAc-fc-dmpn 12 45 79 15 48 80 17 50 80
TAc-dmpna 22 62 89 14 55 83 13 43 78
TAc-fc-dmpna 16 51 81 20 56 86 15 50 81
aIn this table, the columns ROC-AUC, PR-AUC, and F1 have the
percentage of tasks for which each method is ranked within the top-1,
top-3, and top-5 best methods in respective metrics. The best
performance values are in bold.

Table 4. Comparison on Discriminators (with dmpna)a

method ROC-AUC PR-AUC precision sens accuracy F1

TAc 0.801 0.786 0.731 0.729 0.720 0.713

TAc-fc 0.798 0.785 0.730 0.728 0.719 0.713
dif f % −0.375 −0.127 −0.137 −0.137 −0.139 0.000
t-dif f % −0.380 −0.119 −0.072 0.116 −0.150 −0.064

(2.59 × 10−04) (4.88 × 10−01) (7.26 × 10−01) (7.00 × 10−01) (5.53 × 10−01) (8.04 × 10−01)
N-impv 93 (39%) 125 (52%) 119 (50%) 111 (46%) 99 (41%) 112 (47%)
t-impv % 0.921 1.373 2.756 7.037 2.230 3.729

(7.73 × 10−18) (4.13 × 10−23) (1.69 × 10−18) (5.85 × 10−19) (4.26 × 10−14) (1.31 × 10−15)

TAc-c 0.801 0.786 0.730 0.734 0.721 0.716
dif f % 0.000 0.000 −0.137 0.686 0.139 0.421
t-dif f % 0.010 −0.080 −0.130 1.583 0.128 0.516

(7.78 × 10−01) (6.72 × 10−01) (6.32 × 10−01) (3.03 × 10−01) (4.01 × 10−01) (3.90 × 10−01)
N-impv 135 (56%) 119 (50%) 123 (51%) 126 (52%) 128 (53%) 130 (54%)
t-impv % 0.845 1.330 2.763 8.798 1.971 4.165

(1.13 × 10−23) (5.03 × 10−24) (2.67 × 10−17) (8.22 × 10−18) (4.75 × 10−21) (1.75 × 10−15)

TAc-f 0.799 0.785 0.732 0.722 0.721 0.711
dif f % −0.250 −0.127 0.137 −0.960 0.139 −0.281
t-dif f % −0.192 −0.091 0.218 −0.768 0.170 −0.326

(4.00 × 10−02) (3.76 × 10−01) (5.44 × 10−01) (1.42 × 10−01) (3.19 × 10−01) (4.98 × 10−01)
N-impv 100 (42%) 114 (48%) 124 (52%) 117 (49%) 125 (52%) 123 (51%)
t-impv % 1.029 1.597 2.992 6.999 2.037 3.764

(3.22 × 10−13) (2.22 × 10−21) (3.85 × 10−24) (1.11 × 10−19) (9.65 × 10−20) (1.12 × 10−16)

aIn this table, the first row block has the average performance of TAc. Each of the other row blocks has the performance comparison of a TAc-fc
variant with respect to TAc. The metric dif f % represents the difference of average performance of each comparison method with respect to TAc; t-
dif f % represents the average of the task-wise improvement, with corresponding p-values in the parentheses below; N-impv represents the number of
improved tasks and its proportion in the parentheses; and t-impv % represents the average of the task-wise improvement only among the improved
tasks, with corresponding p-values in the parentheses below.
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performance in terms of ROC-AUC but similar performance as
TAc on other evaluation metrics. In addition, TAc-fc still
provides significant task-wise improvement in about 40−50% of
tasks across all evaluation metrics. Particularly, it improves the
ROC-AUC score for 93 out of 240 (39%) tasks significantly by
0.921% on average (p-value = 7.73 × 10−18) over TAc. This
suggests that the learned feature-wise and compound-wise
transferability together have the capacity of improving some
target tasks. TAc-c performs similarly to TAc on average (i.e.,
0.000 in dif f % on ROC-AUC; no significant t-dif f %). However,
TAc-c improves over more than half of the tasks with statistical
significance on all the evaluation metrics. For example, TAc-c
achieves better ROC-AUC on 135 out of 240 (56%) tasks. This
indicates that the global discriminator (Section 4.2.5.2) that
differentiates compounds for the source and target tasks could
help improve performance for some tasks. TAc-f also shows
improvement on about half of the tasks (N-impv) with
significant improvement that is even higher compared to that
inTAc-c but with overall performance (dif f%) still slightly worse
than that of TAc. The fact that TAc-fc, TAc-c, and TAc-f improve
about half of the tasks over TAc without discriminators indicates
that they are suitable for certain tasks.
We hypothesize that TAc-c can effectively focus on similar

compounds of source and target bioassays by learning
compound-wise transferability viaG. We validate this hypothesis
with an additional analysis on model predictions and pairwise
similarities of predicted compounds with source and target
compounds. We find and study the active compounds that are
correctly classified as active by TAc-c but incorrectly classified as
inactive by TAc and its variants. Table S4 presents the analysis
for these active compounds among target tasks which have at
least one such active compound. For each of such active
compounds in the target task, we calculated the mean pairwise
similarities of that compound with its five most similar active
compounds in the source task and in the target task, respectively.
On average, TAc-c correctly classifies 5.4% (i.e., average of

