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Abstract

Background: Tuberculosis is endemic in Cape Town, South Africa where a majority of the population become tuberculosis
infected before adulthood. While social contact patterns impacting tuberculosis and other respiratory disease spread have
been studied, the environmental determinants driving airborne transmission have not been quantified.

Methods: Indoor carbon dioxide levels above outdoor levels reflect the balance of exhaled breath by room occupants and
ventilation. We developed a portable monitor to continuously sample carbon dioxide levels, which were combined with
social contact diary records to estimate daily rebreathed litres. A pilot study established the practicality of monitor use up to
48-hours. We then estimated the daily volumes of air rebreathed by adolescents living in a crowded township.

Results: One hundred eight daily records were obtained from 63 adolescents aged between 12- and 20-years. Forty-five
lived in wooden shacks and 18 in brick-built homes with a median household of 4 members (range 2–9). Mean daily volume
of rebreathed air was 120.6 (standard error: 8.0) litres/day, with location contributions from household (48%), school (44%),
visited households (4%), transport (0.5%) and other locations (3.4%). Independent predictors of daily rebreathed volumes
included household type (p = 0.002), number of household occupants (p = 0.021), number of sleeping space occupants
(p = 0.022) and winter season (p,0.001).

Conclusions: We demonstrated the practical measurement of carbon dioxide levels to which individuals are exposed in a
sequence of non-steady state indoor environments. A novel metric of rebreathed air volume reflects social and
environmental factors associated with airborne infection and can identify locations with high transmission potential.
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Introduction

South Africa has one of the highest population notification rates

of tuberculosis (TB) in the world with approximately 1% of

population diagnosed with TB disease each year [1,2]. The annual

risk of infection of children in Cape townships has remained high

for decades, [3] and currently 5% to 8% of township adolescents

become TB-infected each year [4–6]. A majority of the Cape

Town population therefore becomes TB-infected before adulthood

[4–6]. Molecular epidemiologic evidence indicates that most

infections occur outside of households [7,8]; however, the specific

locations where TB transmission is occurring remain undefined.

The contribution of social deprivation to endemic TB has been

debated both before and after Mycobacterium tuberculosis was

identified as the etiologic agent causing TB [9–11]. In the 1950’s,

the work of Riley and Wells defined TB transmission on a purely

physical basis related to the volume of air respired by a susceptible

individual and the concentration of exhaled quanta capable of

establishing infection [12,13]. Infectious quanta are micronuclei

(,4 microns), which remain airborne and survive for prolonged

periods, diffuse throughout indoor spaces and are diluted by

infection-free ventilation [12,13]. In poor communities with high

TB prevalence, social interactions frequently occur in crowded

and poorly ventilated indoor locations resulting in high probability

of TB transmission [14].

Several studies have used the Riley and Wells model to estimate

TB transmission risks in specific single locations (e.g. hospital

wards) [15–20]. However, estimation of contributions from

multiple locations to TB infection risk is complex as the exposure

time, social-mixing and ventilation differ in each location. Cape
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township social contacts occur in a variety of indoor locations

including households, school classrooms, work places and public

Transportation [21,22]. Therefore, TB transmission risk may be

determined by the quantity of infected air respired in each

location.

Carbon dioxide (CO2) is a natural tracer gas produced during

normal human respiration. Exhaled breath contains approximate-

ly 40 000 parts per million (ppm) of CO2 compared with

approximately 400 ppm in outdoor air [23]. Our study location in

Masiphumelele, a township located 40 km from Cape Town, had

an average level of 390.8 ppm of CO2 in 2012 (IQR: 389.5–

391.47) [24]. In the absence of other sources, indoor CO2 levels

reflect exhaled breath (respiration) and air exchange (ventilation)

[25,26]. Rudnick and Milton demonstrated that measuring

‘‘excess’’ CO2 in indoor air can be used to estimate the fraction

of air in each inhalation that has been exhaled from other room

occupants, and that the ‘‘rebreathed fraction’’ can estimate risk of

infection with airborne particles [25]. The equation derived by

Rudnick and Milton expanded upon the work of Wells and Riley

and used rebreathed fraction to substitute for the more difficult

analysis of room ventilation and size. We postulated that the sum

of rebreathed air volumes (RAV) from others during normal

indoor activities would allow quantification of the social and

environmental factors impacting TB transmission. We therefore

developed a portable CO2 logging device to continuously measure

the levels of CO2 to which township adolescents were exposed and

to thereby determine RAV in all visited indoor locations during a

24-hour period.

