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Acute kidney injury (AKI) is a serious clinical syndrome, and one of the common

comorbidities in the perioperative period. AKI can lead to complications in surgical

patients and is receiving increasing attention in clinical workup. In recent years, the

analysis of perioperative risk factors has become more in-depth and detailed. In this

review, the definition, diagnosis, and pathophysiological characteristics of perioperative

AKI are reviewed, and the main risk factors for perioperative AKI are analyzed,

including advanced age, gender, certain underlying diseases, impaired clinical status

such as preoperative creatinine levels, and drugs that may impair renal function such

as non-steroidal anti-inflammatory drugs (NASIDs), ACEI/ARB, and some antibiotics.

Injectable contrast agents, some anesthetic drugs, specific surgical interventions,

anemia, blood transfusions, hyperglycemia, andmalnutrition are also highlighted.We also

propose potential preventive and curative measures, including the inclusion of renal risk

confirmation in the preoperative assessment, minimization of intraoperative renal toxin

exposure, intraoperative management and hemodynamic optimization, remote ischemic

preadaptation, glycemic control, and nutritional support. Among the management

measures, we emphasize the need for careful perioperative clinical examination, timely

detection and management of AKI complications, administration of dexmedetomidine

for renal protection, and renal replacement therapy. We aim that this review can further

increase clinicians’ attention to perioperative AKI, early assessment and intervention to

try to reduce the risk of AKI.
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INTRODUCTION

Acutekidney injury (AKI) is a common clinical syndrome characterized by a sudden and
persistent decline in kidney function over hours to days. It has numerous etiologies and
complex mechanisms. AKI has received increasing attention from clinicians as one of the
major perioperative comorbidities. Studies have reported the incidence of in-hospital AKI to
be 2–18% in perioperative patients and 22–57% in intensive care patients (1). Perioperative
AKI can lead to increased mortality, incidence of chronic kidney disease (CKD) and risk
of postdischarge hemodialysis (HD), as well as increased healthcare costs and resource
utilization (2, 3). Therefore, the concept of perioperative AKI should be explored in depth,
and the associated risk factors should be analyzed to enhance the prediction and assessment
of AKI, intervene in advance, and try to reduce the severity of AKI when it occurs.
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DEFINITION AND DIAGNOSIS OF
PERIOPERATIVE AKI

Perioperative AKI is defined as an acute decline in renal function
occurring from 5–7 d before to 7-12 d after surgery (4), but there
is no standard definition of AKI, resulting in a lack of clarity
in clinical workup. The consensus for AKI was set in the 2002
RIFLE criteria with reference to sCr values and urine volume.
The revised RIFLE criteria were published by AKIN in 2005, the
main changes being the recognition that small changes in sCr
values may increase morbidity andmortality and allowing AKI to
be defined without knowledge of baseline sCr. In 2012, KDIGO
proposed clinical practice guidelines for AKI, giving an updated
definition of blood creatinine ≥26.5 mmol/L within 48 h, blood
creatinine ≥1.5 times the basal level within 7 d or urine output
<0.5 mL/kg/h for 6 h (5) (Table 1). However, these criteria still
have drawbacks. First, the perioperative period has been shown
to be a unique environment where stress and hypovolemia cause
frequent intraoperative and postoperative reductions in urine
output. During surgery, only 5–15% of the crystalloid volume
load is excreted from the urine, compared to 40–75% in non-
anesthetized patients (6, 7). The same is true for sCr, which has
a relative lag, and it changes after 50% of the kidney function is
impaired. Serum creatinine may also be influenced by a variety of
factors, including ethnicity, age, sex, chronic disease, nutrition,
volume overload, body mass, and muscle trauma (8).

Recent research on biomarkers that contribute to the
early diagnosis of AKI has made important advances. Target
biomarkers require that they be released and detectable in
blood or urine before an increase in sCr and/or a decrease in
urine output, with the aim of detecting subclinical AKI before
kidney tissue damage and functional decline (9, 10). Different
markers may be associated with different parts of the kidney
and different mechanisms of injury, so the detection of AKI
biomarkers not only allows the early detection of subclinical
AKI but also helps to determine the cause and implement
specific treatment. The functional markers neutrophil gelatinase-
associated lipoprotein (NGAL) and liver-fatty acid binding
protein (L-FABP) have been approved for use in Europe and
Japan, respectively, while the combination of the cell cycle
markers tissue inhibitor of metalloproteinase 2 (Timp-2) and
insulin-like growth factor binding protein-7 (IGFBP7) have also
been approved by the US FDA (11). Other target molecules
include kidney injury molecule-1 (KIM-1), interleukin 18 (IL-
18), calprotectin (CALPRO), β2-microglobulin (β2-MG), total
urinary protein (UTP), microRNAs, etc (12–17). These markers
have been well-studied, but their clinical predictive power is still
unsatisfactory, and studies are being conducted with artificial
intelligence to construct AKI prediction models, which will be
more rational and effective when applied along with biomarkers
as important parameters.

PATHOPHYSIOLOGY

Inadequate perfusion is the main mechanism affecting renal
function, and all causes of decreased mean arterial pressure

(MAP) can lead to renal hypoperfusion. Initially, the kidney can
maintain GFR by activating the sympathetic nervous system,
including the release of vasopressin (ADH) and angiotensin II
(ANG II), activating the renin-angiotensin-aldosterone system
(RAAS), with the end result of water and sodium retention to
maintain GFR. Next, if the renal perfusion deficit is not corrected
in time, angiotensin II eventually causes vasoconstriction of
afferent and efferent small arteries, which decreases GFR. These
mechanisms work only if MAP is kept above the autoregulatory
threshold; below 75–80 mmHg, the efficiency of autoregulation
decreases sharply.