values in “cor %” column in Table S4) of active compounds that
are incorrectly classified by TAc and its variants. These
compounds were found to be 12.4% more similar to the active
compounds in the source task than to those in the target task.
Furthermore, in 47 out of 97 (48%) tasks with at least one active
compound only correctly classified by TAc-c, the similarity
difference is statistically significant (p-value < 0.05). Overall, this
analysis demonstrates that TAc-c can better learn the
commonalities between source and target compounds and
hence can enhance information transfer from the source task to
the target task.
2.5. Parameter Study. Figure 1 presents the parameter

study in TAc-dmpna on α (i.e., the trade-off parameter between
the source and target classification losses as in eq 4). The study
was conducted over the tasks for which TAc-dmpna outperforms
the other methods. The values in each cell in the figure represent
the average of the best performance over the tasks with the
optimal choice of other hyperparameters.
Figure 1 shows that TAc-dmpna has the best average

performance in ROC-AUC, PR-AUC, precision, sens, accuracy,
and F1-score when α = 0.5, 0.5, 0.1, 0, 0.5, and 0.1, respectively.
It indicates that weighing the source and target classification
losses differently has notable effects on the overall performance.
This figure also demonstrates several trends: (1) the best
average performance is achieved with α = 0.1 and 0.5 (i.e.,
nonzero values) for all the metrics except sens and (2)
performance degrades especially when α increases. Nonzero

values of α as the optimal values indicate that leveraging
information from the source task is able to help improve the
target task. The fact that the optimal, nonzero α values are
relatively small indicates that the training is still more focused on
the target tasks, while useful information is transferred from the
source tasks. On the other hand, if α is too large (i.e., the source
classification loss is given high weightage), the training would be
dominated by the source task, and thus the trained model could
not well capture the patterns in the target task. That could
explain why model performance decreases when α increases.
Figure 2 presents the parameter study in TAc-fc-dmpna in

terms of ROC-AUC on α (i.e., the trade-off parameter between

source and target losses in eq 4) and λ (i.e., the trade-off
parameter between the classification and discriminator losses in
eq 13). Studies over other metrics are presented in Figure S1 in
the Supporting Information. The values in each cell of this figure
represent the average of the best performance over the tasks
where TAc-fc-dmpna outperforms all other methods, with
corresponding α and λ and with optimal choice of other
hyperparameters.
Figure 2 shows that TAc-fc-dmpna has the best performance in

ROC-AUC (i.e., 0.769) when α = 0.5 and λ = 0.01 and 0.001, that
is, all nonzero values. This demonstrates that a lower weight on
the source classification loss than the target classification loss
and a lower weight on discriminator losses (sum of (l) and (g)

Figure 1. Parameter study of TAc-dmpna. The columns represent
different evaluation metrics. The values in each cell have the average of
the best performance achieved with given α and optimal choice of other
hyperparameters. Darker cells indicate better performance.

Figure 2. Parameter Study of TAc-fc-dmpna in terms of ROC-AUC.
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) will enable effective transfer of relevant information from the
source domain. Figure 2 also demonstrates that when α is too
small or too large, regardless of what λ is, there is a significant
performance drop (as indicated in the topmost rows). This
effect of α can be explained following the same reasoning
presented in the previous section. For the optimal α in each
metric, λ = 0.01 gives the best performance for most metrics.
This implies that TAc-fc-dmpna can effectively leverage source
task data to learn transferable compound features (using L) and
to selectively focus on similar compounds (using G) during
training. Intuitively, for a given α, higher λ values (i.e., higher
weight on discriminator losses) will encourage learning of more
domain-invariant compound features. Such domain-invariant
features contain little task-specific information and may not be
relevant for effective activity classification for the target task, and
therefore the overall performance degrades.
2.6. Case Studies: TAc-dmpna
2.6.1. Relation between Performance Improvement and

Bioassay Similarity.Among 240 tasks, we identified and studied
four tasks with a significant performance difference inROC-AUC
from TAc-dmpna over the best no-transfer baseline method (i.e.,
FCN-dmpna). Figure 3 presents the average pairwise similarity

matrices of the four task pairs (captions include the
corresponding bioassay PubChem AIDs of the source bioassay
and the target bioassay), where Figure 3a and 3b have the target
tasks that are significantly improved by TAc-dmpna and Figure
3c and 3d have the target tasks that are significantly degraded. In
the figure, +

BS
, −

BS
, +

BT
and −

BT
denote the active (+) and

inactive (−) compounds for the source (BS) and target (BT)
tasks, and average compound similarities (sim) were calculated
using the Tanimoto coefficient over Morgan-count fingerprints
(with radius = 3 and dimension = 2048).

