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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease in which environmental
and genetic factors are involved. Although the molecular mechanisms involved in NAFLD onset
and progression are not completely understood, the gut microbiome (GM) is thought to play a
key role in the process, influencing multiple physiological functions. GM alterations in diversity
and composition directly impact disease states with an inflammatory course, such as non-alcoholic
steatohepatitis (NASH). However, how the GM influences liver disease susceptibility is largely
unknown. Similarly, the impact of strategies targeting the GM for the treatment of NASH remains
to be evaluated. This review provides a broad insight into the role of gut microbiota in NASH
pathogenesis, as a diagnostic tool, and as a therapeutic target in this liver disease. We highlight
the idea that the balance in metabolic fermentations can be key in maintaining liver homeostasis.
We propose that an overabundance of alcohol-fermentation pathways in the GM may outcompete
healthier, acid-producing members of the microbiota. In this way, GM ecology may precipitate a
self-sustaining vicious cycle, boosting liver disease progression.

Keywords: NAFLD; gut microbiome; microbial metabolic pathway; microbiome-based signature;
fecal microbiota transplantation

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide.
Its prevalence is estimated at between 25% and 40% of adults, and its incidence is growing, probably as
a result of the increase in obesity and associated metabolic disorders [1]. NAFLD includes a spectrum of
pathological situations, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis
and cirrhosis. The later conditions potentially lead to hepatocellular carcinoma (HCC) [2]. The reasons
why only a fraction of patients progress from NAFLD to NASH and cirrhosis are not understood,
but obesity and insulin resistance are thought to be involved [3,4]. NAFLD is a multifactorial disease
in which environmental, genetic, metabolic and inflammatory factors are involved. Among them,
the gut microbiome (GM) is believed to be a key player, yet the pathogenic mechanisms involved
are not entirely understood [5–7]. A recent theory on the pathogenesis of NAFLD postulates the
involvement of “multiple parallel hits”. This hypothesis suggests that molecular mediators from
various organs, particularly the adipose tissue and the gut, participate in triggering inflammation
pathways, which may later progress to fibrosis and, eventually, carcinogenesis [8].
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In recent years, increasing attention has been paid to the role of the GM in NAFLD pathogenesis.
The GM comprises all microorganisms (bacteria, viruses, archaea, unicellular and pluricellular eukaryotes)
in the digestive tract, forming a complex ecosystem that establishes a “symbiotic whole” with its human
host. The GM plays a fundamental role in multiple physiological processes, including energy metabolism
and immunological functions [9,10]. The human GM is dominated by four bacterial phyla: Bacteroidetes,
Firmicutes, Proteobacteria and Actinobacteria. Of these, Bacteroidetes and Firmicutes are the most
abundant [11]. Alterations in the microbiome composition have been associated with the development
of chronic metabolic conditions, such as type 2 diabetes, obesity and NAFLD [7,12–14]. The influence
of diet on GM composition and function is well established, and the GM seems to have the potential
capacity to affect metabolic regulation of glucose and lipids in the host, through pathophysiological
factors that may contribute to the development of metabolic syndrome and NAFLD [15].

