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Abstract The most prominent hallmark of prion diseases is
prion protein conversion and the subsequent deposition of the
altered prions, PrP%, at the pathological sites of affected individ-
uals, particularly in the brain. A previous study has demonstrated
that the N-terminus of the pathogenic prion isoform (PrP%°) is
modified with advanced glycation end products (AGEs), most
likely at one or more of the three Lys residues (positions 23, 24,
and 27) in the N-terminus (23KKRPKP28). The current study
investigated whether N°-(carboxymethyl)lysine (CML), a major
AGE form specific to Lys residues produced by nonenzymatic
glycation, is an AGE adduct of the N-terminus of PrP%°. We
show that CML is linked to at least one Lys residue at the N-
terminus of PrPS° in 263K prion-infected hamster brains and at
least one of the eight Lys residues (positions 101, 104, 106, 110,
185, 194, 204, and 220) in the proteinase K (PK)-resistant core
region of PrP%°. The nonenzymatic glycation of the Lys resi-
due(s) of PrP¢ with CML likely occurs in the widespread
prion-deposit areas within infected brains, particularly in some
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of the numerous tyrosine hydroxylase-positive thalamic and hy-
pothalamic nuclei. CML glycation does not occur in PrP< but is
seen in the pathologic PrP®° isoform. Furthermore, the modifica-
tion of PrP5° with CML may be closely involved in prion prop-
agation and deposition in pathological brain areas.

Keywords Prion disease - Prions - 263K - Advanced
glycation end products - N°-(carboxymethyl)lysine

Introduction

Prions, which are likely primarily composed of the pathogenic
prion isoform (PrPS°), are deposited in pathological areas, partic-
ularly in the brains of prion diseases that occur in humans and
animals [1]. Prions induce the disease by converting the cellular
prion isoform PrP¢ into PrPS°, which occurs in an enigmatic
manner that remains elusive [2]. PrP undergoes a series of post-
translational and conformational change(s) which probably con-
tribute in unknown way(s) to the conversion of PrP® (in the
presence of PrP%°) into PrP>°. The mechanism that converts the
cellular prion isoform into the pathogenic isoform must be elu-
cidated to ultimately develop efficient therapeutics for these dis-
eases [3]. Despite the numerous attempts to determine the struc-
ture of PrPS¢ as the first step to describe the chain of prion
conversion reactions, its definitive structure remains unclear
[3]. The structure of PrP€ has been determined, whereas that of
PrP5° has merely been theoretically proposed using methods
such as Fourier transform infrared spectroscopy, circular dichro-
ism spectroscopy, electron microscopy and crystallography, nu-
clear magnetic resonance, X-ray fiber diffraction, small angle X-
ray scattering, hydrogen/deuterium exchange, limited proteolysis
by proteinase K (PK), and antibody application to linearly or
discontinuously probe the small surface accessible and secondary
structural segments of the PrP protein backbone [3—18]. The ad
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interim trials seeking to reveal the definitive structure of PrPS°
have not been productive, and the lack of an experimentally
determined PrP™° structure is likely due to the structural variants
of PrPS (PrPS° heterodimers and additional multimers) that un-
dergo a variety of stoichiometric conformational transforma-
tion(s) in prion-infected individuals [3, 19].

Advanced glycation end products (AGEs) are produced by
the nonenzymatic glycation of amino compounds (i.e., proteins)
with reducing sugars through a series of sequential and irrevers-
ible reactions, which exhibit some reversibility during the early
stage of the reaction [20]. Various AGEs can be generated
in vitro through the nonenzymatic glycation between bovine
serum albumin (BSA) as a source of amino compounds and
glucose (or glucose-6-phosphate, glyoxal, methylglyoxal,
glycoaldehyde, or 3-deoxyglucosone) as one of the carbohy-
drates; these AGEs have been used as specific immunogens to
produce anti-AGE(s) antibodies with a variety of anti-AGEs IgG
populations or a specific anti-AGE IgG population [20-24]. Cer-
tain types of AGEs are deposited in in vivo pathological areas
associated with numerous diseases featuring abnormal circulato-
ry metabolism such as diabetes, hypertension, and atherosclero-
sis, thereby exacerbating these disorders. AGEs are also depos-
ited in the hippocampal CA4 pyramidal neurons within elderly
human brains, a finding that suggests their involvement in the
aging process [20, 24-26].

A previous study showed that at least one Lys residue at the
N-terminus of PrP%° of 263K prion-infected hamsters was linked
with AGEs [27]. In addition, the pathogenic prion isoform PrP%
was modified with AGEs in the brains of 139H prion-infected
hamsters, as well as in ME7-, 221-, 139A-, and 87V-prion-
infected mice and in human patients with sporadic Creutzfeldt—
Jakob disease (CJD) or variant CJD. The fact that PrP© was not
glycated in these conditions suggests that the pathogenic prion
isoform becomes nonenzymatically glycated with any form of
carbohydrate in the brains of the prion-affected individuals dur-
ing the long incubation period [27]. The current study investigat-
ed whether the N-terminal AGE is CML, which is a major type
of AGE that modifies Lys residues [20]. The N-terminal AGEs
of pathogenic prion isoforms have been affinity-isolated using
3F4 anti-PrP IgG and the R3 anti-AGEs antibody developed in
previous studies [27, 28]. Using these reagents, we identified
CML as an N-terminal AGE of pathogenic prion isoforms. Al-
though the functional role of the CML linkage to pathogenic
prion isoforms is currently unknown, it might be closely related
to prion propagation.