Materials and Methods

CO2 and Global Positioning System logger
A portable logger [Figure 1] was designed to measure CO2

concentration, temperature and humidity every 60 seconds, using

the COZIR Ambient 0–1% transducer (Gas Sensing Solutions Ltd,

Glasgow, United Kingdom, http://www.cozir.com/), together

with location data captured from a global positioning system (GPS)

receiver and time from an onboard, independently powered clock.

The logger’s dimensions were 106662.5 centimetres and com-

ponent costs were approximately $250.

The data are delivered to the microcontroller device in serial

digital format, which is then stored on flash memory. The

microcontroller device can then retrieve flash memory data, on

demand, for uploading to a computer via a Universal Serial Bus

(USB) port. The logger is powered by Nickel Metal Hydride

(NiMH) batteries and includes circuitry for recharging from

external power sources. For safety purposes, the electronic

circuitry is fused to prevent current in either discharge or charge

mode from exceeding safe limits. In addition, a thermostat device

has been incorporated to cut the battery from the circuit should

battery temperature exceed 70 degrees Celsius. The accuracy of

CO2 measurements taken by the sensor is 650 ppm or 3% of each

reading (www.cozir.com).

Time-location diary
A time-location diary was provided to all participants to capture

daily routine data including date, location type, time of arrival and

departure, and numbers of individuals present for all locations

visited. Each diary was filled out continuously, and a field worker

clarified incomplete diary entries. The diaries were then entered

into a database and were later rechecked by a research assistant.

Twenty location types were aggregated to 5 major location

categories for data analysis: school/work (daytime activity),

transport, own home, other household, and other places. This

instrument had been previously used for a social contact study in

this community [19].

Air sampling
Participants underwent training on how to use and recharge the

logger, and complete the diary. The logger was attached to a

provided lanyard (,50 cm) or worn in a waist pocket during a 48-

hour period. Participants were instructed not to breathe directly

into the logger. Sets of more than 1 100 logged environmental data

points recorded during any 24-hour period were used in

subsequent analyses.

Pilot study
A pilot study established the practicality of carrying the logger

for 48 hours, including position on person, battery recharging

procedures and recording of location data in the diary. A

heterogeneous sample (15 females and 2 males) with a median

age of 39-years (range: 21–63 years) was recruited from the

clinical, research and secretarial staff of the Desmond Tutu HIV

Centre at the University of Cape Town. The subjects provided 29

daily records with an overall mean RAV of 58.6 (standard error

[SE] 11.4) litres per day [Figure 2]. Volume contributions by

location were highly variable; mean RAV in transport was 7.1 (SE

3.4) litres per day but with up to 85.5 litres per day recorded in

public transport. The location contributions to daily-RAV were

12.4% for transport, 50.3% for own and visited households, 26.8%

for workplace and 10.4% for various other locations. The pilot

study population was a low TB risk group as no TB diagnoses had

been made in the prior 10 years.

Adolescent study population
A high-TB risk study population of 63 adolescents (37 female,

26 male) with a median age of 17-years (range: 12–20 years) was

recruited at the Desmond Tutu Youth Centre in Masiphumelele,

Cape Town; a poor community where the annual TB notification

rate exceeds 2000 cases per 100 000 [27].