In Figure 3a and 3b, the performance of the target task
NP_005152 and NP_036559 was improved from TAc-dmpna
over FCN-dmpna by 34.13% and 27.10%, respectively. Figure 3a
and 3b show that for these two target tasks + +sim( , )B BS T

(0.152 in Figure 3a, 0.164 in Figure 3b) is notably greater than
both + −sim( , )B BS T

(0.134 in Figure 3a, 0.125 in Figure 3b) and
− +sim( , )B BS T

(0.137 in Figure 3a, 0.136 in Figure 3b). This
indicates that if active compounds across bioassays are more
similar than compounds with different activity labels across
bioassays TAc-dmpna can better capture the commonalities
among those similar active compounds and can better transfer
relevant information across bioassays. This transferred informa-
tion can effectively improve the target task performance. On the
other hand, if compounds with different activity labels across
bioassays are more similar than compounds with the same
activity labels, TAc-dmpna can cause transfer of conflicting
information. Such a transfer can result in performance
degradation for the target task. Such performance degradation
in ROC-AUC from TAc-dmpna over FCN-dmpna for the target
tasks in pairs (AAI28575, NP_066285) in Figure 3c was 5.74%
and (AAB26273, NP_003605) in Figure 3d was 2.34%,
respectively. In Figure 3c and 3d, + +sim( , )B BS T

and
+ −sim( , )B BS T

values are relatively similar (0.127 vs 0.122 in
Figure 3c, 0.116 vs 0.114 in Figure 3d). This indicates that when
the similarities between +

BS
and −

BT
compounds are relatively

high TAc-dmpna could lead to transfer of conflicting
information, causing inactive compounds in the target bioassay
to be incorrectly classified as active.
Furthermore, we analyzed the relation between the task-wise

ROC-AUC improvement from TAc over FCN-dmpna and the
bioassay similarities. Figure 4 presents such a relation. Note that

the bioassay similarities are calculated as the average of all pair-
wise compound similarities across two bioassays in the same way
as discussed in Section 2.1.1.2. Figure 4 demonstrates that there
are significant task-wise ROC-AUC improvements (e.g., in the
upper right region) when the pair-wise similarities are relatively
high (e.g., greater than 0.12), and there are marginal
improvements (e.g., in the lower left region) when the pair-
wise similarities are low (e.g., lower than 0.12). This suggests
that if bioassay pairs are more similar TAc can improve the
performance over FCN-dmpna by a largemargin (e.g., more than
10%). On the other hand, if bioassay pairs are less similar, TAc

Figure 3. Similarity matrices of target pairs with significant ROC-AUC
improvement/degradation. Figure 4. ROC-AUC improvement from TAc over FCN-dmpna vs

bioassay similarity.
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achieves little or no improvement over FCN-dmpna. Indeed,
there are some bioassay pairs that are more similar, yet TAc
achieves marginal or negative improvement (e.g., in the lower
middle region). This is possibly due to the fact that the
performance improvement is not only a function of bioassay
similarity; in fact, the improvement can be marginal or negative
owing to poor generalization during testing.
2.6.2. Correctly Classified Compounds Possibly Due to

More Similar Compounds in the Source Bioassay. In this
section, we identified (i) a few compounds that were correctly
classified by TAc but incorrectly classified by the baselines and
(ii) a few compounds that were incorrectly classified by TAc but
correctly classified by the baselines. Figure 5(a) and (b) presents
two such examples for (i), and Figure 5(c) and (d) presents two
such examples for (ii). In each figure, the left-most compound is
the compound to be classified as active/inactive from the target
bioassay (referred to as x(T)), and the others are the top 5 most
similar compounds (referred to as *BS

) to x(T) from the
corresponding source bioassay. The mean pairwise Tanimoto
coefficients between x(T) and *BS

in Figure 5(a), (b), (c), and
(d) are 0.407, 0.428, 0.210, and 0.143, respectively. Thus, in
Figure 5(a) and (b), x(T) values are structurally more similar to
their corresponding *BS

. Relatively, in Figure 5(c) and (d), x(T)

values are less similar to their corresponding *BS
. This suggests

that TAc classifies some compounds correctly, probably due to

the fact that those compounds have very similar compounds in
the source bioassay.

2.7. Compound Prioritization Using dmpna. We also
explored the potential of using dmpna for compound
prioritization purposes. We developed a comprehensive
learning-to-rank method gnnCP for effective compound
prioritization that jointly learns molecular graph representations
via GNN and a scoring function using the representations. The
learning methods for compound prioritization are described in
Section 4 in the Supporting Information.