Materials and Methods

Antibodies and Reagents

For PrP, the 3F4 and 3F10 anti-PrP IgGs (mouse monoclonal)
[28, 29] and the 78295 anti-PrP antibody (rabbit polyclonal)

[30] were used in this study. For CML, NF-1G and CMS-10
anti-CML IgGs (mouse monoclonal, Cosmo Bio Co., Ltd.,
Japan) [23] were used; for AGEs, the R3 anti-AGEs antibody
(rabbit polyclonal) [27] was used; for tyrosine hydroxylase
(TH), anti-TH IgG (mouse monoclonal, Santa Cruz Biotech-
nology, USA) was used; and for {3-actin, anti-f3-actin IgG
(mouse monoclonal, Sigma, USA) was used. All other re-
agents not described were purchased from Sigma.

Animal and Prion Strain

The hamster-adapted 263K prion strain was kindly provided
by Richard H. Kimberlin (MRC Neuropathogenesis Unit,
UK). Six-week-old male golden Syrian hamsters (n=20,
ORIENTBIO, Korea) were intracerebrally inoculated with
1 % (w/v) brain homogenates (50 pl) prepared in 0.01 M
phosphate-buffered saline (PBS, pH 7.4) from either normal
hamster brain or hamster-adapted 263K prion-infected brain at
the terminal stage of the disease. The brains were harvested
after the clinical signs were evident (70 days post-inoculation,
dpi). The “Principles of laboratory animal care” (NIH publi-
cation no. 86-23, revised 1985) was followed, as well as a
specific national law of the Republic of Korea on the protec-
tion of experimental animals. The Hallym University Animal
Experimentation Committee approved all of the animal proto-
cols used in this study.

Immunofluorescence

After the hamsters were anesthetized at the terminal stage of
the disease (70 dpi), they were transcardially perfused with a
cold 0.05 M sodium phosphate buffer and then fixed with cold
4 % paraformaldehyde in 0.05 M sodium phosphate buffer.
The hamster brains were immediately removed and then
postfixed in 4 % paraformaldehyde for 12 h at 4 °C, rinsed
with 0.05 M sodium phosphate buffer, dehydrated with su-
crose for 12 h at 4 °C, and then cryo-cut using a microtome
into 25-um-thick coronal sections. After treatment with an
avidin/biotin blocking kit (Vector Laboratories, USA), the sec-
tions were incubated with primary antibodies and sequentially
with a biotinylated anti-mouse IgG, followed by treatment
with Fluorescein Avidin DCS (Vector Laboratories, USA)
for 3F4, NF-1G, or CMS-10. The sections were re-treated
with an avidin/biotin blocking kit and then anti-mouse IgG
to completely block the first primary antibodies. The sections
were then incubated with the NF-1G, CMS-10, or TH anti-
bodies at 4 °C overnight. Each section was treated with a
biotinylated anti-mouse IgG followed by treatment with Rho-
damine Avidin D (Vector Laboratories, USA). The exposure
parameters for confocal laser scanning were the same across
the control and infected samples, and photographic documen-
tation was performed using a confocal laser scanning micro-
scope (LSM 510, Carl Zeiss, Germany). Image analysis was
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performed using LSM Image Browser 3,5,0,223 software
(Carl Zeiss, Germany).

Immuno-gold Labeling and Transmission Electron
Microscopy

When clinical signs were evident in the infected hamsters,
both infected and controls were anesthetized with 16.5 % ure-
thane and transcardially perfused with 0.1 M PBS (pH 7.4)
containing 4 % paraformaldehyde (PFA) and 2.5 % glutaral-
dehyde (GA). After the brains were removed, the thalamic and
hypothalamic regions were immediately trimmed into small
pieces and kept in the fixative buffer (0.1 M PBS containing
4 % PFA and 2.5 % GA) for 2 h at 4 °C. Post-fixation was
conducted in 0.1 M PBS containing 1 % osmium tetroxide,
followed by dehydration with a graded ethanol series and
embedding with an Embed 812 kit (EMS, USA). Ultra-thin
sections (75 nm) prepared with an ultramicrotome (RMC
MTXL, USA) and a nickel grid were incubated in a target
retrieval solution (TRS, pH 9.0, DAKO, Denmark) for
15 min at 110 °C to completely unblock the epitopes. The
sections were blocked with a blocking buffer (0.5 % BSA,
0.5 M NaCl, 0.1 % gelatin, and 0.05 % Tween-20 in PBS)
and immunogold-labeled twice with 3F4 anti-PrP IgG and the
R3 anti-AGEs antibody, or the 78295 anti-PrP antibody and
NF-1G anti-CML IgG, or the R3 anti-AGEs antibody and NF-
1G anti-CML IgG. Gold-conjugated anti-mouse IgG (10 nm)
or 15 nm of gold-conjugated anti-rabbit IgG (Aurion,
The Netherlands) was used as the secondary antibody. When
the distance between a 10-nm gold particle and a 15-nm one is
less than 15 nm, it was regarded that two gold particles co-
localized in an area. Between each step, the sections were
washed with the blocking buffer. The sections were counter-
stained with uranyl acetate and observed using transmission
electron microscopy (TEM) (JEM-1011, JEOL, Japan).