Figure 1. Portable logger to measure CO2 concentration,
temperature and humidity. An internal view of the portable
personal CO2 logger incorporated a COZIR Ambient 0–1% transducer
(Gas Sensing Solutions Ltd., Glasgow, United Kingdom), GPS sensor,
independent power supply and USB interface. Unit dimensions were
length 10 cm, width 6 cm and depth 2.5 cm.
doi:10.1371/journal.pone.0106622.g001
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Data processing and analysis
The data were downloaded as text files and entered into a

customised Microsoft Access database. The diary data and times

were aligned with the CO2 values and corresponding times

recorded by the CO2 logger. The time period of interest was

identified and the rebreathed values were calculated against the

lowest CO2 value measured in the 24-hour time period. Small

gaps in the environmental data capturing were observed and these

were filled using an automated algorithm that identified gaps in

the trace of more than one minute in length, averaged the starting

and ending rebreathed values, multiplied the result by the period

of the gap to estimate rebreathed air during the gap. This value

was distributed between the beginning and end point of the gap.

Rebreathed proportions were calculated using Rudnick and

Milton’s equation as shown [25]:

f ~
C{Co

Ca
ð1Þ

Where f is equivalent to the fraction of air that is exhaled

breath, C is the observed concentration of CO2 in the indoor air,

Co is the concentration of CO2 in the outdoor air and Ca is the

concentration of CO2 in the exhaled air (estimated from literature)

[23]. In other words, the proportion of air that is being rebreathed

can be estimated from the excess carbon dioxide observed in the

room, divided by the concentration of carbon dioxide in exhaled

breath. The outdoor CO2 values were defined by the minimum

recorded value from each 24-hour record set. For persons at low

levels of physical activity, Ca was estimated to be 38,000 ppm

based on a CO2 production rate of 0.31 litres/minute and

respiratory minute volume of 8.0 litres/minute [23].

The recorded number of people present in the indoor location

was used to estimate the rebreathed proportion from other people:

fo~f |
(n{1)

n
ð2Þ

Here, n is the number of people recorded at the indoor location

(including the participant). RAV for each 60-second time-period

was calculated from the product of fo and the minute respiratory

volume, p (8 liters per minute), and summed over all observations:

RebreathedAirVolume~
Xj

t~1
pfo(t) ð3Þ

Thus, continuously recorded ambient CO2 values [Figure 3A]

can be transformed (using equations 1 and 2) into continuous

Figure 2. Daily volumes of rebreathed air in the pilot study and the adolescent study. Pilot study (left bar) shows median, inter-quartile
ranges and maximum and minimum daily volumes of rebreathed air from others for 17 adults providing 29 daily records. Adolescent study (right bar)
shows median, inter-quartile ranges and maximum and minimum daily volumes of rebreathed air of 108 daily records from 63 adolescents living in a
high TB prevalence township. N.B. A single outlier value of 550 litres per day for the adolescent study is not shown as it exceeds the maximal value of
the ordinate scale.
doi:10.1371/journal.pone.0106622.g002
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measures of rebreathed (shared) air at different visited locations

[Figure 3B]. The RAV for any time-period was the sum of the 60-

second rebreathed volumes accruing in that time period equal to

the area under the curve of rebreathed air for the time-period of

interest [Figure 3B].

We examined determinants of RAV through linear, mixed-

effects, multilevel bivariate and multivariate models, including age,

sex, housing type (shack/brick), season, and the number of

individuals in household and sleeping space. To account for

correlation in multiple, nested observations of the same individual

on different days, we used a two-level model with individuals and

observations. Season was dichotomized into colder months (May-

October) and warmer months (November-April).[28] Because

rebreathed litres were non-normally distributed, we log-trans-

formed rebreathed litres, which reduced the skewness and kurtosis

and improved the normality of the regression residuals. We further

examined residual plots for the predicted, transformed dependent

variables. For multivariable analyses, we used Allen-Cady,

modified backward selection procedure. In this procedure, we

pre-specified forced variables for inclusion (age and sex) and then

used a threshold p-value of 0.20 for removal of variables of least

importance. Ultimately, all considered variables were found to be

under this p-value threshold and were retained [29]. We

calculated conditional goodness-of-fit for the mixed-effects model

using the approach of Nakagawa and Schielzeth [30]. We also

used a multilevel model as above to compare rebreathed litres

between adults (pilot study) and students. Statistical analyses were

performed using Stata 11.0 (StataCorp, College Station, Texas,

USA).