2. The Gut Microbiome in NAFLD

Accumulated evidence indicates that the GM interacts with the liver via the so-called the
“liver–gut axis” [16–18]. Dysfunction of this axis, including gut microbial imbalances and mucosa
permeability alterations, leads to the passage of metabolic byproducts of bacterial metabolism as
well as microbial components to the portal system reaching the liver. The microbial components,
called pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide and peptidoglycan,
are capable of inducing inflammatory responses mediated by the activation of pattern recognition
receptors (PRRs), like Toll-like receptor (TLR), in Kupffer cells and hepatic stellate cells, leading to
liver injury and fibrosis [19–21]. Besides, some metabolic byproducts of bacterial metabolism may
interfere with glucose and lipid metabolism, as discussed below, contributing to the exacerbation
of liver disease [22,23]. On the other hand, it is well known that GM and bile acids (BAs) closely
interact and modulate each other; BAs prevent intestinal bacterial overgrowth and subsequent gut
barrier dysfunction, and the GM regulates bile acid composition [24]. Given that BAs modulate
host metabolism and immunity, through farnesoid X receptor (FXR) and membrane-associated G
protein-coupled receptor (TGR5) signaling, an imbalance in gut bacteria and BAs may trigger metabolic
diseases, such as NAFLD [25] (Figure 1).
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Figure 1. The effect of gut microbial unbalance in NAFLD. Different factors affect the gut microbiome.
Gut microbial unbalance causes an increase in secondary BAs, which modulates FXR and FGR5
signaling, affecting the glucose and lipid metabolism and anti-inflammatory immune response. Besides,
the increase in certain microbial metabolites mediates weakening of intestinal tight junction, enabling
passage to the systemic circulation of PAMPs and microbial metabolites (such as ethanol) that reach
the liver inducing inflammatory responses, liver injury and fibrosis. BAs, bile acids; FXR, farnesoid
X receptor; PAMPs, pathogen associated molecular patterns; SCFAs, short-chain fatty acids; TGR5,
membrane-associated G protein-coupled receptor; TMA, trimethylamine; TMAO, trimethylamine
N-oxide; VLDL, very low-density lipoprotein.
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Specific GM alterations have been correlated with the development and progression of NAFLD, both
in human and in experimental animal models [6,22,26–28]. NAFLD patients exhibit more Gram-negative
and fewer Gram-positive bacteria compared to healthy subjects, and disease progression correlates
with phylum-level changes, such as an increase in Proteobacteria and a decrease in Firmicutes [29].
At the genus level, a significant increase in the abundance of Bacteroides and a decrease in Prevotella
was observed in NASH patients, when compared to NAFLD patients without NASH [30]. Increased
abundance of Ruminococcus in patients with fibrosis was also reported, as well as a relative increase in
Streptococcus in obese patients with NAFLD [31]. These alterations are specifically linked to hepatic
conditions, and are not the byproduct of insulin resistance, as demonstrated by Da Silva et al. [32].
However, although results point to a correlation between the GM and liver condition, the particular
bacterial species involved are largely discordant across individual studies. These inconsistent results
may be attributed to the lack of control and regularization for factors known to severely impact the
GM, such as weight, diet, and drug intake [33,34]. Additionally, restricting the analysis to changes in
diversity indices or comparisons at the phylum and other high-rank taxonomic levels is unlikely to yield
insight into the molecular mechanisms involved. For these reasons, we are in need of approaches able to
infer causal links, rather than mere statistical associations between specific bacterial species and liver
conditions. The different methods for characterization of the GM are shown in Figure 2.

Meta-taxonomical approaches, if merely understood as the analysis of 16S sequences, are probably
insufficient to unravel the causal links between GM composition and diseased states. Bacterial species
contain pleomorphic genomes, with a conserved genetic core conserved among all members of a
species, but also an accessory part that is highly variable among individual clones. The accessory
part of the genome is often encoded in plasmids and other mobile genetic elements, thus subject to
frequent change [35]. Due to this intrinsic genomic plasticity, strains of the same species frequently
display significant phenotypic differences. Alternate metabolic profiles and even distinct virulence
levels are common among strains of the same species, as exemplified by pathogenic and commensal
E. coli [36–38]. As a consequence, meta-taxonomy alone may be unable to discriminate between strains
that promote hepatic damage from those that do not. Similarly, if hepatic damage is the by-product
of bacterial metabolism, it is likely that strains from different species produce similar hepatotoxic
compounds as, in many species, non-essential, adaptive metabolic pathways are often encoded in
mobile genetic elements [39,40].