Isolation of the PrP5 -Enriched Insoluble Fraction

A PrP%°-enriched insoluble fraction was isolated as previously
described [27, 31]. Briefly, the control and infected brains
were homogenized in Tris-buffered saline (TBS, pH 7.4) con-
taining 10 % N-lauroyl sarcosine in the presence of DNase I
and centrifuged at 17,000 rpm for 30 min at 4 °C. The super-
natant was ultracentrifuged at 150,000¢g for 2 h at 4 °C, and
the resulting pellet (PU"'™, pellet following the first ultracen-
trifugation) was sonicated and resuspended in TBS (pH 7.4)
containing 10 % NaCl and 0.1 % myristyl sulfobetaine (SB3-
14) followed by layering onto TBS (pH 7.4) containing 10 %
NaCl, 0.1 % SB3-14, and 20 % sucrose (sucrose cushion) and
ultracentrifugation in the same condition. The resulting pellet
(PU™, pellet following the second ultracentrifugation) was
sonicated and re-suspended in TBS (pH 7.4) containing 0.1 %
SB3-14 prior to treatment with PK (25 pg/insoluble fraction
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extracted from 1 g of brain, 2 h at 37 °C). After the PK-treated
sample was ultracentrifuged in the same condition using a
sucrose cushion, the resulting pellet (PU*™, pellet following
the third ultracentrifugation) was sonicated and re-suspended
in TBS (pH 7.4) containing 0.1 % SB3-14. The post-
mitochondrial (supernatant) fraction of the control preparation
in which the control brains had been homogenized in TBS
(pH 7.4) followed by centrifugation at 15,000 rpm for
30 min was used as the PrP“-containing fraction.

Immunoprecipitation

The insoluble fraction (15 pg of total proteins) isolated from
the brains of control or 263K prion-infected hamsters and
30 pg of the PrP“-containing post-mitochondrial fraction pro-
teins prepared from control brains were boiled to unblock the
epitopes and immunoprecipitated with NF-1G anti-CML IgG,
3F4 anti-PrP IgG, or the R3 anti-AGEs antibody. Each anti-
body was first coated to the surface of magnetic Dynabeads®
M-280 Tosylactivated (Life Technologies, USA) according to
the procedure described by the manufacturer. The antigen—
antibody—magnetic bead complexes were washed several
times with 0.05 % PBST using a magnet (Dynal MPC, Life
Technologies, USA) and subsequently eluted by boiling in a
sample-loading buffer. For immunoprecipitation, the PrPS°-
enriched insoluble fraction (2 pg of total proteins) isolated
from the brains of 263K prion-infected animals was used as
a positive control.

Gel Staining and Western Blot

The control and 263K prion-infected brains were homoge-
nized with 20 mM HEPES-KOH (pH 7.5) containing
150 mM NacCl, 0.5 % sodium deoxycholate, 0.1 % SDS,
and protease inhibitor cocktail, followed by centrifugation at
12,000 rpm for 10 min. Then, the supernatant was used as a
HEPES-soluble homogenate fraction. The insoluble fraction
(2 ng of total proteins) isolated from the brains of the control
or 263K prion-infected animals or the immunoprecipitates
were separated using 12 % sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and stained
with Coomassie Brilliant Blue (CBB) G-250 or transferred to
a nitrocellulose membrane. The membrane was blocked with
5 % skim milk in 0.05 % TBST (20 mM Tris—HCI, pH 7.5,
150 mM NaCl, and 0.05 % Tween-20) for 1 h at room tem-
perature and then incubated with mouse monoclonal NF-1G
anti-CML IgG (10 pg) in PBS, or rabbit polyclonal R3 anti-
AGEs antibody (1:1,000), or rabbit polyclonal 78295 anti-PrP
antibody (1:5,000), or mouse monoclonal 3F4 anti-PrP IgG
(1:20,000), or mouse monoclonal 3F10 anti-PrP IgG (1:30,
000) in blocking solution overnight at 4 °C. The membrane
was incubated with anti-mouse IgG-peroxidase or anti-rabbit
IgG-peroxidase, and the antigen—antibody complexes were
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visualized using SuperSignal West Pico (Thermo Scientific,
USA). The protein was quantified using a BCA protein assay
(Thermo Scientific, USA).