Ethics Statement
For adults, written informed consent for participation in the

study was obtained while for minors, written informed assent was

obtained along with written informed consent from a parent or

guardian. The Human Research Ethics Committee of the Faculty

of Health Sciences at the University of Cape Town approved the

study.

Results

Township adolescent study
Subjects were all residents of the township, and 45 (71%) lived

in a wooden shack and 18 (29%) in brick-built house. The median

household size was 4 individuals (range: 4–9) and the median

number of individuals sharing sleeping quarters was 2 (range: 1–5).

Subjects recorded a total of 108 daily records with a median

Figure 3. Figure 3 A: Ambient parts per million of CO2 recorded at minute intervals by the logging device carried by a subject during a 24-hour
period. Figure 3 B: Litres per minute of rebreathed air with additional allocation to specific locations. Litres per minute of rebreathed air were
calculated for a 24-hour period (transformation from ambient CO2 levels in Figure 2A) and additionally allocated to specific locations using diary and
GPS information. The volume of rebreathed shared air is represented by the area under the curve for each location visited and the daily rebreathed
volume is the sum of all volumes at all locations visited.
doi:10.1371/journal.pone.0106622.g003
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volume of air rebreathed from others of 120.6 [standard error (SE)

8.0] litres per day [Figure 2] with location contributions from own

household (48%), school (44%), visited households (4%), transport

(0.5%) and other locations (3.5%). While all participants

rebreathed air in households every day [59.5 (SE 7.3) litres per

day], only 81% (87/108) of recorded days included school

attendance, with a mean RAV of 63.1 (SE 5.4) litres per day.

Public transport contributed only 0.5% of total RAV of study

participants as only 9 adolescents used public transport (12

recorded days) with a mean of 5.8 (SE 0.7) litres in transport per

day.

Calculations of mean RAV per hour for each location type were

conducted to determine the relative risk in each environment. A

mean RAV of 11.5 litres per hour (SE 0.07) was recorded in

schools, a mean RAV of 6.3 litres per hour in transport (SE 0.25),

a mean RAV of 4.4 litres per hour in households (SE 0.02) and a

mean RAV of 5.8 litres in other places (SE 0.09).

Twenty-four adolescents recorded 28 summer weekday records

with a mean RAV of 79.2 (SE 9.2) litres per day and 39

adolescents recorded 65 winter weekday records with a mean

RAV of 147.1 (SE 10.5) litres per day [Figure 4] (p = 0.008). The

mean number of daily contacts in summer (16.9) and winter

(14.34) did not differ (p = 0.76). However, the mean time spent

indoors was higher in the winter (22.2 hours) than in the summer

(19.4 hours) (p,0.001).

In order to establish if alternative locations visited during

weekends might contribute to total rebreathed litres, 8 of the

subjects completed 15 weekend daily records. Mean weekend litres

per day (82.6; SE 20.7) were considerably lower than on weekdays

(147.12; SE 10.55), with own (82%) and visited households (10%)

the major contributing locations.

In multivariable analysis of the 108 adolescent daily records

(Table 1), log RAV per day increased 8% per year of age,

increased 14% per added household occupant, increased 17% per

additional occupant of sleep space, was 77% higher in winter

months and 43% lower in shacks compared with brick dwellings.

The median and distribution of RAV at each indoor location are

shown in Figure 4, demonstrating increased rebreathing of air in

all locations during winter months with greatest impact on

household and school. School was the major location of RAV

contributing a mean of 77.6 litres per day in winter months.

Discussion

The transmission of communicable diseases is understood to be

a function of social contact rates and the probability of

transmission per contact. Recent studies have illuminated some

of the structure and heterogeneity of social contacts [19–22],

however, there have been few data on the role of the indoor

environment for airborne infections which, as Wells and Riley

demonstrated, is a key determinant of transmission [12,13].

Virtually all studies examining environmental risk for tuberculosis

focus on households or outbreaks in single environments (e.g.

commercial airliners, hospitals). However, studies from Cape

Town and Lima have demonstrated that a minority of tuberculosis

transmission occurs within households [7,8]. It has remained

unclear where most transmission occurs in endemic settings. In

this paper, we demonstrated the measurement of a simple

metric—RAV— that integrates social contact and environmental

data pertinent to transmission of small particle airborne infections.