2.7.1. Materials. Baselines. We compare gnnCP with the
following feature vectors using the same scoring and loss
functions: (i) binary Morgan fingerprints (morgan), (ii) morgan
count fingerprints, (morgan-c), (iii) bioassay-specific compound
features12 computed using the Tanimoto coefficient on binary
Morgan fingerprints (morgan-ba), (iv) 200-dimensional RDKit
descriptors (RDKit200), and (v) directed message passing
network19 (dmpn). We generate binary Morgan fingerprints and
Morgan-count fingerprints (with radius = 2 and size = 2048)
using RDKit.90 Codes for computing the RDKit descriptors are
available in the Descriptastorus package.94

Experimental Protocol. In order to evaluate the overall
ranking performance, we perform a 5-fold cross validation. We
randomly split each bioassay into five folds. In each run, four
folds of each bioassay are used for training, and the other fold is
used for testing. We record optimal values of each performance

Figure 5. Visualization of a few selected compounds from the target bioassay and their corresponding top 5 most similar compounds from the source
bioassay.
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metric averaged over the five folds. Finally, we report the average
of all such recorded optimal values of each performance metric
over all the bioassays. For each bioassay, we train the models
using an Adam92 optimizer with an initial learning rate ∈ {5 ×
10−3, 1 × 10−3, 5 × 10−4}. We use grid search to tune all the
hyperparameters such as the dimension of the graph
representation d, hidden dimension of the attention layer, and
batch size. Specifically, we use d ∈ {25, 50, 100} for dmpn and
dmpna and a hidden dimension of the attention layer ∈ {5, 10,
20} for dmpna. We use batch size∈ {128, 256, 512} and λ = 1 ×
10−6 for all the models. All the models are trained for 50 epochs.
Evaluation. We evaluate all the methods using a set of 105

single-target confirmatory bioassays from PubChem.20 These
bioassays all use IC50 to measure compound binding affinities
and have at least 50 active compounds. For each bioassay, we
only keep the active compounds and remove duplicate
compounds and those with identical IC50 values. We evaluate
the ranking performance using concordance index (CI), recall@
k (R@k), and normalized discounted cumulative gain@k
(ndcg@k),12 where k = 3, 5, and 10. We also use R@k% and
ndcg@k%, where we consider the top k% (k = 5, 10) of the test
fold compounds in r.
Table 5 presents the performance comparison between

dmpna, dmpn, and the baselines. Overall, dmpna significantly
performs better than all the baselines including dmpn, across all
performance metrics. The average performance improvement
from dmpna over dmpn in terms of CI, recall@3, recall@5,
ndcg@3, ndcg@5, recall@5%, and ndcg@5% is 2.353%, 6.608%,
4.460%, 3.114%, 2.421%, 18.429%, and 4.475%, respectively.
Furthermore, compared to dmpn, the average bioassay-wise
performance improvement from dmpna is most significant in
terms of recall@3, recall@5, ndcg@3, ndcg@5, recall@5%, and
ndcg@5% (p-values: 4.89 × 10−10, 9.87 × 10−13, 1.42 × 10−12,
2.25 × 10−12, 3.95 × 10−15, and 1.83 × 10−11, respectively). This
indicates that dmpna can rank the topmost compounds better
than dmpn. Unlike mean pooling in dmpn, the attention
mechanism in dmpna can differentially focus on atoms based
on the relevance of each atom to the prioritization problem. This
demonstrates the ability of dmpna to better differentiate
compounds and to achieve effective compound prioritization.
Furthermore, dmpna and dmpn significantly outperform all the
fingeprint-based baselines across all performance metrics.
Compared with the best performing fingerprint-based baseline
morgan-c, in terms of CI, recall@3, recall@5, ndcg@3, ndcg@5,
recall@5%, and ndcg@5%, the average performance improve-
ment from dmpna is 5.247%, 25.724%, 13.094%, 8.140%,
5.871%, 56.875%, and 10.637%, respectively, and from dmpn in
terms of CI, recall@3, recall@5, ndcg@3, ndcg@5, recall@5%,

and ndcg@5% is 2.827%, 17.932%, 8.266%, 4.874%, 3.369%,
32.464%, and 5.898%, respectively. This demonstrates that the
learned representation out of gnnCP can effectively encode
useful molecular substructure information and thus is more
effective for compound prioritization.

3. CONCLUSIONS
We have developed TAc that effectively leverages source
bioassay data to improve the performance of the target task.
We also proposed a variant of TAc, i.e., TAc-fc, that additionally
learns feature-wise and compound-wise transferability. We
conducted an exhaustive array of experiments and analyses
that suggest that TAc-dmpna is the best-performing method on
average across all target tasks. The proposed variant is also a very
strong method and even better compared to TAc on certain
target tasks. Furthermore, in ablation studies, we also showed
that TAc-fc-dmpna can even improve performance for more than
half of the target tasks compared to TAc-dmpna. Our analyses
further demonstrated that learning compound-wise trans-
ferability via G can better encode the commonalities between
compounds across bioassays. We also provided a parameter
study to demonstrate the effect of α and λ on our proposed
methods. Additionally, we demonstrated the efficacy of our
proposed dmpna in both compound activity and compound
prioritization problems since it performed better than any other
compound representation methods.
In this work, we paired the bioassays if their corresponding

protein targets belong to the same protein family. In other
words, when we paired the bioassays, the corresponding pair of
tasks is assumed to be related. We assumed that leveraging
activity information from related protein targets (i.e., targets
belonging to the same protein family) can improve the target
task performance. However, we observed that TAc did not
improve all the targets compared to the best no-transfer baseline
method FCN-dmpna. This suggests the occurrence of potential
negative transfer. In future works, we will focus on developing a
more principled approach to determine task-relatedness. Given
a target task, our current method only considers a single source
task. This severely limits the scope of transfer from only one
related task and can also impact the performance on the target
task if the learning is too focused on the source task. Our future
work will incorporate multiple source tasks for each target task
by simultaneously learning task-relatedness in a data-driven
manner.