Along with a deeper understanding of the mechanisms of
AKI occurrence, it was found that a purely ischemic model
does not explain sepsis and major surgery-related AKI well. The
hemodynamics of sepsis can be predominantly hyperdynamic,
and overall renal blood flow may remain constant or increase,
but the glomerular filtration rate decreases significantly. In
addition, perioperative AKI is caused not by a single factor but
by multiple insults. Reduced perfusion may not be the only cause
of surgery-related AKI, as partial occlusion of the renal artery
for a certain period of time can also be tolerated by the kidney,
and it is now believed that systemic inflammatory response
syndrome (SIRS) is a non-specific response of the body to
surgical trauma through microcirculatory dysfunction, intrinsic
repair mechanism abnormalities, inflammation- and immune-
mediated injury, and endothelial cell dysfunction, resulting in a
combined response that leads to AKI (18).

RISK FACTORS

Impaired Clinical Status
Along with advances in surgical techniques, anesthesia
techniques, and related care monitoring technologies, surgery
in high-risk elderly patients is being performed more and
more often. Comorbidities, acute illnesses and age-related
decline in physiological reserve have led to an increased risk of
perioperative AKI in surgical patients. From the large amount
of prospective data on surgical patients, the identifiable risk
factors for AKI are age ≥56 years, male sex, active congestive
heart failure, ascites, hypertension, preoperative creatinine >106
mol/L, diabetes mellitus (controlled by oral medications or
insulin injections) (19–24), and patients with six or more risk
factors have an increased incidence and hazard ratio of AKI
(25). Additional risk factors include ventilator dependence,
chronic obstructive pulmonary disease, smoking, coagulation
disorders, cancer, obesity, and long-term steroid medication
use (26, 27) (Table 2).

Drugs That Impair Kidney Function
Many drugs routinely used in the perioperative period may
adversely affect renal function, and it is now believed that up
to 25% of cases of severe AKI are triggered by nephrotoxic
drugs (Table 2). Non-steroidal anti-inflammatory drugs
(NSAIDs) can directly reduce renal blood flow while causing
tubular obstruction through crystal deposition and can
induce direct cytotoxicity and cell-mediated immune damage
mechanisms, leading to acute kidney injury (AKI). Risk

Frontiers in Medicine | www.frontiersin.org 2 December 2021 | Volume 8 | Article 751793

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yu and Feng Perioperative Acute Kidney Injury

TABLE 1 | AKI diagnostic criteria.

Staging Urine volume Diagnostic criteria

RIFLE (2002) AKIN (2005) KIDGO (2012)

1 issue Urine output

< 0.5 ml/kg/h

> 6 h

Risk: sCr elevated >

1.5 times

or GFR decline > 25%

sCr elevated ≥ 26.4

µmol/L

or elevated > 1.5–2.0 times

the baseline value

sCr elevated ≥ 26.5 µmol/L

(0.3 mg/dl) or elevated >

1.5–1.9 times the baseline

value

2 issues Urine output

< 0.5 ml/kg/h

> 12 h

Injury: sCr

elevated > 2 times

or GFR decline > 50%

sCr elevation > 2.0–3.0

times the baseline value

Elevation > 2.0–2.9 times

the baseline value

3 issues Urine output

< 0.3 ml/kg/h

> 24 h

or no urine for

>12 h

Failure: sCr

elevated > 3 times

or GFR decline > 75%

sCr ≥ 354 µmol/L

or an acute increase of

≥ 44 µmol/L

Loss: persistent renal

failure > 4 weeks

ESRD: persistent renal failure >

3 months

sCr elevation > 3.0 times

the baseline value

or sCr value ≥ 354 µmol/L

or an increase in acute sCr

values ≥ 44 µmol/L

sCr elevated ≥353.6

µmol/L (4 mg/dl) or elevated

> 3.0 times the baseline

value

or starting kidney

replacement therapy or <

18-year-old patients with a

decrease in eGFR to < 35

ml/min/1.73 m2

factors for the nephrotoxicity of NSAIDs have been analyzed,
including CKD, old age, cardiomyopathy with impaired cardiac
function, diabetes, diuretic and ACEI therapy, vascular disease,
hypertension, and fluid deficiency. Selective COX-2 inhibitors
have caused relatively few adverse effects on the kidney,
including reduced glomerular filtration rate (GFR), elevated
serum creatinine (SCr), and hypertension (28, 29). Even this
conclusion is disputed, as it has been suggested that there is
no significant difference in the risk of kidney injury between
selective and non-selective COX-2 inhibitors (30), and there are
objective case reports of serious kidney injury due to COX-2
inhibitors (66). Additionally, NSAIDS are currently considered
to be the second- or third-leading cause of drug-induced
acute interstitial nephritis (AIN), with an incubation period
of up to 6–12 months (31, 32), and although the pathological
presentation is relatively mild, with few eosinophil infiltrates and
little granuloma formation, it is associated with an increased
risk of occurrence with advancing age and is usually considered
more likely to progress to chronic kidney disease (32, 33).
Therefore, the use of NSAIDs, as one of the measures to
reduce the pain burden of surgical patients, must be carefully
evaluated to balance their benefits and risks. Especially in the
surgical population with underlying renal disease, NSAIDs
should be avoided and choose alternative analgesics (including
opioids)when necessary (Table 3). However, NASIDS may also
be considered along with other analgesic therapies after careful
assessment of the patient’s status (67).

Current findings on the use of ACEIs and ARBs during
the perioperative period to induce or exacerbate AKI are
inconsistent, and the prevailing view now is that perioperative
treatment with ACEIs/ARBs increases the incidence of
postoperative AKI by the readily accepted mechanism of
intraoperative hypotension and renal artery vasoconstriction
leading to renal hypoperfusion, both clearly suggesting that
preoperative discontinuation of ACEIs or ARBs is a reasonable

strategy (34–36). However, the results of Shah et al. (37) showed
that the use of ACEIs/ARBs reduced the absolute risk of AKI by
0.09% and the absolute risk of all-cause mortality by 0.35%, and
this correlation was mainly evident in patients with preoperative
CKD. In contrast, a prospective multicenter study of 949
patients undergoing selective non-cardiac surgery for endpoint
events showed no association between perioperative ACEI/ARB
use and postoperative AKI events, but it is worth noting the
apparent selection bias of this study. In addition, the lack of
systematic analysis of the complexity of the hemodynamics
of the enrolled patients and the exclusion of urine volume
as a diagnostic indicator only by a single indicator of blood
creatinine level might have interfered with the final results (68).
In conclusion, during the perioperative period, especially on the
day of surgery, ACEI or ARB drugs should be avoided as much
as possible to protect the kidneys while also reducing the risk
of severe hypotension during anesthesia. It is also important to
note that repeated use of these drugs should be avoided until
the patient awakens postoperatively to minimize the risk of
hypoperfusion (Table 3).