We have demonstrated that it is practical to continuously

measure ambient CO2 concentrations surrounding an individual

and thereby estimate the RAV rebreathed from others during

normal daily activities. Our approach extends the work of Wells

[12], Riley [13], and Rudnick [25] by enabling quantitation of

exposure to infected air in multiple non-steady state environments.

The sum of the contributions from all visited indoor locations

allowed estimation of total daily RAV from others. Adolescents

living in a high TB-burdened community recorded very large daily

volumes of rebreathed air, such that calculated annual RAV would

reach between (IQR) 20 000 to 65 000 litres. Township

adolescents had higher RAV compared with our pilot study

adults (p,0.0001).

We were able to allocate 93% of rebreathed air to 4 locations:

own home, visited homes, transport and work or school. These

results corroborate findings of an earlier social mixing study

performed in this community in 2010, which reported that 97% of

indoor time was spent in these locations. [22] Public transportation

use was minimal in this largely local school-attending adolescent

population for whom school and household locations contributed

the majority of RAV. The daily RAVs were nearly twice as high in

the colder winter months than during summer months. The

contact rates were comparable between seasons and time spent

indoors in winter was only 14% higher, together indicating that

increased RAVs were predominantly a result of reduced ventila-

tion, presumably because of need for heat conservation (i.e. closed

windows) in cold weather. While there is presently no data on the

seasonality of TB infection, our findings may be compatible to the

observed seasonality of TB disease in South Africa [31].

While earlier work has examined the role of socio-demographic

contact structure in tuberculosis transmission, the role of the

indoor environment has not been factored into models of endemic

transmission [32].

We propose that the daily RAV may be a useful surrogate

marker for the social and environmental components of TB

transmission that have been so long recognised but not quantified

[9–11,14]. Both the number of individuals within indoor locations

and the prevailing environmental ventilation conditions impacts

RAV. For an airborne disease such as TB, it is biologically

plausible that the total volume exchanged with others would be a

major determinant for transmission and acquisition of TB

infection [33], which is also consistent with the approaches of

Wells [13], Riley [14], Rudnick [25], and others [15–20]. The

number of secondary active cases generated by an average person

with TB in a susceptible population (the basic reproductive

number, Ro) is a fundamental epidemiologic driver of TB

epidemics [33]. High-RAV may therefore be a major component

maintaining high levels of TB transmission in endemic township

populations in Southern Africa [34].

There are several limitations to our study. The major

assumption underlying the use of concentrations of inspired CO2

as a surrogate for expired air and infection risk is that the

Figure 4. Figure 4 A: Volumes of rebreathed air recorded in summer months. The figure shows median, inter-quartile ranges and maximum and
minimum volumes of rebreathed air from others for 28 weekdays recorded between November and April together with volume contributions from
households, school attendance, transport and various other locations. Figure 4 B: Volumes of rebreathed air recorded in winter months. The figure
shows median, inter-quartile ranges and maximum and minimum volumes of rebreathed air from others for 63 weekdays recorded between May and
October together with volume contributions from households, school attendance, transport and various other locations. N.B. Two outlier values of
395 and 550 litres per day for total volumes and a single outlier of 395 for household volumes are not shown as they exceed the maximal value of the
ordinate scale.
doi:10.1371/journal.pone.0106622.g004
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dispersion of CO2 within an enclosed space reflects the dispersal of

infectious particles within that space. According to Stoke’s Law,

which states that ‘‘the nuclei of most droplets atomized indoors

shall remain in atmospheric suspension until they are breathed or

vented or until they die’’, small particles such as TB would not be

limited by settling [12]. However, CO2 is a highly diffusible gas.