4. COMPUTATIONAL METHODS
4.1. Notations and Definitions. In this section, we listed

the notations and definitions used in this paper. Table 6 presents

Table 5. Overall Performance Comparison of gnnCP

method CI R@3 R@5 ndcg@3 ndcg@5 R@5% ndcg@5%

morgan 0.706 0.543 0.644 0.814 0.816 0.420 0.838
morgan-c 0.711 0.545 0.655 0.815 0.819 0.437 0.846
morgan-ba 0.687 0.500 0.626 0.789 0.797 0.375 0.816
RDKit200 0.687 0.519 0.632 0.790 0.797 0.396 0.813
dmpn 0.731 0.643 0.709 0.854 0.847 0.579 0.896
dmpna 0.748 0.686 0.740 0.881 0.867 0.686 0.936
dif f % 2.353 6.608 4.460 3.114 2.421 18.428 4.475
t-dif f % 2.535 7.645 4.720 3.406 2.569 24.578 4.979
p-value 1.14e-10 4.89e-10 9.87e-13 1.42e-12 2.25e-12 3.95e-15 1.83e-11

In this table, the columns have the respective average of each performance metric over all bioassays obtained by the respective optimal
hyperparameter settings. The best/second best performance under each metric is bold/underlined.
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a list of notations and their meanings. We represent a compound
and using a molecular graph, c. c is denoted as = ( , )c c c ,
where c is the set of atoms and c is the set of corresponding
bonds in c. We denote the set of compounds in a bioassay B as

B and the activity labels of those compounds accordingly as B.
In this paper, we use a label “1” or “0” to indicate that a
compound is active or inactive in a bioassay, respectively.
We use the following definitions related to transfer learning.
Domain: a domain is a set of labeled compounds

 = { = | ∈ ∈ = | |}c y y ix x( , ) , , 1, ...,i i i i i , where the
compounds {xi} are represented in a feature space , and
their activity labels {yi} are represented in a label space ; | | is
the size of the domain (i.e., the number of (xi, yi) pairs). In our
transfer learning, we will have two domains: a source domain,

denoted as (S), and a target domain, denoted as (T). In
general, these two domains can have different numbers of
compounds with different compound feature representations
and also different label sets. We use superscript (S) and (T) to

represent information associated with the source domain and
the target domain, respectively. For example, x(T) represents a
compound from the target domain. In addition, we use to
represent the set of compound features {xi}, that is,

= { | ∈ }x xi i , and to represent the set of compound
labels, that is, = { | ∈ }y yi i . Thus, can also be represented

as = ( , ).
Task: Given a domain = { }= | |yx( , )i i i 1,..., , a task is to

learn a model that maps each xi to its corresponding yi. In our
transfer learning, we will have two tasks: a source task, denoted

as (S), and a target task, denoted as (T). (S) and (T) learn

from the source domain (S) and the target domain (T),
respectively.
Transfer Learning: Transfer learning learns and transfers

information from the source task (S) to the target task (T)

and helps improve the performance of (T). The underlying

assumptions are that: (1) the target domain (T) does not have

sufficient information for (T) to learn a good model, and (2)

there are commonalities between (S) and (T); such

commonalities can be transferred from (S) to (T) and used

to improve (T).
4.2. Methods. In this section, we present our two transfer

learning methods: TAc and TAc-fc. We first introduce the overall
architecture of TAc in Section 4.2.1 and then discuss each
component in detail in subsequent sections (i.e., Sections 4.2.2
and 4.2.3). We discuss the end-to-end optimization process in
Section 4.2.4. We then introduce TAc-fc with additional
components that learn feature-wise and compound-wise trans-
ferability and finally discuss the optimization process in Section
4.2.5.

4.2.1. Overall Architecture of TAc. TAc learns to generate
transferable features that can generalize well from one domain to
another and increases the predictive power for classification in
the target domain. Figure 6 presents the overall architecture of
the proposed TAc. TAc consists of two components: (1) a
feature learner F that learns to represent chemical compounds
and (2) a domain-wise classifier S that classifies chemical

Table 6. Notations

method meanings

c/B compound/bioassay
= ( , ) molecular graph with set of atoms and bonds

u
an atom in

(u, v) a bond connecting atoms u and v in

(u) neighbors of atom u in

set of compounds in a bioassay
set of labels corresponding to

 input feature space
 label space

= { }P, ( ) a domain consisting of  and marginal probability
distribution P( )

 ω= { · }, ( )
T = {Y,ω(·)}

a task consisting of label space and a decision function
ω(·)

h hidden state
r molecular representation out of GNN
z scaled molecular representation