Isolation of N-Terminal AGEs from PrP%¢

To isolate the N-terminal AGEs from PrP°, the magnetic
Dynabeads M-280 Tosylactivated coated with 3F4 anti-PrP
IgG or the R3 anti-AGEs antibody were incubated with
1.0 M Tris—HCI (pH 8.5) for 48 h at room temperature to
completely block nonspecific binding to the magnetic beads.
The post-mitochondrial fraction (50 pg of total proteins) iso-
lated from the control brains and the insoluble fraction (50 pg
of total proteins) isolated from the 263K prion-infected brains
were first incubated with the 3F4 anti-PrP IgG-coated mag-
netic beads. The 3F4 immune complexes were washed several
times with 0.05 % PBST using a magnet. After changing the
tube immediately before the last washing, the immune com-
plexes were eluted with 0.5 M NH4OH containing 0.5 mM
EDTA for 1 h and then neutralized with acetic acid. The PrP
fractions purified from the 3F4 anti-PrP IgG-coated beads
were treated with PK (50 pg/ml) for 1 h at 37 °C and then
with protease inhibitor cocktail (Roche Applied Science, Ger-
many). The PK-treated PrP fraction of the infected brains was
then subjected to ultracentrifugation in which the supernatant
was used for the subsequent immunoprecipitation (x in
Fig. 6a and lane 5 in Fig. 6b); alternatively, the PK-treated
PrP fraction was used for the subsequent immunoprecipitation
(P in Fig. 6a and lanes 2 and 6 in Fig. 6b). Both fractions were
incubated with R3 anti-AGEs antibody-coated magnetic
beads. The R3 immune complexes were washed, eluted, and
neutralized using the same buffers as described in the purifi-
cation procedure to isolate PrPS¢. Both purified fractions were
used for Dot blot or Western blot (Fig. 6).

Results

CML Co-localizes with PrP in Tyrosine
Hydroxylase-Positive Neurons

We first investigated the localization of PrP and CML in con-
trol and 263K prion-infected brains. Both NF-1G IgG-positive
CML and CMS-10 IgG-positive CML co-localized with the
PK-resistant prion isoform in the thalamic regions of PK-
treated infected brain, indicating co-localization of CML with
PrP%¢ in the same cells (Fig. 1 and upper panels in Fig. 2).
Both PrP and CML exhibited much lower abundance in the
thalamic regions of control brains compared to infected brains,
indicating few or no PrP and CML deposits in control brains
(Fig. 1). Moreover, both PrP and CML localized within tyro-
sine hydroxylase (TH)-positive cells of the thalamic regions in
infected brains (lower panels in Figs. 2 and 3). CML was co-

localized with PK-resistant prion isoform in the parietal cortex
and hippocampus of infected brains (Supplementary Fig. 1).

CML.-Positive Proteins Are Present in the PrP>-Enriched
Insoluble Fraction

We next determined whether CML was associated with the
PrPS¢ deposits found in infected brains. Initially, PrPSe-
enriched insoluble fraction from infected brains was isolated
using ultracentrifugation (Fig. 4a). The PrP%-enriched insol-
uble fraction (PU*"®) was isolated from the infected brains
using ultracentrifugation with a sucrose cushion. A portion
of the PrP°-enriched insoluble fraction was treated with PK,
followed by an additional ultracentrifugation using a sucrose
cushion and yielding supernatant SU>™ and pellet PU*™. The
proteins in the three fractions were separated and stained with
Coomassie Brilliant Blue G 250. As shown in Fig. 4a, the
PrPS-enriched insoluble fraction isolated from the infected
brains (PU?") contained numerous proteins, including several
proteins that likely represent PrPS¢ isoforms with molecular
weights of less than 35 kDa; however, although several PK-
resistant PrP¢ isoforms were present in the PK-treated insol-
uble fraction following the limited proteolysis (PU™), they
were not present in the supernatant (SU*™). Next, we identi-
fied the full-length and truncated PrPS¢ isoforms in the PU*™
and PU*™ fractions. We identified three R3 anti-AGEs anti-
body-positive proteins in the PU*™ fraction (Fig. 4b), as ob-
served in a previous report [27]. PrP positivity was not ob-
served in the insoluble fraction isolated from control brain,
indicating that normal PrP© was not precipitated by the ultra-
centrifugation (Fig. 4b). We next identified whether CML
positivity was present in the PrPS°-enriched insoluble fraction.
Using NF-1G anti-CML IgG, we found five proteins contain-
ing CML adduct on their Lys residue(s) in the insoluble frac-
tion isolated from infected brains but not in the insoluble frac-
tion from the control brains (the first through the third lanes
from the left in Fig. 4c). Four CML-linked proteins were iden-
tified even in the PK-digested insoluble fraction (PU*™) of
infected brains. These proteins exhibited apparent molecular
masses that were nearly identical to those of the truncated
PrP5¢ isoforms following PK proteolysis in SDS-PAGE anal-
ysis (the first lane from the right in Fig. 4c). The three R3-
positive AGEs-linked proteins were only detected in the in-
soluble fraction that was not digested with PK (Fig. 4b, d). In
contrast, no differential AGE positivity was seen in soluble
fractions (Ho) of control and infected brains (Fig. 4d).