CO2 decay curves have been widely used for ventilation estimation

[35]. Ambient levels of CO2 have been long used as a measure of

air quality [26], mechanical ventilation control [36] and for

airborne disease modelling [25]. CO2 concentrations were not

sensitive to height of the logger in a room or whether the logger

was located on a lanyard or in a waist pocket (data not shown). In

order to minimize any direct exposure to exhaled air, the subjects

were advised to wear the logger well away from the face and only

near the waist. A further caveat to the use of the CO2 tracer gas

methodology is the assumption that humans are the sole source of

CO2 in the environments studied. We did require that participants

record if there was an obvious alternative source of CO2, such as

open flame heat sources. However, other less obvious CO2 sources

such as the degradation of biological material in earthen floors

could possibly impact measurements in informal dwellings [37].

Consistent with prior literature, we assumed that ventilation,

rather than CO2 absorption or other forms of removal, is the

dominant driver of CO2 removal from indoor settings [23]. The

finding of lower volumes of rebreathed air in shacks compared

with brick built structures is compatible with structural leakages

which contribute to ventilation, and would also indicate that

unsealed, earthen floors did not contribute majorly to household

CO2 levels. The proportion of RAV from others is also dependent

on the accurate recording in the daily diary of person numbers in

each indoor location. The precision of recording of small numbers

in locations impacts results, but accuracy becomes less important

with increased occupancy numbers. If a recording error resulted in

25 persons being recorded as only 20 persons or 50 persons as 40

persons, the errors in rebreathed air would be only 1% and 0.5%

respectively. Additionally, the findings of these studies may not be

generalizable to other population groups, as the pilot study

population was a heterogeneous convenience sample, while the

adolescent study was performed in an age-restricted population

from a high TB transmission community. Repeated measurements

from a small number of schools may underestimate the population

variability of RAV. We recorded only up to two daily measure-

ments per person, and additional studies will be required to

illuminate the intra-individual variability in rebreathed litres.

Finally, the mixed-effect multivariable linear regression analysis

was intended to be hypothesis-generating in this study. We had a

limited sample size of 93 observations from 63 individuals for the

full model. While the design effect was small, there is a possibility

of over-fitting, and larger studies are needed to validate these

findings.

Conclusions

In summary, we have demonstrated the practical measurement

of CO2 over time in a sequence of non-steady state indoor

environments, which, combined with data on number of room

occupants, enabled the estimation of daily RAV from others. This

approach enables comparison of composite social and environ-

mental risk between individuals, settings, and exploration of the

determinants of risk (e.g., season). In adolescents residing in a high

burden community, this revealed marked variability in RAV

between individuals and locations. Future work will be needed to

validate this metric by assessing its ability to predict tuberculosis

and other respiratory infection risk, which will require larger

studies. Continuous monitoring of CO2 and subsequent quanti-

fication of rebreathed air has great potential as a tool to inform

public health interventions targeted at reducing the transmission of

airborne respiratory diseases.
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Data file S1 Rebreathed air volume data.

(CSV)

Author Contributions

Conceived and designed the experiments: RW CM SG. Performed the

experiments: CM SG EP DK AS. Analyzed the data: CM EP DK AS JRA.

Contributed to the writing of the manuscript: RW CM SG DK AS RPW

JRA.

Table 1. Predictors of total log rebreathed litres per day in an unadjusted, multilevel analysis and in a multivariable, multilevel
linear regression analysis.

Unadjusted Adjusted

Predictor ß Coefficient Exp* p-value ß Coefficient Exp* p-value

Age (per year) 0.05 1.05 0.231 0.08 1.08 0.041

Female (vs male) 0.13 1.14 0.468 20.35 0.70 0.059

Winter (vs summer) 0.48 1.62 0.008 0.57 1.77 ,0.001

Household (number) 0.13 1.14 0.026 0.13 1.14 0.021

Sleep space (number) 0.15 1.16 0.041 0.16 1.17 0.022

Shack (vs brick house) 20.44 0.64 0.021 20.56 0.57 0.002

Weekend (vs weekday) 20.64 0.53 ,0.001

Multivariable model conditional goodness-of-fit: 0.73.
*Exponent of ß coefficient, indicating magnitude of change in daily rebreathed volume per unit change in predictor or binary comparator.
doi:10.1371/journal.pone.0106622.t001
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