In a recent study on antibiotic-induced AKI, partial
data from the FAERS (FDA Adverse Event Reporting
System) were collected, and the odds ratio (OR) of the
antibiotic/AKI association was calculated from 2,042,801
reports. The antibiotics ranked as follows by their ORs: colistin
aminoglycosides, vancomycin, methotrexate sulfamethoxazole,
penicillins, clindamycin, cephalosporins, macrolides,
linezolid, carbapenems, metronidazole, tetracyclines, and
fluoroquinolones (69). The nephrotoxicity of these antibiotics
can be divided into blood concentration-dependent and time-
dependent. β-Lactam antibiotics mainly cause time-dependent
nephrotoxicity, while neoquinolones and aminoglycosides
mainly cause concentration-dependent nephrotoxicity. There
are three main mechanisms by which antibiotics cause
nephrotoxicity, namely, dose-dependent tubular necrosis,
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TABLE 2 | Analysis of risk factors for perioperative AKI.

Risk factors Details of contents

Impaired clinical status Age ≥ 56 years, male, active congestive heart failure, ascites, hypertension, preoperative creatinine > 106 mol/L, diabetes mellitus

(controlled by either oral medication or insulin injections), ventilator dependence, chronic obstructive pulmonary disease, smoking,

coagulation disorders, cancer, obesity, and long-term steroid use

Drugs that may impair

kidney function

Non-steroidal anti-inflammatory drugs Selective COX-2 inhibitors have relatively few adverse effects on

the kidney

(28, 29)

No significant difference in the risk of kidney injury between COX-2

inhibitors and non-selective COX inhibitors

(30)

NSAIDS can cause drug-induced acute interstitial nephritis (AIN) (31–33)

ACEI and ARB Perioperative treatment with ACEI/ARB increases the incidence of

postoperative AKI

(34–36)

Absolute risk of perioperative AKI reduced with ACEI/ARB (37)

Antibiotics Aminoglycosides can cause renal tubular toxicity (38)

Vancomycin is most likely to produce nephrotoxicity through

increased reactive oxygen species and oxidative stress

(39)

Fluoroquinolones were graded in order of nephrotoxicity as

ciprofloxacin, moxifloxacin and levofloxacin fluoroquinolones can

cause AIN

(40, 41)

High-dose cephalosporin treatment causes proximal tubular

necrosis and renal insufficiency in rats

(42)

Intravenous (arterial)

injection of contrast media

The prevalence of CI-AKI is 2% in the general population but

increases to 20–40% in high-risk patients

(43)

There was no significant difference in the incidence of AKI

between the contrast and control groups

(44)

Intra-arterial contrast injection is more nephrotoxic than

intravenous use

(45)

No significant difference in AKI incidence with vs. without PCI in

STEMI patients

(46)

Special surgical

interventions

Heart surgery Higher incidence of AKI after heart valve surgery with increased

subsequent dialysis dependence and in-hospital mortality

(47)

Liver transplantation The incidence of perioperative AKI is high, and the occurrence and

progression of AKI affect the short-term and long-term survival of

the graft

(48)

Abdominal aortic aneurysm surgery The operation can increase the risk of perioperative AKI (49)

Severity of postoperative AKI after open repair is independently

associated with increased in-hospital mortality in patients with

postoperative AKI

(50)

Pulmonary endarterectomy The incidence of postoperative AKI is higher in patients with

chronic thromboembolic pulmonary hypertension

(51)

Anesthesia Anesthesia method Intraoperative MAP consistently <60 mmHg for 20min and <55

mmHg for 10min increased the incidence of postoperative AKI

(52)

Reduced risk of renal failure in patients treated with intraspinal

anesthesia compared to general anesthesia

(53)

Narcotic drugs Sevoflurane anesthesia reduces kidney injury in small volume liver

transplant rats

(54)

Higher incidence of AKI in patients with sevoflurane than in those

receiving propofol

(55)

Propofol preserves the morphological integrity of the kidney and

attenuates AKI in mice undergoing cecum ligation and puncture

surgery

(56)

Anemia and the effects of

blood transfusion

Anemia Reduced perioperative hemoglobin concentration is strongly

associated with the development of postoperative AKI

(57)

Blood transfusion Increased risk of perioperative AKI is directly proportional to the

number of red blood cell infusions

(58–60)

Malnutrition Perioperative nutritional status of patients is closely related to the

occurrence of AKI

(61–65)

Hyperglycemia Hyperglycemia is considered one of the independent predictors of

increased mortality and worsened prognosis in perioperative

patients

(5)
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TABLE 3 | Perioperative AKI prevention and management.