Figure 6. Proposed architecture of TAc. The feature learner F learns compound representations r given the corresponding molecular graph. The
domain-wise classifier S classifies the compound as active/inactive.
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compounds of each domain. Below, we discuss each component
of TAc in detail.
4.2.2. Learning Compound Representations. This section

describes how the feature representations of compounds are
learned. In TAc, the feature representations of chemical
compounds are learned in a data-driven fashion. Compared to
using static fingerprints or fixed feature representations of
molecular structures,33 such learned features will be more
adapted to the learning task and enable optimal performance.
We leverage the popular idea of graph neural networks95 and use
the Directed Message Passing Neural Network, denoted as
dmpn, developed in Yang et al.19 Given a molecular graph

= ( , )c c c for a compound c, dmpn learns a feature vector,
also called an embedding of c using graph convolution, by
passing messages along directed edges over molecular graphs. In
dmpn, two representations for each bond are learned via message
passing through the two directions along the bond. Then atom
representations are learned from the representations of their
incoming bonds. In the end, the compound representation is
generated via mean pooling over all the atom representations.
Details about dmpn are presented in Section 1 in the Supporting
Information and are also available in Yang et al.19

Based on dmpn, we further improve the compound
representation learning by introducing an attention mechanism
inspired from Graph Attention Networks.96 This new method is
referred to as dmpn with attention, denoted as dmpna.
Specifically, we replace the mean pooling in dmpn with an
attention-based pooling mechanism as follows

∑= + ⊙
∈

r sw(1 )
u

c u u

c (1)

where ⊙ is the element-wise product; su is the learned
representation of atom u as in dmpn; and wu is the attention
weight on atom u calculated as follows

=
∑ ∈

w
f

f

s

s

exp( ( ))

exp( ( ))v
u

a u

a vc (2)

where fa(·) is a 2-layer feed-forward network with a ReLU
activation function after the hidden layer. That is, the attention
learns a specific weight on each atom. Thus, the attention
mechanism in dmpna can differentially focus on atoms based on
the relevance of each atom toward the final predictive task. The
network to learn compound embeddings is denoted as F (i.e., F
is dmpn or dmpna).

4.2.3. Learning to Classify Compounds of Each Domain.
This section describes how the compounds of each domain are
classified as active/inactive using the learned feature representa-
tions. Given the compound embedding r, the domain-wise
classifier classifies each compound in a given domain as active or
inactive with respect to that domain using a two-layer fully
connected neural network S as follows

̂ = ry S( ) (3)

with ReLU at the hidden layer and sigmoid at the output layer.
The outputs of S are the probabilities of input compounds from
the source/target domain being active in the source/target
domain.
To learn S, the loss function (c) for the classifier is defined as

follows

∑

∑

αΩ Φ = − [ ̂

+ − − ̂ ]− [ ̂

+ − − ̂ ]

∈

∈

n
y y

y y
n

y y

y y

( , )
1

log( )

(1 )log(1 )
1

log( )

(1 )log(1 )T

x

x

(c) (S)
(S) (S)

(S) (S)
(T)

(T) (T)

(T) ( )

(S) (S)

(T) (T)

(4)

Figure 7. Proposed architecture of TAc-fc. The feature learner F learns compound embedding r given the corresponding molecular graph. The feature-
wise discriminator L learns feature-wise transferability given the learned compound embedding r. r is further scaled into z using its feature entropy from
p out of L. The compound-wise discriminatorG learns the compound-wise transferability given z. The domain-wise classifier S classifies the compound
as active/inactive.
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where y(S)/y(T) is the ground-truth activity label of each
compound in domain S/T; n(S)/n(T) is the number of

compounds in (S)/ (T) (i.e., = | |n ); α is a hyperparameter
to trade-off the two classification losses; and Ω and Φ are
learnable parameters of F and S, respectively. Please note that
both the source domain and the target domain use the same
classifier S. Therefore, if the source and target domain have
common compounds or very similar compounds, when these
compounds have the same labels in the two domains, they will
induce small classification errors in both domains; when these
compounds have different labels in the two domains, they will
induce large errors in one domain and small errors in the other.
Byminimizing the loss (c)(Ω,Φ), it will encourage common or
similar compounds that have the same labels in the two domains
to be more focused on through learning and prevent the transfer
of conflicting information across domains.
4.2.4. TAc Model Optimization. This section presents the

optimization process of the proposed TAc. TAc constructs an
end-to-end transfer learning framework with the above two
components: (1) feature learner F and (2) domain-wise
classifier S. We solve for TAc through minimizing the loss
function (c). In other words, we solve the following
optimization problem