Although the specific bacterial strains and species involved in NAFLD are still unknown, there is
ample evidence that GM perturbations have a causal role in the development of the disease, rather
than being a mere consequence of it. In animal models, it was shown that introducing a conventional
GM in axenic mice increased monosaccharide absorption and triggered liver lipogenesis [41]. Similarly,
faecal transplants from human donors with hepatic steatosis triggered a rapid development of hepatic
steatosis in mice [42]. These phenomena suggest that GM does affect the host energy metabolism and
fat storage. It may be thus key in the systemic inflammation associated with obesity, which leads to
insulin resistance and hepatic steatosis. The molecular mechanisms by which GM alterations translate
into hepatic damage are uncertain. However, several studies identified microbial metabolites associated
with NAFLD, suggesting a role of certain gut-microbiome-derived metabolites in the pathogenesis and
progression of NAFLD [42–45].
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Figure 2. Methods for characterizing gut microbiota. 16S rRNA is highly conserved among bacterial
species, except that it contains hypervariable regions that confer phylogenetic association; thus, 16S rRNA
gene sequencing is widely used for phylogenetic reconstruction and quantification of microbial diversity.
However, this technique does not make it possible to decipher functional changes in the microbiome or
to find out the true impact of gut microbes on disease states. For this reason, several -omics approaches
were put forward. These methods dig into genes for genetic information storage, transcription for
gene expression, proteins for structural and metabolic activities, and metabolites for end products of
metabolism. cDNA, complementary DNA; ITS2, internal transcribed spacer 2; rRNA, ribosomal RNA.

3. Microbial Metabolic Pathways

The GM exhibits an array of metabolic pathways that generate multiple final products able to
cross the intestinal barrier [46]. Some of these metabolites may provide a benefit for the health of the
host via regulation of immunity, supplementation of nutrition and homeostasis [47]. On the other
hand, other bacterial metabolites may deregulate intestinal permeability and bile acid metabolism
causing liver injury. In this sense, gut microbial unbalances have been shown to be associated with
changes in the level of serum metabolites [43].

3.1. Microbial Fermentative Pathways

Ethanol is an important microbial metabolite. Several studies reported high alcohol production
by the microbiota of some patients with NAFLD [22,48,49]. Gut microbiota have alcohol-metabolizing
enzymes such as alcohol dehydrogenase, which converts ethanol into acetaldehyde and acetate [50].
Acetaldehyde has been implicated in weakening the intestinal tight junctions, compromising the
gut barrier and enabling translocation of microbial products [51,52]. Besides, the mucosa of the
gastrointestinal tract absorbs ethanol by simple diffusion, and the liver responds by upregulating its own
ethanol metabolic pathways [50,53]. Ethanol-metabolizing enzymes such as alcohol dehydrogenase,
aldehyde dehydrogenase, and catalase are upregulated in NASH liver, strongly suggesting that alcohol
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metabolism may be an important trigger of NAFLD pathogenesis [54,55]. This was proven in a recent
study, where the introduction of strains of Klebsiella pneumoniae with high alcohol production induced
NAFLD in mice [56]. Metabolization of ethanol in the liver may contribute to the formation of free fatty
acids and oxidative stress, but further studies are required to determine the effects of this metabolite
on NAFLD progression. The GM produces other hepatotoxic alcohols through metabolic pathways
other than fermentation. Methanol, for example, is produced by certain species as a by-product of
pectin metabolization and vitamin B-12 synthesis [57].

Endogenous ethanol production by the gut microbiota may explain the similarities between
NASH, alcoholic fatty liver disease [22], and “auto-brewery” syndrome, where subjects suffer from
alcohol intoxication after ingesting carbohydrate-rich meals [58]. Although auto-brewery syndrome is
a rare, extreme condition, it illustrates how alterations in microbial composition may cause a huge
metabolic imbalance. If an abnormal configuration of the normal gut microbiota can even produce an
alcohol intoxication, it is conceivable that a less severe situation may produce enough ethanol to inflict
chronic damage to the liver.