Perioperative AKI prevention Perioperative AKI management

Inclusion of renal risk

confirmation in preoperative

assessment

a) Enhance preoperative specialist evaluation

and optimize surgical plan

Early diagnosis Discovery of AKI etiology

Use of biomarkers to supplement serum

creatinine and urine output for the early

identification of AKI in high-risk patients

b) Incorporate a multidisciplinary approach to

the perioperative care for patients at high

risk of AKI

Minimize intraoperative renal

toxin exposure

a) Avoid ACEI or ARB drugs in the

perioperative period

Discovery of AKI

complications

Correction of disorders of acid-base balance,

water and electrolyte imbalance, etc.

b) Use NSAIDS with caution in the

perioperative period, avoid in certain special

cases, or choose alternative analgesics

Administration of

vasopressors

Maintenance of adequate perfusion pressure

(mean arterial pressure > 65 mmHg, systolic

pressure > 100 mmHg)

c) Use the lowest volume of contrast agent

that achieves the examination while

considering first non-ionic isotonic contrast

agent or hypotonic contrast agent

Use of other drugs Dexmedetomidine: currently considered the

most promising effect (in order to ensure the

safe use of dexmedetomidine, patients must

be carefully selected in clinical practice and the

appropriate dose must be determined)

d) The specific benefits of perioperative

hydration are controversial, but studies

continue to support this prophylactic

measure

Furosemide: guidelines recommend only for

correction of fluid imbalances and electrolyte

abnormalities in patients with AKI

Sodium bicarbonate, dopamine, vasodilators,

and natriuretic peptides: not recommended by

guidelines at this time

e) The effectiveness of acetylcysteine and

pentoxifylline is still controversy

f) Statins may help to reduce the incidence of

CI-AKI, but their mechanism of action has

not been fully determined

Intraoperative management

and hemodynamic

optimization

a) The routine use of hydroxyethyl starch in

surgery is not currently recommended for

patients with AKI or co-operative risk factors

Nutritional support Patients with AKI at any stage: ensure an

energy intake of 20–30 kcal/kg/day

CRRT treatment: provide up to 1.7 g/kg/day of

amino acids

b) Balanced salt solution is recommended to

maintain adequate renal perfusion

Non-dialysis patients: provide 0.8–1.0 g/kg/day

of amino acids

c) Guaranteed MAP > 60–65 mmHg (>75

mmHg in chronic hypertensive patients)

Remote ischemic

preadaptation

a) Remote ischemic preadaptation reduced

the incidence of major adverse renal events

in patients undergoing high-risk cardiac

surgery

Renal replacement therapy Correction of internal environmental

disturbances and reduction of excessive fluid

load

b) Remote ischemic preadaptation may

promote renal recovery in patients with

perioperative AKI

Drug prevention c) Statins have been shown to reduce the

incidence of perioperative AKI

allergic tubulointerstitial nephritis, and tubular crystalline
formation. Excessive concentrations of aminoglycosides in renal
tubules cause tubular toxicity by accumulating in lysosomes,
Golgi apparatus, and endoplasmic reticulum and binding
to membrane phospholipids, altering their turnover and
metabolism, leading to phospholipidosis (38). The most likely
mechanism of vancomycin nephrotoxicity is attributed, at least
in part, to increased reactive oxygen species and oxidative stress,
and the risk factors are thought to be high drug concentration
(>20 mg/L) or high doses (>4 g/h), concomitant use of other
nephrotoxic drugs, prolonged drug treatment (≥7 d, and
intensive care status (39). Current cases of AIN caused by

quinolones are mainly associated with older fluoroquinolones,
fluoroquinolones were graded in order of nephrotoxicity as
ciprofloxacin, moxifloxacin and levofloxacin, with relative risks
of 2.76, 2.09, and 1.69, respectively (40). In 2014, Muriithi
et al. (41) reported a series of kidney biopsy case, it was
again confirmed that fluoroquinolones can cause AIN, while
follow-up studies also found that early steroid treatment or
hydration therapy improved recovery of renal function in
patients with drug-induced AIN (70, 71). Similarly, Bird et al.
(40) found that the relative risk of AKI caused by treatment
with fluoroquinolones was 2.18. However, considering the risk
of death due to serious infections, the current study findings do
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not negate the use of fluoroquinolones, and mainly remind the
importance of prescribing in clinical work.

There are more reports related to cephalosporins causing
AKI in this century, and in a transcriptomic study analysis by
Rokushima et al. (42) on the nephrotoxicity of cephalosporin
antibiotics, it was observed that high-dose cephalosporin
treatment caused proximal tubular necrosis and renal
insufficiency in rats. Mac et al. (72) first reported a case of
cefepime causing AIN in 2015. Although cefepime is considered
a safe antibiotic from a nephrotoxicity point of view and
renal-related adverse reactions are rare, clinicians still need to be
aware of the nephrotoxicity associated with the use of cefepime,
especially in patients on long-term treatment, who should be
monitored closely for renal function parameters. However, there
is a lack of large epidemiological findings of cephalosporins
alone causing AKI as well as specific controlled studies, a lack of
intermediate to high-level evidence to support the association
between the two, and the only relevant studies are mostly case
reports or adverse renal outcomes after combination with other
drugs (69). Therefore, it is still one of the most important drugs
for the prevention or treatment of infectious diseases in clinical
workup, especially in the perioperative period, and it is believed
that more research evidence will be available in the future to
support or limit it, as well as to provide more guidance in
prescribing doses and drug combinations.

Contrast Injection
Contrast-induced AKI (CI-AKI) is defined as an increase in BUN
and sCr or a decrease in eGFR occurring usually 24–72 h after
drug administration (73) (Table 2), but its specific definition is
not uniform, which hinders cross-study comparisons. It is now
believed that the possible mechanisms of CI-AKI include the
following: first, renal hemodynamic changes that cause renal
medullary hypoxia; second, direct toxic injury effects of contrast
agents on renal endothelial cells and proximal tubular cells
(74–76); and third, changes in renal microcirculation due to
the release of certain neurohumoral mediators or increased
blood viscosity (77). In most patients, CI-AKI is likely to be
transient and reversible, although some studies have reported
its association with increased long-term patient mortality (78–
80). The prevalence of CI-AKI is 2% in the general population
but increases to 20–40% in high-risk patients, such as those with
diabetes, congestive heart failure, or chronic kidney disease and
who are elderly (43), but most studies lack a credible control
group or strict adjustment for AKI covariates, leading to infirm
conclusions. For example, one study concluded that the incidence
of CI-AKI significantly increased with decreasing baseline eGFR
values, yet there was no significant difference in the incidence
of AKI between the contrast and control groups in any eGFR
subgroup, even among patients with eGFR <30 ml/min/1.73 m2

(44). Similarly, a clinical evaluation by Wilhelm-Leen et al. (81)
of 5.9 million enrolled patients showed that the incidence of AKI
was even lower in patients receiving contrast than in controls
after adjustment for risk factors.