Pathogenic Prion Isoforms Are Modified by CML at One
or More Lys Residues

Next, we ascertained whether the pathogenic prion isoform is

modified with CML. An immunoprecipitation analysis using
NF-1G anti-CML IgG and the 78295 anti-PrP antibody
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Fig. 1 CML is localized in the PrP-positive cells within the thalamic
regions of the 263K prion-infected brains. The posterior thalamic
nuclear groups (po, Bregma —2.46 mm) within the thalamus of the
control brains (CTL, upper panels) that were not treated with PK and
the 263K prion-infected brains (lower panels) that were treated with PK

identified CML-positive protein associated with each PrP5°
isoform (Fig. Sa). Therefore, at least one Lys residue in the
PK-resistant core region of the PrP>® isoform was modified
with CML. No such effect was observed in control brains.
Moreover, in Fig. 5b, we observed that the CML-positive
immune complexes that were immunoprecipitated by NF-1G
anti-CML IgG using the non-PK-treated insoluble fraction of
the infected brains were detected by the R3 anti-AGEs anti-
body (the first and the third lanes from the left in Fig. 5b).
Immune complexes were not seen using the PK-treated insol-
uble fractions (the second and the fourth lanes from the left in
Fig. 5b). No positivity was observed for immunoprecipitation
without an antibody (NA), excluding the possibility that PrPS¢
is nonspecifically bound to the magnetic beads (Fig. 5a, b, first
lane from the right, respectively). The immunoprecipitation
analyses indicated that at least one Lys residue in each of the
three glycosylated (di-, mono-, and non-) types of the patho-
genic prion isoforms was modified with CML.

CML Is an N-Terminal AGE of PrP*
We previously showed that AGEs are linked to PrPS° at one or
more Lys residues at 23, 24, and 27 in the N-terminal region of

PrP¢ [27]. To clarify whether the N-terminal AGEs of PrPS°
are CMLs, we affinity-purified the R3 anti-AGEs antibody-

@ Springer
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(50 pg/ml) for 5 min at room temperature were sequentially
immunostained with 3F4 anti-PrP IgG (lefi panels, green) and NF-1G
anti-CML 1gG (central panels, red), and the images were observed and
merged (right panels, yellow). The arrows indicate the co-localization of
PrP and CML. Each bar indicates 50 pm

positive species that were immunoprecipitated by 3F4. Subse-
quently, these immunoprecipitates were eluted from the super-
natant fraction, in which soluble forms of proteins and the trun-
cated non-insoluble amino acid residues by PK proteolysis re-
side, after PK digestion and ultracentrifugation (Fig. 6a, «) or
from the PK-treated PrP fraction (Fig. 6a, 3) following the
purification of PrP5¢ from the insoluble fraction with 3F4-
coated magnetic beads. CML immunoreactivity was increased
for both of the eluates sequentially purified from the 3F4-beads
and the R3-bead immune complexes in a loaded volume-
dependent manner (Fig. 6a). No prion isoforms were found in
either of the eluates purified by 3F4 and R3 antibodies (the fifth
and the sixth lanes from the left in Fig. 6b), whereas the prion
isoforms were detected in the eluates from the 3F4-bead im-
mune complexes used as positive controls (the third and the
fourth lanes from the left in Fig. 6b). These results indicate that
neither of the CML-positive eluates purified by the 3F4 and R3
antibodies contained the proteolytically truncated PrPSC; rather,
they contained at least one CML-linked Lys residue or a CML-
linked peptide fragment(s) proteolytically dissociated from the
N-terminus of PrP* due to PK treatment that digests the N-
terminal region (23-89) of PrP¢ in 263K-infected hamster
whereas leaves the truncated PK-resistant PrP>® isoform (PrP
90-231) [1]. In addition, nonspecific binding of the proteolyt-
ically truncated PrP° to the R3 anti-AGEs antibody-coated
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Fig. 2 PrP is partially localized in the TH-positive neurons within the
thalamic regions of the 263K prion-infected brains. The PK (50 pg/ml,
5 min, room temperature)-treated ventral posteromedial thalamic nucleus
(VPM, upper panels, Bregma —2.46 mm) regions within the thalamus of
the 263K prion-infected brains were sequentially immunostained with
3F4 anti-PrP IgG (left upper panel, green) and CMS-10 anti-CML IgG
(central upper panel, red), and the images were observed and merged
(right upper panel, yellow). In addition, thalamus sections from 263K

magnetic beads was not observed (the first lane from right in
Fig. 6b). These findings indicate that at least one of the three
Lys residues at positions 23, 24, and 27 at the N-terminus of
PrP%° was linked with CML. Altematively, at least one Lys
residue might be involved in the formation of other complex
AGE structures containing a CML moiety.