The GM does not only produce ethanol as a final fermentation product (Figure 3). Diverse
members of the GM ferment complex carbohydrates, such as those present in dietary fiber, to produce
short-chain fatty acids (SCFAs), such as acetate, propionate and butyrate. Although most SCFAs are
consumed in the gut, some are absorbed by the gut epithelium, reaching the liver through the portal
vein, where they take part in gluconeogenesis (propionate participates in glucose metabolism) and
lipogenesis (acetate and butyrate are potential substrates for lipid synthesis) [59]. Besides, butyrate
is an energy source for the enterocytes and facilitates maintenance of the intestinal barrier [60,61].
A reduction in butyrate is linked to weakening of intestinal tight junctions and, hence, permeability [62].
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Many functions of SCFAs are mediated by G-protein coupled receptors (GCPRs), which are
expressed in intestinal enteroendocrine cells, adipocytes and immune cells. For this reason, SCFAs
regulate secretion of gut hormones like glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), inhibit
lipolysis and promote adipocyte differentiation, and regulate immune response [63–66]. However,
there are contradictory studies about the relationship between SCFAs and risk of metabolic disorders.
An increase in butyrate-producing bacteria prevents diet-induced liver steatosis in murine models [67].
A decrease in butyrate levels was also observed in diabetic patients [68]. Moreover, a randomized
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clinical trial demonstrated that patients with type 2 diabetes under a high-fiber diet showed significant
improvement in hemoglobin A1c (HbA1c) levels. This effect is probably mediated by an increase in
acetate- and butyrate-producing gut bacterial strains, accompanied by increased GLP-1 production [69].
On the other hand, higher fecal SCFA concentrations were found in genetically obese mice, and were
associated with increased gut permeability, excess adiposity and cardiometabolic risk factors [7,70].

3.2. Choline Metabolim

Choline is a quaternary ammonium alcohol, which is an important component of cell membrane
phospholipids, and is key to liver fat metabolism. Although choline can be synthesized by humans de
novo, its endogenous synthesis is insufficient for health, and has to be complemented by dietary intake
(it is, thus, an essential nutrient). In the liver, choline is converted to phosphatidylcholine (lecithin)
and other phospholipids, which are essential components of cell membranes. Besides, lecithin assists
in the excretion of VLDL particles, preventing hepatic accumulation of triglycerides. For this reason,
rodents fed a choline-deficient diet are used as model of NASH [71,72].

Choline and L-carnitine (a related quaternary ammonium compound) can also be converted to
trimethylamine (TMA) by intestinal bacteria, which is absorbed by intestinal epithelial cells. In the liver,
TMA is oxidized by the enzyme flavin mono-oxygenase 3 (FMO3) to generate trimethylamine N-oxide
(TMAO) [73]. Hence, gut microbiota unbalances can potentially induce an enhanced conversion
of choline to TMA, leading to choline deficiency and contributing to NASH [45,74]. Additionally,
metabolomics studies in humans identified TMAO as a predictor of thrombotic events, linked to its
contribution to platelet hyperreactivity [75]. This result is also supported by the finding that dietary
supplementation of mice with TMAO promoted atherosclerosis [75–77]. The TMAO pathway is also
linked to the pathogenesis of obesity, since FMO3 regulates white adipose tissue [78]. Because of their
involvement in glucose and lipid metabolism [45,79,80], FMO3 and TMAO have been associated with
NAFLD. However, in vivo studies have produced divergent results on glucose tolerance. In one study
where mice were fed with a high-fat diet, TMAO supplementation reduced glucose tolerance, whereas
other studies reported improvements in glucose tolerance after chronic TMAO administration [81,82].

3.3. Amino Acid Metabolism

Branched-chain amino acids (BCAA) and aromatic amino acids (AAA) have also been associated
with gut metabolic unbalances [42,43]. BCAAs, such as leucine, valine and isoleucine, increase in
individuals with insulin resistance, has and have a central role in metabolic disorders [83,84]. A study
in mice showed that 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine,
synthesized in muscle cells, stimulates muscle fatty acid uptake, promoting lipid accumulation and
to insulin resistance [85]. Tryptophan, an AAA, can be processed by the GM to produce indole.
Indole and its derivatives have been demonstrated to upregulate tight junction protein expression,
to downregulate pro-inflammatory cytokines production, and to increase the secretion of GLP-1 in the
intestinal epithelium [86–88]. Despite these beneficial effects, in the liver, indole can be converted to
indoxyl sulfate (IndS), an uremic toxin associated with enhanced endothelial dysfunction and increased
oxidative stress [89,90]. Interestingly, a recent study provided evidence of a link between a microbial
product of AAA metabolism, 3-(4-hydroxyphenyl)lactate, and hepatic steatosis and fibrosis [44].
However, the functional significance of the latter metabolite is unknown. To highlight the ability of
microbial compounds to directly affect the hepatic steatosis phenome, Hoyles et al. treated primary
human hepatocyte and mice with phenylacetic acid, an AAA-derived microbial metabolite, which
resulted in altered BCAA metabolism and hepatic steatosis [42].