In recent years, along with the increasing number of
patients with vascular lesions receiving endovascular treatment,

perioperative contrast nephropathy has been gaining attention.
The site of contrast injection may have an impact on
the incidence of CI-AKI, and some studies have shown a
significantly higher incidence of AKI after coronary angiography
than intravenous injection (45), the reason for which may
be related to its initial concentration in the renal vascular
system, as aortography has demonstrated a greater risk of
AKI if the contrast is injected directly into the proximal renal
artery. However, the conclusion that arterial contrast injection
causes AKI is equally questionable, as demonstrated in the
Caspi et al. (46) study. Among STEMI patients, there is no
significant difference in the incidence of AKI with or without
PCI intervention, and independent predictors of AKI in the
PCI treatment cohort included age ≥70 years, insulin-treated
diabetes, diuretic therapy, eGFR reduction, cardiac pump failure,
and reduced left ventricular ejection fraction, independent of
contrast dose. Therefore, it must be noted that CI-AKI is still
a controversial topic, and no study has been able to explain it
thoroughly, which even questions the rationality of CI-AKI, so
it is still an exclusionary diagnosis according to the definition
of CI-AKI and needs a more rigorous follow-up study that fully
controls for other risk factors or confounders.

Nevertheless, currently in clinical workup, great caution is
still needed in the perioperative injection of contrast agents
into patients assessed preoperatively to be at risk for renal
damage. There are several ways to reduce this risk, including
the use of the lowest volume of contrast agent that achieves
the examination objectives while first considering non-ionic
isotonic contrast or hypotonic contrast (Table 3). In addition,
although there is controversy about the specific benefits of
perioperative hydration, and there are no firm conclusions
about the ideal material, dose, and rate of hydration, many
studies still support this prophylactic measure, especially in
cardiovascular surgery (Table 3). In addition to. The assessment
of cardiac function, 0.9% sodium chloride or isotonic sodium
bicarbonate solution is given perioperatively to ensure adequate
intravascular volume and to minimize the risk and extent of
contrast-induced renal injury (82, 83). This same prophylactic
strategy is clearly recommended in the European Society of
Cardiology (ESC) guidelines on myocardial revascularization,
with specific guidelines recommending the administration of
intravenous saline 12 h before and 24 h after the administration
of contrast media, with intravenous saline at a rate of 1–1.5
ml/kg/h, especially in patients with GFR <40 ml/min/1.73 m2

(84). In terms of drug prevention, there is still controversy
regarding the effectiveness of acetylcysteine, which can be
supported only partially by evidence (85–87). Similarly, statins
may help to reduce the incidence of CI-AKI, but their
mechanism of action has not been fully understood (88–
91). There are also some reports on pentoxifylline, but
most of them focus on animal studies (92, 93), in clinical
studies, more emphasis has been placed on its combined
effect with drugs such as berberine hydrochloride for drug-
induced AKI, and for contrast-associated AKI, although it may
reduce creatinine elevation in the short term, its preventive
effect cannot be fully confirmed based on the available
evidence (94, 95).
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Special Surgical Interventions
Surgery itself is a risk factor for AKI, in particular, some
specific types of surgery are associated with an increased risk
of kidney injury. A retrospective study of patients undergoing
heart valve surgery found a 6.1% incidence of postoperative
AKI, new dialysis dependence in 3.1% of AKI patients, death
during hospitalization in 48.9%, discharge with recovery of renal
function in 42.2%, and permanent dialysis dependence in 8.8%
(47) (Table 2). The reasons were the use of preoperative contrast
agents, decreased perfusion pressure and reduced pulsatile blood
flow during bypass surgery, decreased mean arterial pressure
during extracorporeal circulation, exposure to extracorporeal
circulation triggering a contact systemic inflammatory response,
low temperature or mechanical destruction of red blood cells
by extracorporeal circulation, and formation of an obstructive
tubular pattern by hemoglobin (96, 97). However, there is
no consensus on whether extracorporeal circulation necessarily
constitutes a cause of the high incidence of AKI in cardiovascular
surgery, previous findings suggest that cardiopulmonary bypass
with extracorporeal circulation increases the incidence of AKI
and other renal diseases (98, 99), the results of the study by Reents
et al. (100) found that non-extracorporeal coronary artery bypass
grafting was not associated with a reduction in the incidence or
severity of AKI.

One study reported that the incidence of perioperative AKI
decreased to 11–68% after the introduction of an end-stage liver
disease model scoring system as a basis for liver transplantation
matching (101). Hepatic ischemia-reperfusion injury may act
as the main pathogenesis of AKI after liver transplantation by
driving the systemic inflammatory response. In a study by Hilmi
et al. (48), analysis of clinical and laboratory data from 424 liver
transplant recipients found that at 72 h posttransplantation, AKI
occurred in 221 patients (52%) and concluded that female sex,
weight ≥100 kg, high Child-Pugh score, and diabetes mellitus
were significantly associated with the occurrence of AKI within
72 h. Additionally, the occurrence and progression of AKI within
72 h after transplantation affected the short- and long-term
survival of the graft (48) (Table 2).

Abdominal aortic aneurysm surgery is another surgical
operation that has been clearly reported to exacerbate the risk
of perioperative AKI. In a study conducted in 2015, 149 patients
undergoing open repair of abdominal aortic aneurysms were
enrolled and analyzed for postoperative data, 18.8% of whom
developed AKI, and the next 33 ± 11 months of follow-up
investigation revealed that, although no patients required dialysis
treatment, the occurrence of AKI was strongly associated with
high mortality and high incidence of cardiovascular disease
(49) (Table 2). Whereas, the kind of procedure also affects the
incidence of postoperative AKI, the severity of AKI after open
repair is independently associated with increased in-hospital
mortality in patients with postoperative AKI (Table 2), and
major risks include aortic clamping, perioperative hypotension,
atherosclerotic embolism, and impaired renal blood flow due to
exposure to blood products (50).