CML.-Linked PrPS¢ Localizes in the Cellular
Compartments of Neurons

Next, we performed a TEM analysis to identify the localiza-
tion of CML-linked PrP%° within cells of the infected brain
(Fig. 7). The co-localization of PrP and AGEs was observed in
the plasma membrane, mitochondria, and cytosol within the
thalamic and hypothalamic nuclei of the infected brains,
whereas no co-localization was observed in the control brains
(Fig. 7a—d). PrP co-localized with CML in the nuclear mem-
brane and in the cytosol within the thalamic and hypothalamic
nuclei of the infected brains but not in these regions of control
brains (Fig. 7e-h). In addition, AGEs co-localized with CML
in the mitochondria and cytosol within the thalamic and hy-
pothalamic nuclei of the infected brains but not those of the
control brains (Fig. 7i-1). These observations indicate that

PK-Merge

prion-infected brains (“zona incerta, dorsal parts (ZID)” and “zona
incerta, ventral parts (ZIV)” (lower panels, Bregma —2.46 mm)) were
sequentially immunostained with 3F4 anti-PrP 1gG (left lower panel,
green) and anti-TH IgG (central lower panel, red), and the images were
observed and merged (right lower panel, yellow). The arrows in the
upper and lower panels indicate the co-localization of PrP and CML
and of PrP and TH, respectively. The bars in the right upper panel and
the right lower panel indicate 20 and 50 pm, respectively

both glycophosphatidylinositol-anchored and intracellular
PrP isoforms (which are likely to be PrPS%) were modified
with CML in the plasma membrane and in specific intracellu-
lar regions of the thalamic and hypothalamic nuclei.

Discussion

In this study, we observed that CML and the prion isoform
(PrP%%) were deposited in numerous brain areas (data not
shown), including the parietal cortex and hippocampus in
263K prion-infected hamsters; however, few or no deposits
of CML or PrP were observed in the controls. CML was
shown to be extensively co-localized with PrPS¢ in the thalam-
ic regions of the infected brains, and the CML was linked to at
least one Lys residue at the N-terminus of PrPS¢ as well as to at
least one of eight Lys residues on the PK-resistant core region
of PrP¢. The CML linkage to PrP° (i.e., the modification of
PrPS¢ with CML) occurred in the TH-positive neurons within
the thalamic regions of infected brains. The current study
found that TH, which is the rate-limiting enzyme of dopamine
biosynthesis in the dopaminergic neurons of the basal ganglia
and nigrostriatal system, was localized in numerous thalamic
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Fig. 3 CML is localized in the TH-positive cells within the thalamic
regions of the 263K prion-infected brains. Thalamus sections of 263K
prion-infected brains were immunostained with NF-1G anti-CML IgG
(left upper panel, green) or CMS-10 anti-CML IgG (left lower panel,
green), respectively. The sections were then immunostained with anti-
TH IgG (central upper and lower panels, red), and the images were

nuclei of the infected brains; previous studies have reported
similar results [32—34]. Thus, we assume that both the prion
isoform- and the CML-positive cells would be TH-positive
dopamine-like neurons in the thalamic regions of the infected
brains. Although numerous PrP-positive cells were TH-
positive in most of the thalamic regions of the infected brains
(data not shown), certain 3F4-positive PrP isoforms were only
localized in a number of TH-positive neurons, particularly in
the “zona incerta, dorsal parts” and the “zona incerta, ventral
parts” of the thalamic region in infected brains (but not in all
TH-positive neurons; see Fig. 2). Although the infected brains
were harvested at the terminal stage, not all TH-positive neu-
rons in the thalamic region of the infected brains expressed
PrP isoforms (see Fig. 2). In addition, the PrP isoform within
certain TH-positive neurons in the infected brains must have
been PrPS¢ constituting prions because the normal prion iso-
form (PrP) was expressed at basal levels. These neurons were
observed less often in the control brains (see Fig. 1). These
observations indicate that prion conversion occurred in nu-
merous, but not all, TH-positive dopamine-like neurons with-
in the thalamic regions of the infected brains, suggesting the
co-localization of the prion protein and TH since a recent
study has reported an interaction between the prion protein
and TH [35].
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observed and merged (right upper and lower panels, yellow). The
arrows in the upper and lower panels indicate the co-localization of
CML and TH. The bars in the right upper panel and the right lower
panel indicate 50 and 20 pum, respectively. The location is Bregma
—2.46 mm

The NF-1G anti-CML IgG used in this study detected sev-
eral CML-positive proteins with molecular weights of less
than 27 kDa, whereas the R3 and 6D12, anti-AGEs antibod-
ies, which were used in a previous study, did not (Fig. 4¢) [27].
Our finding indicates that the specific PrPS¢ isoforms with
molecular weights of less than 27 kDa in infected brains
may be modified with CML. In a previous study, R3 detected
three AGEs-modified pathogenic prion isoforms in the non-
PK-treated PrP5-enriched insoluble fraction at the positions
identical to di-, mono-, and non-glycosylated prion isoforms,
whereas 6D12 detected two AGE-modified pathogenic prion
isoforms at the positions identical to di- and mono-
glycosylated prion isoforms [27]. However, neither R3 nor
6D12 anti-AGEs antibodies were able to detect any isoform
of the pathogenic prion protein in the PK-treated insoluble
fraction, indicating that both anti-AGEs antibodies detected
AGE structures located only at the PK-sensitive N-terminal
portion of the pathogenic prion isoform. The CML-positive
proteins, which appear as truncated PrPS¢ isoforms after PK
proteolysis, were detected in the insoluble fraction isolated
from the infected brains even after PK proteolysis (see
Fig. 4c). This observation indicates a linkage between N°-
carboxymethyl and at least one of the eight Lys residues on
the PK-resistant core region of PrPS° from infected hamster
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Fig. 4 CML is linked to specific proteins in the 263K prion-infected
brains. The separated proteins (15 pg of total proteins) from the
insoluble pellet fractions isolated from the controls (C7L) or the 263K
prion-infected brains were stained with CBB G-250 (a) or incubated with
3F10 anti-PrP IgG (upper panel in b), the R3 anti-AGEs antibody (lower
panel in b), or NF-1G anti-CML IgG (¢). In d, in the two left lanes, we
applied 30 pg of total proteins in 20 mM HEPES-soluble homogenate
(Ho) fractions of the control brains; the same quantities for 263K Ho are
in the middle lanes. In the two right lanes, 1.0 ug of total proteins of the
non-digested insoluble fraction (PU?™®) and 0.1 ug of total proteins of the
digested insoluble fraction (PU>) were separated and then blotted with
the R3 anti-AGEs antibody (upper panel in d). The R3 anti-AGE