All these studies mentioned above suggest causal roles for diverse microbiota-derived metabolites
in the development of NAFLD. However, it is currently impossible to dissect the relative contribution of
each of these different molecules. In order to do so, we need well-designed studies in humans that take
into account the complex interactions with confounding effects. It is known that the GM of mammals
suffers important temporal variations, associated with diet, seasonal changes and drug intake among
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other factors [91–93]. Therefore, if an unbalanced microbiota mediates the progression from NAFLD to
NASH, it should persist for a period of time long enough to inflict chronic damage. We believe that a
possible way for such abnormal microbiota to persist chronically may reside in the microbial metabolic
products per se, especially those produced by fermentative pathways. Fermentation products like
ethanol and other alcohols are toxic to most microorganisms, but many fermentative species exhibit
relatively high tolerance levels to these toxic compounds. A diet rich in sugars may thus boost a vicious
circle, such as that shown in Figure 4. An abundance of easily fermentable saccharides may favor fast
fermentative routes over slower, but more energetically efficient pathways. This way, in an energy-rich
environment, growth of certain fermentative microorganisms would be increased, which would
result in the accumulation of metabolic products, toxic to other microbial species producing different
fermentative products (e.g., alcohol-producing organisms vs acid-producing organisms; see Figure 3).
These toxic compounds (alcohols) may decrease the ability of acid-fermentative species to thrive,
helping alcohol-producing microorganisms to colonize the environment. In this way, a diet abnormally
high in mono and di-saccharides may boost chronic colonization by an unbalanced microbiota.
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4. Microbiome-Based Signature

Given the multifactorial nature and complexity of NASH pathogenesis, we are in need of tools able
to characterize the main pathogenic metabolic pathways that may be involved in NASH progression
in individual patients. While there is ample evidence of the causal role played by the GM, and the
therapeutic opportunities it represents, as mentioned above, we should not ignore its ample potential
as a diagnostic tool. If the GM plays a primary role in NAFLD and NASH, it should be possible to
identify microbiome signatures in patients under different pathological conditions. As indicated in
previous paragraphs, meta-taxonomy and metagenomics alone are probably insufficient to reveal
such signatures, since strains from different species may present similar metabolic pathways, and vice
versa (strains of the same species frequently differ in their accessory genomes, which may contain
important secondary metabolism pathways). A multi-omic approach is probably required to identify
such signatures. Unfortunately, most studies addressing the role of the GM in NAFLD and NASH
performed to date relied on a single -omic approach [22,29,42,44,48,49]. One remarkable exception is
the study performed by Hoyles et al., who integrated stool metagenomics, whole liver transcriptomics,
plasma and urine metabolomics, and clinical data obtained from European non-diabetic obese women.
This approach allowed the authors to identify a set of molecular pathways originating from the GM
that led to hepatic steatosis [42]. Whether this molecular signature is cohort-specific, or it can accurately
mark the presence of hepatic steatosis in other populations, requires further investigation. Hopefully,
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such molecular signatures may be used to detect patients at risk of developing NASH and cirrhosis.
This possibility is supported by studies showing strong statistical correlations between GM signatures
and the presence of advanced fibrosis and cirrhosis in NAFLD patients [29,94]. Besides, Caussy C et al.
determined a gut microbiome signature of NAFLD-cirrhosis, confirming the result with a validation
cohort of first-degree relatives of the patients with NAFLD-cirrhosis [94]. This indicates that this
signature is valid even if there is a shared gut-microbiome profile, such as exists among biologically
related individuals, that is, among subjects with high risk of advanced fibrosis. Given the limitations
of other non-invasive methods for diagnosis of advanced fibrosis, such as transient elastography and
laboratory tests in the context of high-risk populations (obese and type 2 diabetic individuals) [95,96],
GM signatures acquire great clinical relevance. While further studies are required to verify that these
statistical correlations are sustained by causal links, several lines of research point out to the power of
microbial biomarkers as innovative, non-invasive diagnostic tools.