Zhang et al. (51) published the first report on a complication
study of 123 patients diagnosed with chronic thromboembolic
pulmonary hypertension (CTEPH) who underwent pulmonary

endarterectomy (PEA). Their data suggested that the incidence
of postoperative AKI was 45% (Table 2); that preoperative
platelet count, hemoglobin concentration, and duration of
deep hypothermic circulation stagnation were independent
factors associated with AKI; and that renal protection strategies
should be prioritized in the perioperative management of such
procedures (51). However, some unknown confounding factors
(such as perioperative nephrotoxic drug use) were not explicitly
excluded in this study, and there are not enough other relevant
studies due to the low incidence of CTEPH, resulting in some
limitations of the findings.

Anesthesia
Intraoperative anesthesia can affect renal function in different
ways and increase the risk of perioperative AKI, mainly due
to the choice of anesthesia method and drug (Table 2). The
study by Sun et al. (52) suggested that intraoperative anesthesia-
induced hypotension was closely related to the occurrence of
postoperative AKI, and intraoperative MAP consistently < 60
mmHg for 20min and <55 mmHg for 10min increased the
incidence of postoperative AKI. The results of a meta-analysis
by Rodgers et al. (53) in 2000 showed that compared with
general anesthesia, patients treated with intraspinal anesthesia
had a reduced risk of renal failure. However, some studies
have also indicated a similar incidence of AKI with epidural
anesthesia combined with general anesthesia compared to
general anesthesia alone (102), so the specific effects of intraspinal
anesthesia on renal function still need to be confirmed by
more studies.

In animal studies, sevoflurane anesthesia was shown to
reduce renal injury in small-volume liver transplant rats by
significantly lowering the 24-h sCr after reperfusion and NGAL
concentrations after 2 h reperfusion in rats with sevoflurane (54).
However, in human patients, a retrospective study suggested
that the incidence of AKI was higher in patients receiving
sevoflurane than in those receiving propofol, suggesting that
sevoflurane anesthesia may be associated with the development
of postoperative AKI (55). In contrast, another domestic animal
study suggested that propofol improved survival after cecum
ligation and puncture surgery (CLP) in mice, preserved the
morphological integrity of the kidney in mice undergoing CLP,
and lowered the occurrence of AKI (56). There is a lack of human
studies on perioperative anesthetics causing AKI, andmore high-
level evidence is needed to rule out or confirm this view.

Anemia and blood transfusion
Walsh et al. (57) concluded that decreased perioperative
hemoglobin concentration is strongly associated with the
development of postoperative AKI (Table 2). Another study
reached the same conclusion, as the postoperative decrease in
hemoglobin from baseline was positively associated with the
decrease in eGFR, and the OR value was proportional to the
degree of hemoglobin decrease (103). The causes are as follows:
anemia decreases renal oxygen delivery, especially to the renal
medulla, where normal oxygen partial pressure is low; during
surgery, the kidneys are more prone to underperfusion, and the
important antioxidant function of red blood cells is reduced,
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aggravating intraoperative renal oxidative stress; and anemia
increases the chances of transfusion and aggravates AKI due
to transfusion (58).

Previous studies concluded that the increased risk of
perioperative AKI is directly proportional to the amount of
red blood cell transfusion, and this correlation is particularly
evident in anemic patients (Table 2). This finding has been widely
confirmed in cardiac surgery, where a variety of blood-sparing
measures are recommended (58–60). The causes are that red
blood cells become less deformable during storage, while ATP
and 2–3DPG are depleted and lose their abilities to produce NO,
enhance vascular endothelial cell adhesion, release procoagulant
phospholipids and accumulate proinflammatory molecules, free
iron, and hemoglobin; stored red blood cells may impair tissue
oxygen delivery, promote an inflammatory state, exacerbate
tissue oxidative stress, and activate leukocyte and coagulation
cascade reactions. Possible mechanisms why anemic patients
are more susceptible to transfusion-associated AKI include the
following: first, anemic patients are usually more anemic during
cardiac surgery, resulting in less oxygen delivery and making
the kidneys more susceptible to hypoxic injury; second, some
anemic patients will have subclinical nephropathy characterized
by increased renal tubular oxygen consumption and oxidative
stress, making the kidneys susceptible to acute or chronic damage
(104); third, anemic patients have abnormal iron metabolism
and a weaker ability to cope with an increased iron load due to
multiple transfusions, triggering iron-mediated oxidative kidney
injury (105). However, transfusions, like anemia, lack the results
of large randomized controlled trial or meta-analyses, and the
only conclusions available are mostly complication studies of
specific types of surgery, which cannot adequately demonstrate
their relationship with AkI in non-cardiac surgery. In addition, it
is worth mentioning that in a meta-analysis published in recent
years, findings suggest that administering EPO before anesthesia
is emerging as an important factor for efficacy. Erythropoietin
may have a role in preventing cardiac surgery associated
acute kidney injury (CSA-AKI), however, additional high-quality
prospective studies are warranted, particularly aimed at the
timing and size of the dose (106).

Malnutrition
Malnutrition is also an important risk factor that increases
the incidence of perioperative AKI (Table 2). Nutrition is
the basis of cellular and organ function, and malnutrition
may worsen the severity of disease by significantly changing
renal hemodynamics and renal concentrating capacity (107).
Malnutrition in children and adults decreases the glomerular
filtration rate, and experimental models show that the renin-
angiotensin system, renal prostaglandin secretion and overall
renal function are altered in malnourished states, although
the exact mechanisms remain incompletely understood
(108, 109). This malnutrition can be manifested in several
ways, including in the concentrations of albumin, vitamins,
electrolytes, minerals, and trace elements. Several studies have
confirmed the correlation between low or deficient nutrients
and the development of AKI in patients with infectious diseases,
cancer, surgery and other causes of critical illness, showing that

malnutrition is an independent risk factor and suggesting that
following AKI guidelines to prevent and treat AKI by providing
nutritional support, especially to children and elderly patients
(110–114). In addition, similar views have been proposed in
several studies on risk factors assessment for surgery-related
AKI, as well as studies on the correlation between preoperative
prognostic nutritional index and AKI, it was suggested that
perioperative nutritional status of patients is closely related to
the occurrence of AKI (61–65).