Ω̂ Φ̂ = Ω Φ
Ω Φ

, argmin ( , )
,

(c) (5)

where Ω and Φ are the learnable parameters of F and S,
respectively. Minimizing (c) will minimize the classification
error in each domain while preventing transfer of conflicting
information across domains, hence enabling the feature learner
F to learn better compound features for effective classification in
each domain. Since the same F and S are used for both the
source and target tasks, minimizing (c) also enables transfer of
relevant information through the shared parameters of F and S.
Intuitively, the amount of transferable information from the
source domain to the target domain is determined by the degree
of task relatedness between those domains. In this work, the
degree of task relatedness between the source and target
domains is essentially controlled through the hyperparameter α.
We will consider learning task relatedness or α in a data-driven
manner in our future works.
4.2.5. Variant of TAc: TAc-fc. In this section, we propose a

variant of TAc where we incorporate additional components to
selectively learn feature-wise and compound-wise transferability.
We denote this variant as TAc-fc. Figure 7 presents the overall
architecture of the proposed TAc-fc. In addition to the feature
learner F and the label classifier S, TAc-fc consists of two more
components: (1) a feature-wise discriminator L that learns the
transferability of each learned feature (Section 4.2.5.1) and (2) a
compound-wise discriminator G that separates chemical
compounds into source and target domains (Section 4.2.5.2).
We refer toTAcwith the feature-wise discriminator only asTAc-f
and TAc with the compound-wise discriminator only as TAc-c.
Below, we discuss each component in detail and also the
optimization of the proposed method.
4.2.5.1. Learning Transferability of Individual Features.

Given the learned compound embedding ∈r d out of F
(discussed in Section 4.2.2), the feature-wise discriminator of
TAc-fc learns the transferability of each embedding feature in r
using a two-layer neural network L as follows

= Lp r( ) (6)

where L has a hidden layer with ReLU and an output layer with
sigmoid. Note that p = [p1, p2, ..., pd] has the same dimension as
r, and pi ∈ [0, 1] represents the probability that the i-th
embedding feature in r is specific to the source domain. Thus,
the feature-wise discriminator determines whether the input
compound features (not the input compounds) belong to the
source domain or not. For bioactivity prediction problems, if

(S) and (T) have compounds for protein targets that are from
the same protein family, it is very likely that their active
compounds are similar and share similar substructures (e.g.,
pharmacophores). In this case, intuitively, the feature-wise
discriminator here could learn and represent such similar
substructures.
We further quantify the transferability of each embedding

feature using its entropies as follows

= − − − −H p p p p p( ) log (1 )log(1 )i i i i i (7)

If pi is very large or very small and has a low entropy, it indicates
the i-th embedding feature is very likely or very unlikely to be
specific to the source domain, and thus it is less likely to be
common across domains; if pi is close to 0.5 and with a high
entropy, the feature is less specific to any of the domains and
more likely to be common across domains and therefore can be
used for information transfer across domains.
We then scale compound embedding r into z using feature

entropies as follows

= + ⊙z H r(1 ) (8)

where = [ ] ∈H p H p H pH ( ), ( ), ..., ( )d
d

1 2 and ⊙ represents
element-wise dot product. Each feature is scaled with its entropy
and added with itself. Intuitively, the self-addition reduces the
loss of informative features due to improper scaling. Thus, in z,
domain-invariant embedding features are scaled larger than
domain-specific embedding features (H ≥ 0). We will use z as
input to the following components.
To learn the feature-wise discriminator, the loss function (l)

is defined as follows

∑ ∑

∑ ∑

Ω Θ = −

− −

∈ =

∈ =

n d
p

n d
p

( , )
1 1

log( )

1 1
log(1 )

i d
i

i d
i

x

x

(l) (S)
1 ...

(S)

(T)
1 ...

(T)

(S) (S)

(T) (T) (9)

where n(S)/n(T) is the number of compounds in (S)/ (T) (i.e.,
= | |n ); Ω and Θ are learnable parameters of F (compound

representation learning network as in Section 4.2.2) and L
(feature-wise discriminator network as in eq 6), respectively, and
d is the dimension of compound feature embeddings. Note that
in eq 9 pi

(S) and pi
(T) both measure an embedding feature’s

probability of being specific to the source domain; superscripts
(S)/(T) here indicate that the compounds, whose features are
measured, are from the source/target domain, respectively.
To have an accurate feature-wise discriminator, embedding

features specific to the source/target domain should have large/
small probabilities (i.e., large pi

(S) and small pi
(T)) with respect to

the source domain and thus make the (l) value small.
Therefore, minimizing (l) will encourage accurate probabil-
ities. Meanwhile, the feature learner F should encourage the
learning of more transferable embedding features, which will
have probabilities close to 0.5 and thus make the (l) value large.
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Therefore, maximizing (l) will encourage more transferable
embedding features being learned and learned well. To combine
these two aspects, an adversarial optimization will be applied to

(l) as will be described later in Section 4.2.5.3.
4.2.5.2. Learning Transferability of Compounds. Inspired

by the principle that similar compounds tend to bind to similar
protein targets, our method identifies such similar compounds
that have the same activity labels across two targets and hence
learns compound-wise transferability. Given the scaled com-
pound embedding z of compound c, the compound-wise
discriminator classifies whether the compound is from the
source domain using a two-layer fully connected neural network
G as follows