brain. Eight Lys residues are present in the PK-resistant core
region of the golden hamster prion protein at positions 101,
104, 106, 110, 185, 194, 204, and 220 (P04273 in
UniprotKB).

kDa 263K CTL 263K

35—' .

97 ' - .
PK -+ - -+ -
IP:CML - - + + + NA
Blot: 78295

Fig. 5 N°-carboxymethyl is linked to at least one Lys residue in each of
three glycosylated types of disease-associated PrP>° isoforms in 263K
prion-infected brains. The insoluble fractions isolated from the controls
(CTL) or the 263K prion-infected brains and digested with PK (+) were
immunoprecipitated (/P) with NF-1G anti-CML IgG (lanes 3, 4, and 5 in
a and /anes 3 and 4 in panel b) and blotted with the 78295 anti-PrP

antibody was stripped, and the membrane was reprobed with 3F4 anti-
PrP IgG (central panel in d) and subsequently reprobed with anti-[3-actin
IgG (lower panel in d). The PrPS*-enriched insoluble pellet fractions
(PU*™) following the second ultracentrifugation using a sucrose
cushion were digested with PK (+), followed by the third
ultracentrifugation. Following the third ultracentrifugation, SU*™ and
PU* indicate the supernatant and the PK-digested PrP>-enriched
insoluble pellet fractions, respectively. In d, 30 pg of total proteins in
the HEPES-soluble fractions of the controls or the infected brains was
digested with 0.3 pg of PK for 1 h at 37 °C. The molecular weights (kDa)
are shown on the left side of each figure

The result shown in Fig. 5b suggests the following regard-
ing the position of the N*-carboxymethyl modification of
PrP5¢ isoforms in the infected brains: One or more PK-
sensitive N-terminal CML moieties on the PrPS° isoform were

b

kDa 263K
B 4
1] ‘
27 1w
PK -+ - + -
IP:CML = - + + NA
Blot: R3

antibody (a) or R3 anti-AGEs antibody (b) N4 no antibody. Magnetic
beads that had not been coated with antibodies and only blocked with Tris
were incubated with the insoluble fractions of the infected brains (lane 6
in a and /ane 5 in b). The asterisks in a indicate three glycosylated (di-,
mono-, and non-) PrP isoforms. The molecular weights (kDa) are shown
on the left side of each figure
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Fig. 6 CML is the N-terminal AGE at the PK-sensitive region of disease-
associated PrP5° isoforms. The post-mitochondrial fractions of the
controls (CTL) and the insoluble fractions of the 263K prion-infected
brains were immunoprecipitated (/P) with 3F4 anti-PrP IgG. The PrP
fractions that had been eluted from the 3F4 immune-complexes were
treated with PK and protease inhibitor cocktail and were subjected to
ultracentrifugation, in which the supernatant was used for the
subsequent immunoprecipitation with the R3 anti-AGE antibody (« in
a and lane 5 in b), or the PK-digested PrP fraction was used for the