Nutritional support is also a priority in the follow-up
treatment of AKI patients (Table 3). According to the KIDGO
guidelines for the nutritional support of AKI patients, an energy
intake of 20–30 kcal/kg/day, mainly carbohydrates and fats,
should be ensured regardless of the stage of the disease. In the
case of CRRT, considering the normal protein metabolic rate and
filtration losses, a maximum of 1.7 g/kg/day of amino acids needs
to be actively provided to compensate for these losses, while
in non-dialysis patients, this value must be 0.8–1.0 g/kg/day,
and it is recommended to provide nutrition mostly through the
enteral route (5).

Hyperglycemia
Hyperglycemia is considered one of the independent predictors
of increased mortality and worsened prognosis in perioperative
patients and should be optimized in perioperative patients.
The KDIGO criteria recommend maintaining blood glucose
concentrations between 110 and 149mg/dl in critically ill patients
to minimize all-cause mortality, surgical complications and
increased risk of AKI due to hyperglycemia in the perioperative
period (5) (Table 2).

PREVENTION OF PERIOPERATIVE AKI

Preoperative Assessment of Renal Risk
As part of this process, it is recommended to enrich the details
of the assessment, include strictly kidney-related risk factors,
integrate and stratify them scientifically, classify the kidney
function in a timely manner, identify possible underlying kidney
diseases, strengthen contact with anesthesia and kidney specialist
physicians, receive professional advice, and provide clinicians
with more scientific reference for preoperative guidance, while
communicating to the patient team the likelihood and degree
of risk of perioperative AKI and optimizing the surgical plan.
In addition, it is also possible to incorporate a multidisciplinary
approach to the perioperative care for patients at high risk
of AKI. However, there are few reports that have taken such
an approach, and no specific benefits can be determined
(Table 3).

Intraoperative Management and
Hemodynamic Optimization
Perioperative renal protection focuses on maintaining adequate
renal perfusion, which is largely dependent on adequate
intravascular volume and mean arterial pressure, but fluid
supplementation alone may not overcome the effects of
hypotension during anesthesia in some patients and may lead
to postoperative complications. According to the conclusions
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of a recent meta-analysis, optimization of intravascular volume
and cardiac output may have a positive impact on perioperative
renal function in high-risk patients (definition of high risk was
based on need of emergent surgery, and/or elective major surgery
in patients with risk criteria defined by perioperative scoring
system, ASA physical status classification, age>60 years, and
preoperative morbidity), at three preoperative, intraoperative
or postoperative time points with fluid combination of
supplementation and cardiac agents reduces the incidence of
renal insufficiency and significantly reduces mortality (115), but
this procedure requires careful monitoring of volume status to
avoid volume overload, and in terms of specific fluid selection,
balanced salt solutions are more recommended to avoid the risk
that AKI that is exacerbated by perioperative saline overinfusion
will lead to hyperchloremia (116). While the use of colloidal
solutions is controversial, and the routine use of hydroxyethyl
starch in surgery is not currently recommended for patients with
AKI or co-operative risk factors (117–119). As for the threshold
of mean arterial pressure, several studies have confirmed that
even short-term hypotensive states can damage the kidneys,
so ensuring MAP >60–65 mmHg (>75 mmHg in patients
with chronic hypertension) is recommended to prevent AKI
(52, 120) (Table 3), and a more individualized approach to
intraoperative arterial pressure management should also be taken
in this process.

Remote Ischemic Preadaptation
Remote ischemic preadaptation is an experimental approach to
provide organ protection with short cycles of harmless ischemia
and reperfusion applied to the arm or leg, a pathway thought to
drive the stabilization of transcription factors such as hypoxia-
inducible factor (HIF1a or HIF2a), a transcriptional program
that mediates the release of soluble mediators (IL-10, adenosine,
circulating nucleotidases) from ischemic muscle into the body
circulation, thereby providing protection to remote organs (e.g.,
the heart or kidney) (121) (Table 3). Zarbock et al. (122)
conducted a large, multicenter, randomized, double-blind clinical
trial in 2015, which suggested that remote ischemic preadaptation
significantly reduced the incidence of major adverse renal events
at 90 days in patients undergoing high-risk cardiac surgery
compared to controls, while suggesting that remote ischemic
preadaptation may promote renal recovery in patients with
perioperative AKI. Similarly, the results of two recent meta-
analyses confirm this view (123, 124). However, like others, this
conclusion still faces contrary opinions. Hausenloy et al. (125)
included a controlled study of a total of 1,612 patients undergoing
cardiac surgery in 30 centers with an observation period of
12 months and showed that the difference in the incidence of
major endpoint events between patients in the remote ischemic
preadaptation and control groups was not statistically significant,
including the incidence of AKI, duration of ICU care, and
length of hospital stay. More recently, data from a meta-analysis
on 3,660 patients in 43 RCTs show a similar conclusion that
remote ischemic preadaptation reduced cardiovascular events
after non-cardiac surgery, but had no significant advantage for
the incidence of AKI and all-cause mortality (126). Therefore,

further studies are still needed to collect relevant evidence and
validate the specific effect of remote ischemic preadaptation in
perioperative AKI prevention.

Drug Prevention
Statins have potential anti-inflammatory and antioxidant effects
and have been shown to reduce the incidence of perioperative
AKI, the risk of RRT, and 14-day mortality in a clinical study
enrolling 200,000 patients (127) (Table 3), but there are no
consistent findings in several studies related to cardiac surgery
(128, 129), and in recent years the preventive effects of statins
on contrast nephropathy (CIN-AKI) have been supported by the
results of several studies (91), so the general recommendation
on statins for AKI is currently uncertain because of the lack of
evidence from prospective trials.