One key question that remains to be elucidated is the impact of the natural variability of the GM
in disease progression and treatment response. There is some evidence that discrepancies in these
parameters may be due, at least in part, to personal differences in GM composition [97]. As an example,
differences in the success rate of bariatric surgery are associated with specific GM profiles [98]. Therefore,
the identification of genes which have an effect on the production of toxic bacterial metabolites involved
in NAFLD progression will provide personalized therapeutic targets and non-invasive biomarkers for
NASH diagnosis and severity stratification.

5. Gut Microbiome-Targeted Therapy

Among current approaches for treating NAFLD, lifestyle-change-based therapies involving dietary
improvement and regular exercise remain the treatment of choice for NAFLD patients. Although these
interventions have proven useful [99], a completely effective NASH treatment has yet to be developed.
The heterogeneity in the response to treatment likely reflects important individual differences in the
many factors that influence NAFLD onset and progress. Personalized approaches tailored to the needs
of individuals or stratified groups of patients are required. To this end, the potential of intervening on
the gut microbiota represents a promising possibility.

There is ample evidence that it is possible to influence GM composition, and interventions through
FMT or pro- and prebiotic administration have been shown to successfully alter the abundance of
microbial-derived metabolites in murine models [100,101]. These lines of evidence support that
targeting the metabolic pathways that produce harmful and beneficial metabolites may represent a
novel strategy to prevent or alleviate NASH (Figure 5).

Prebiotics and probiotics constitute a simple and affordable route for GM modification. Studies
on animal models have provided evidence that prebiotics and probiotics possess modulatory effects on
the GM and contribute to the NAFLD treatment by improving the abnormal lipid metabolism and
gut dysbiosis [102–104]. In humans, the use of prebiotics and/or probiotics is associated with a small
decrease in BMI and in serum ALT/AST levels [105]. Unfortunately, none of the prebiotic or probiotic
trials performed in human subjects included an evaluation of the liver histological outcome [97].
Another possible strategy is to employ antibiotics. Antibiotic therapy, however, is known to alter a
large range of the microbial species, and, while some results indicated that this could have a positive
impact on NAFLD progression, no conclusive results have been obtained yet [106–108].

FMT represents a straightforward approach, aimed at replacing a pathological GM with that of a
healthy individual [109]. This treatment has become common in recent years for patients with relapsing
colitis caused by Clostridium difficile. In this pathology, FMT achieves high cure rates at a much lower
cost than classical antibiotic treatment [110,111]. FMT has been tested in other pathologies, such as
inflammatory bowel disease, autism and acute graft-versus-host disease [112–115]. To date, no FMT
studies have reported on the impact of this intervention on NAFLD patients. Experimental studies
on mouse models have shown that FMT reduces intestinal permeability, improves intrahepatic lipid
accumulation and insulin resistance, and increases pro-inflammatory cytokines [116,117]. FMT was
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found to restore GM diversity, increasing Bacterioidetes and reducing Actinobacteria and Firmicutes,
with a concomitant increase in butyrate production, a SCFA with local anti-inflammatory effects [118].
Recent data showed that FMT from human donors with NAFLD triggered steatosis in recipient
mice [42]. In humans, a randomized controlled trial where patients with metabolic syndrome received
the gut microbiota from lean, healthy subjects, showed an increase insulin sensitivity after 6 weeks
of FMT [119]. These studies suggest that FMT may constitute a suitable approach to restoring a
“physiological” intestinal microbiome, highlighting the current need to perform clinical trials addressing
FMT in NAFLD [109].
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An issue to be resolved with regard to FMT is the stability of microbiota post-FMT. A problem
found in several studies regarding the use of FMT for the treatment of chronic diseases is the loss of
response over time. This is probably due to the lack of FMT persistence, and the reversion of the GM
to its previous, pathological composition. In fact, it has been shown that in chronic conditions such
as ulcerative colitis, repeated FMT treatments are superior to single administration procedures [120].
Regarding the persistence of the FMT, a study of 14 patients with recurrent Clostridium difficile infection
noted that engraftment (the percentage of the community in patient samples that is attributable to donor
communities) persisted through a 1-year follow-up [121]. The length of the FMT engraftment, however,
is likely to depend on the administration route and the pathological condition considered. A recent study
evaluated bacterial engraftment following encapsulated delivery of fecal microbiota, measuring donor
bacterial persistence in 18 patients with a positive FMT response, that did not experience post-transplant
C. difficile recurrences nor required further antibiotic exposure [122]. A majority of the patients (61%)
demonstrated that donor engraftment persisted even after one year. However, the authors also noted
substantial variability in long-term bacterial engraftment, regardless of clinical outcome. This indicates
that neither complete nor sustained donor engraftment is necessary for long-term clinical recovery,
and the FMT may simply act as a disruption strong enough to drive the reorganization of the microbial
community into a healthy state. Besides, recent studies have revealed the existence of distinct and
niche-specific microbial communities along the gastrointestinal tract influencing engraftment rates
of exogenous microbes, suggesting that future microbial interventions may be personalized based
on an individual’s gut microbiome [123,124]. Further mechanistic investigations are necessary to
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characterize functional changes and potential functional redundancies associated with the various
efficacious reorganizations of the intestinal microbiota.