263K

27 .
-
IP:3F4 + + + + +
PK - + = 4
IP:R3 - + - - +
Blot: 3F4

subsequent IP with the R3 anti-AGEs antibody without
ultracentrifugation (3 in a and lanes 2 and 6 in b). Both fractions («
and (3 in a and lanes 2, 5, and 6 in b) were then incubated with R3 anti-
AGEs antibody-coated magnetic beads. The eluates from the R3
immune-complexes were subjected to Dot-blotting with NF-1G anti-
CML IgG (a) or Western-blotting with 3F4 anti-PrP 1gG (b). Lanes 5
and 6 in b received 40 pl of each eluate, whereas lanes I through 4 got
10 pl
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Fig. 7 The prion isoform is co-localized with CML (or AGEs) not only
in the plasma membrane but also in the intracellular compartments of the
thalamic and hypothalamic nuclei in 263K prion-infected brains. The
controls (a, b, e, f, i, and j) and 263K prion-infected (¢, d, g, h, k, and
1) brain sections were immunogold-labeled twice with AGEs (R3, 15-nm
gold particles) and PrP (3F4, 10-nm gold particles) (a—d), PrP (78295,
15 nm), and CML (NF-1G, 10 nm) (e-h) or AGEs (R3, 15 nm) and CML
(NF-1G, 10 nm) (i-1) in the thalamic (a, ¢, e, g, i, and k) and hypothalamic
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regions (b, d, f, h, j, and 1) and observed by TEM. Note the co-
localization (arrows and square boxes) of AGEs- (R3, 15 nm) and PrP-
positivities (3F4, 10 nm) in the plasma membrane (PM), mitochondria
(M), and cytosol in ¢ and d, PrP- (78295, 15 nm) and CML-positivities
(NF-1G, 10 nm) in the nuclear (N) membrane and cytosol in g and h, and
AGEs- (R3, 15 nm) and CML-positivities (NF-1G, 10 nm) in the mito-
chondria (M) and cytosol in k and 1 within the thalamic and hypothalamic
nuclei of the infected brain. Scale bars represent 500 nm
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immunoprecipitated and then positively immunoreacted with
the R3 anti-AGEs antibody. This observation suggests that
N°¢-carboxymethyl is linked to the side chain of at least one
PK-sensitive N-terminal Lys residue. Additionally, the specif-
ic PrP%° isoform modified with CML at one or more Lys
residues in the PK-resistant core region may also be modified
with AGEs (i.e., CML) at its N-terminus. Notably, the R3 anti-
AGEs antibody does not detect the CML moiety on the PK-
resistant core of the specific PrPS but can detect CML moie-
ties in AGE structure(s) on the N-terminus. This finding sug-
gests the possible following scenarios: the CML structure is
linked at the PK-sensitive N-terminus of specific PrPS¢ iso-
forms; however, this “CML” might actually be a CML-like
structure(s) containing a CML moiety, which differs slightly
from the structure of CML. The prion protein contains two
consecutive Lys residues at positions 23 and 24 in the PK-
sensitive N-terminus that may be linked to a more complex
AGE structure containing a CML moiety via nonenzymatic
glycation of the individual amino groups of side chains. Thus,
the R3 anti-AGEs antibody may detect a more complex CML
moiety-containing AGE structure on the side chains of Lys 23
and Lys 24, as well as CML on Lys 27. This interpretation
suggests that the N-terminal AGE structure of PrP is a CML
or a more complex structure containing a CML moiety pro-
duced by glycation of the consecutive Lys residues’ side ami-
no groups including the N-terminal amine of Lys 23; this
structure may be similar to the methylglyoxal-lysine dimer
or glyoxallysine dimer, which are Lys—Lys cross-linked AGEs
[36]. As suggested, the lack of an experimentally determined
structure of PrPS® may be due to the variants of PrPS° that
undergo kaleidoscopic changes in in vivo cells or tissues [3].
Thus, the CML-modified PrP>® isoforms may represent a var-
iant of PrP%°. More elaborate techniques must be developed to
isolate the PK-sensitive N-terminal AGE structure of PrPS°
(e.g., developing a protease[s] that specifically cleaves the
peptide bond between Lys and Lys, between Lys and Arg, or
between Pro and Lys in the N-terminal sequence
(23KKRPKP28) of prion proteins; this N-terminal sequence
is identical in nearly all mammalian species).

AGEs can be formed by a series of reactions, called non-
enzymatic glycation, between amino groups of amino acids
(particularly Lys or Arg) and carbohydrates in vitro and
in vivo, thereby affecting the aging process and neurodegen-
erative disorders including Alzheimer’s disease [20, 36, 37]. A
TBS—sucrose cushion buffer was used in the second and third
ultracentrifugation procedures to isolate the PrPS°-enriched
insoluble fractions in this study. Therefore, it is necessary to
determine whether the CML modification of PrP5¢ occurs via
the glycation between PrP* and sucrose during the in vitro
ultracentrifugation procedures using a sucrose cushion. We
determined that the PrP>® isoform of 263K prion-infected
brains was not nonenzymatically glycated with sucrose (or
glucose) via in vitro glycation of the PrPS°-containing PU'

(the pellet fraction isolated following the first ultracentrifuga-
tion) (unpublished data). Neither sucrose nor glucose induced
AGESs modification of the pathogenic prion isoform in vitro.
Therefore, the CML-linked (or AGEs-linked) prion protein
was produced in infected brains. In addition, a previous study
showed that the NF-1G anti-CML antibody was specific to
CML that had been produced from the nonenzymatic
glycation between amino acid Lys in the presence of a reduc-
ing agent (NaCNBH3) or from bovine serum albumin-derived
AGE:s in the presence of the reducing agent [38].

The current study showed that at least one Lys residue at
the PK-sensitive N-terminus of PrP*° was modified with
CML, and there is CML on at least one of the eight Lys
residues on the PK-resistant core of PrP>¢. In addition, CML
modification of PrP5° appeared to occur primarily in the plas-
ma membrane, nuclear membrane, mitochondria, and cytosol
of'the prion-affected cells, especially in TH-expressing cells in
thalamic and hypothalamic regions, parietal cortex, and hip-
pocampus. The role(s) of the AGEs-modified pathogenic pri-
on isoform in prion-infected brains must be elucidated further.
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