PERIOPERATIVE AKI MANAGEMENT

Early Diagnosis
A detailed bedside examination is performed to look for
all possible etiologies that may precipitate perioperative AKI
(Table 3), mainly from the prerenal, renal and postrenal
perspectives and to rule out causes such as urinary tract
obstruction as quickly as possible with the help of imaging. Blood
creatinine values and urine volume are also closely monitored to
keep track of changes dynamically, to quickly assess the patient’s
volume status, and to check whether the patient has sufficient
vascular volume reserve or possible overload. In addition, we
suggest the use of biomarkers to supplement serum creatinine
and urine output for the early identification of AKI in high-
risk patients (Table 3), especially target molecules that have been
approved for use in some jurisdictions, such as NGAL, L-FABP,
TIMP-2, and IGFBP7. However, this is not easy. On the one hand,
the source of some biomarkers is not clear, and it is also difficult to
determine the cut-off threshold of eachmarker for different races.
On the other hand, the complexity of perioperative patients also
interferes with the diagnostic performance of markers.

Discovery of AKI Complications
Timely detection and management of various complications
of perioperative AKI (Table 3), including disorders of acid-
base balance, water and electrolyte imbalance (hyperkalemia,
volume overload, acidosis, etc.), and consideration of reduced
fluid infusion in some patients are needed to maintain
in/out balance, but special attention needs to be paid to
the estimation and calculation of hidden fluid losses during
this period.

Administration of Vasopressors
The protection of renal function depends to a large extent
on the maintenance of renal perfusion, and the maximum
benefit of treatment after renal damage in high-risk surgical
patients can be achieved by maintaining hemodynamic stability.
In cases where fluid resuscitation is ineffective or can only
be maintained briefly, vasopressors can be administered to
maintain adequate perfusion pressure (mean arterial pressure
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> 65 mmHg and systolic pressure > 100 mmHg (130, 131)
(Table 3). In addition, in patients with moderate to severe
ventricular insufficiency, concurrent administration of positive
inotropes, and fluid therapy may be attempted. However,
in patients with complex conditions, the best approach is
to provide a highly dependent environment that allows for
optimal monitoring.

Use of Other Drugs
Due to the heterogeneity of AKI, identifying a single therapy that
will benefit all patients is challenging, and numerous drugs are
being studied in clinical trials, but the overall results remain less
than promising (Table 3). Dexmedetomidine, a highly selective
α-blocker, has been shown to have renoprotective effects in
several cardiac surgery studies and is thought to act mainly
by reducing norepinephrine release, improving hemodynamic
stability, and maintaining myocardial oxygen supply balance,
thereby significantly reducing the incidence of AKI, especially
in patients with normal or mildly impaired preoperative
renal function (132, 133). The most recent meta-analysis in
2021 confirmed that dexmedetomidine had a renoprotective
effects after surgery, with NGAL levels reduced and creatinine
clearance significantly increased in patients treated with it (134).
Unfortunately, there are no clear recommendations on treatment
strategies, including in the KIDGO guidelines. Therefore, we
suggest that in order to ensure the safe use of dexmedetomidine,
patients must be carefully selected in clinical practice and the
appropriate dose must be determined.

Furosemide is a widely used diuretic in clinical practice,
and data from some studies suggest that it may improve
the balance of oxygen supply and demand in the renal
medulla by inhibiting Na−K−Cl2 cotransporter activity, increasing
prostaglandin production and blood flow, and preventing
tubular obstruction due to endothelial cell shedding. However,
clinical studies based on this hypothesis have not yielded
positive results and have concluded that it should not be used
for the routine treatment of AKI (135, 136). Even so, the
KIDGO guidelines, mainly the Japanese AKI guidelines and the
NICE (National Institute for Health and Clinical Excellence)
guidelines, still recommend furosemide for the correction of
fluid imbalances and electrolyte abnormalities in patients with
AKI (Table 3).

Other drugs, including sodium bicarbonate, dopamine,
vasodilators, and natriuretic peptides, have been clearly
demonstrated in multiple studies to have no AKI prevention
or treatment benefit and are not included in guideline
recommendations. Later studies may provide evidence to
the contrary, but at least at this stage, dexmedetomidine has the
most promising effect (Table 3).

Renal Replacement Therapy
There is no positive evidence that renal replacement therapy has
a positive effect on the development of perioperative AKI, but
replacement therapy itself can correct internal environmental
disturbances and reduce excessive fluid load and can be used
in a timely manner at the onset of AKI to reduce symptoms

while buying valuable time for comprehensive treatment in
other areas (Table 3). In particular, continuous renal replacement
therapy is recommended for patients with complex conditions
and hemodynamic instability. In addition, to decide on the
use of anticoagulants, detailed information about the patient’s
bleeding history and major surgery history must be obtained to
fully determine the patient’s coagulation function, and heparin
can be avoided or replaced with topical citrate or argatroban
anticoagulation to avoid the risk of severe bleeding when
conditions permit (137). The ideal mode of renal replacement
therapy, its timing and the duration of initiation of therapy
are still under debate. A randomized controlled study of 620
patients conducted by Gaudry et al. (138) in 2016 suggested
no significant difference in mortality between patients in the
early and delayed strategy groups, with patients in the early
strategy group mostly starting therapy within 6 h. In contrast,
other clinical studies have drawn different conclusions, the
representative report being a randomized controlled study of 231
patients conducted by Zarbock et al. (139) in 2019, which found
that the early strategy significantly reduced mortality at 90 d
compared to the delayed strategy.

CONCLUDING REMARKS

The pathophysiologic mechanisms by which perioperative AKI
occurs are complex and varied, but the outcomes all increase
the risk of patient death, and the effects of even mild AKI
are severe, being correlated with a negative prognosis and
ongoing increased mortality. Most cases of AKI occurring
in the perioperative period are associated with relative renal
hypoperfusion and/or renal damage by nephrotoxins and are
less associated with primary renal disease. The likelihood of
serious, long-term, progressive consequences can be reduced and
the perioperative prognosis improved by following reasonable
strategies for early avoidance of perioperative AKI risk factors
and enhanced perioperative patient management, as well as
a rapid response to and early management of AKI when
it occurs.
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