=q G z( ) (10)

with ReLU at the hidden layer and the sigmoid at the output
layer. If q is very large or very small, c is very likely or very
unlikely to belong to the source domain (it is equivalent to
calculating the value with respect to the target domain since
there are only two domains to consider). If q is close to 0.5, c is
likely to be common across domains (e.g., identical or similar
compounds in the two domains) and thus can be used for
information transfer across domains.
To learn the compound-wise discriminator, the loss function

(g) is defined as follows

∑ ∑Ω Ψ = − −

−
∈ ∈n

q
n

q

( , )
1

log( )
1

log

(1 )

x x
(g) (S)

(S)
(T)

(T)

(S) (S) (T) (T)

(11)

where n(S)/n(T) is the number of compounds in (S)/ (T) (i.e.,
= | |n ); Ω and Ψ are learnable parameters of F (compound

representation learning network as in Section 4.2.2) and L (eq
10); and d is the dimension of the compound feature
embeddings. Note that in eq 11 q(S) and q(T) represent the
probability of c(S) and c(T) belonging to the source domain. Also,
all the compounds from the source and target domains will be
predicted using the same G.
In order to identify similar compounds across domains, the

discriminator needs to identify compounds with their q values
close to 0.5; when the q values are close 0.5, (g) will be
maximized. Therefore, maximizing (g) will encourage more
transferable compounds being learned and learned well.
Meanwhile, to have an accurate compound-wise discriminator,
compounds specific to the source/target domain should have
large/small probabilities (i.e., large qi

(S) and small qi
(T)) with

respect to the source domain and thus make the (g) value small.
Therefore, minimizing (g) will encourage accurate probabil-
ities. To combine these two aspects, similarly as to (l), an
adversarial optimization will be applied to (g) as will be
described later in Section 4.2.5.3.
According to G, a compound that is common in the two

domains or is similar to compounds in the other domain could
be transferable (q value close to 0.5; not specific to the source or
target domain). However, such common or similar compounds
may have different activity labels in the two domains. Using
transferred information from common/similar compounds with

conflicting labels in (T) will confuse any learners adversely.
The compound-wise discriminator G does not consider activity
label information in learning compound transferability and thus

possibly induces conflicting information into (T). However, in
the downstream domain-wise classification (Section 4.2.3), the
minimization of domain-specific classification errors will prevent
the transfer of conflicting information.
However, the input to the domain-wise classifier S in TAc-fc is

z instead of r as in Section 4.2.3. Given the scaled compound
embedding z, the domain-wise classifier classifies each
compound in a given domain as active or inactive with respect
to that domain using a two-layer fully connected neural network
S as follows

̂ =y S z( ) (12)

with ReLU at the hidden layer and sigmoid at the output layer.
As discussed in Section 4.2.3, minimizing the loss (c)(Ω, Φ)
enables correct classification in each domain and prevents the
transfer of conflicting information across domains.

4.2.5.3. TAc-fc Model Optimization. This section presents
the optimization process of the proposed TAc-fc. TAc-fc
constructs an end-to-end adversarial transfer learning frame-
work with the above four components: (1) compound feature
presentation learning network F, (2) feature-wise discriminator
L, (3) compound-wise discriminator G, and (4) domain-wise
classifier S. We solve forTAc-fc through optimizing the following
loss function

λΩ Θ Ψ Φ = − [ Ω Θ + Ω Ψ ]

+ Ω Φ

( , , , ) ( ( , ) ( , )

( , )

(l) (g)

(c) (13)

whereΩ,Θ,Ψ, andΦ are learnable parameters of F, L, G, and S,
respectively, and λ is a trade-off parameter. This loss function
combines the three loss functions for L, G, and S and will be
optimized in an adversarial way as follows:
(Step 1). Minimize with respect toΩ andΦ via solving the

following optimization problem:

Ω̂ Φ̂ = Ω Θ Ψ Φ
Ω Φ

, argmin ( , , , )
, (14)

By minimizing , we essentially minimize (c) and maximize

(l) and (g). As discussed in L (Section 4.2.5.1) andG (Section
4.2.5.2), maximizing (l) and (g) will encourage learning of
transferable features and compounds that can be used to help the
tasks; as discussed in S (Section 4.2.3), minimizing (c) will
prevent the transfer of conflicting information, in addition to
minimizing the classification errors in each task.
(Step 2). Maximize with respect toΘ andΨ via solving the

following optimization problem:

Θ̂ Ψ̂ = Ω Θ Ψ Φ
Θ Ψ

, argmax ( , , , )
, (15)

By maximizing , we essentially minimize (l) and (g) ( (c) is
fixed in this step). As discussed in L (Section 4.2.5.1) and G
(Section 4.2.5.2), minimizing (l) and (g) will encourage that L
and G accurately learn features and compounds that are specific
to each domain to improve the classification performance of
each domain.
(Step 3). The above two steps are iterated until the learning

converges.
Thus, the optimization problem consists of a maximization

with respect to some parameters and a minimization with
respect to the others. In order to tackle such a mini-max
optimization, we insert the gradient reversal layer (GRL)64
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between F and the discriminators L and G. GRL reverses the
gradients during the backward propagation and hence optimizes
parameters Ω by maximizing the discriminator loss.
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