Another aspect related to FMT that requires further analysis is the strategy involved in donor
selection. Currently, there are strict recommendations for selection and screening of fecal donors to
prevent disease transmission [125,126]. But other aspects apart from the transmission of pathogens
require consideration. For example, recent studies have shown the onset of obesity in patients receiving
stool from a healthy but overweight donor [127]. This indicates that other aspects such as a normal
BMI may require consideration before selecting a suitable FMT donor.

If antibiotic treatment and FMT represent somewhat radical procedures to intervene in the GM,
current research focuses on more detailed, specific ways to engineer the microbiome. The goal of
these approaches, still in preliminary stages, is to specifically target bacteria from certain species or
carrying certain genes. One way to achieve this is the use of bacteriophages, bacterial viruses that are
highly specific to certain strains/molecular receptors. These agents can be used to attack specifically
the pathogenic components of the GM and represent a promising line of research in the context of
ever-rising antibiotic resistance [128]. In humanized mice colonized with bacteria from the faeces of
patients with alcoholic hepatitis, Duan et al. investigated the therapeutic effects of bacteriophages
that targeted Enterococcus faecalis. This species was enriched in the faecal samples from alcoholic
hepatitis patients, and targeting it with bacteriophages alleviated ethanol-induced liver injury [129].
The exquisite specificity of bacteriophages made them popular tools for antimicrobial treatment, yet
their applicability is hampered by the frequent emergence of resistances. Current approaches to
microbiome engineering make use of bacteriophages in combination with other molecular tools such as
CRISPR-Cas systems to target not only a particular species, but cells that contain a specific gene [130].
While still in their infancy, such approaches may allow us to eliminate the bacterial strains responsible
for the production of toxic metabolites with surgical precision.

6. Conclusions

It is now widely accepted that changes to the composition and function of the GM are associated
with NAFLD. However, a comprehensive understanding of the interactions between the microbiome
and the liver still evades us. Many of the effects seem mediated by metabolites produced by commensal
bacteria utilizing dietary nutrients as precursors, which does not seem to depend on particular species
but rather on microbial metabolic pathways.

Integrated multi-omic analyses of GM allowed the identification of possible microbial-driven
mechanistic pathways in NAFLD and provided preliminary evidence that it is possible to use a
microbiome-derived metagenomics signature to detect advanced NASH. These approaches have led to
the identification of candidates for microbiome-targeted therapy. Nevertheless, large-scale multi-omic
studies are still required to determine the effects of endogenous production of the microbiota-derived
metabolites on NAFLD progression. The safety and efficiency of novel therapeutic strategies to engineer
the GM also need to be thoroughly analyzed. With limited treatments currently available against NASH,
microbiota-targeted interventions deserve further exploration as a potential therapeutic option against
NAFLD progression.
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